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ABSTRACT

Dictionary learning through matrix factorization has become widely
popular for performing music transcription and source separation.
These methods learn a concise set of dictionary atoms which repre-
sent spectrograms of musical objects. However, there is no guarantee
that the atoms learned will be perceptually meaningful, particularly
when there exists significant spectral and temporal overlap among
the musical sources. In this paper, we propose a novel dictionary
learning method that imposes additional harmonic constraints upon
the atoms of the learned dictionary while allowing the dictionary size
to grow appropriately during the learning procedure. When there is
significant spectral-temporal overlap among the musical sources, our
method outperforms popular existing matrix factorization methods
as measured by the recall and precision of learned dictionary atoms.

Index Terms— Nonnegative matrix factorization, pitch estima-
tion, sparse coding, music transcription.

1. INTRODUCTION

Recently, researchers have proposed many approaches for perform-
ing music transcription and source separation. In particular, one such
category of approaches – spectral decomposition through matrix fac-
torization – has received plenty of attention. By first expressing
a time-frequency representation of the musical signal as a matrix,
these methods decompose each column of the matrix into a summa-
tion of individual vectors, each corresponding to one musical source
or note [1, 2].

These methods commonly share two important steps: dictionary
learning and sparse coding. Dictionary learning refers to the con-
struction of a set of atoms – the dictionary – from which the input
signal can be represented, and sparse coding is used to compute the
contribution of each dictionary atom to the signal at each moment
in time. Methods known as nonnegative matrix factorization (NMF)
also impose a nonnegativity constraint on the dictionary and its coef-
ficients in order to learn more meaningful atoms. The nonnegativity
constraint makes sense considering that we only have the presence
or absence of a source from a signal and never the “subtraction” of a
source from a signal in which it is already absent.

Unfortunately, these methods also share a common limitation.
When there is significant spectral-temporal overlap in the signal
among the dictionary atoms, it becomes difficult for these methods
to learn atoms properly. Often, information from multiple atoms is
represented as a single atom by the learning procedure. If an atom
in the output dictionary contains musical information from multiple
sources, transcription and source separation cannot be accurately
performed. Furthermore, if the dictionary atoms themselves are

highly correlated, as is common when harmonic frequencies be-
tween atoms overlap, accurate dictionary learning becomes even
more difficult.

In this paper, we propose a novel dictionary learning method
designed to perform well despite spectral-temporal overlap among
the dictionary atoms. The dictionaries learned by this method con-
tain atoms which accurately resemble the original notes and sources
which comprise the input signal. While our method is based on ma-
trix factorization, it imposes an additional harmonic constraint that
restricts each atom to represent at most one pitch. Furthermore, our
method is flexible by allowing the size of the dictionary to grow
based upon the complexity of the input signal, unlike other meth-
ods which fix the dictionary size a priori. Our method consistently
outperforms other dictionary learning methods such as nonnegative
matrix factorization with multiplicative updates (NMF-MU) [3], K-
SVD [4], nonnegative K-SVD (NN-K-SVD) [5], and the method of
optimal directions (MOD) [6], as measured by the recall and preci-
sion of learned dictionary atoms.

2. PROBLEM FORMULATION

Dictionary learning methods based upon matrix factorization accept
a time-frequency representation of the musical signal as the input.
Although there exist many different time-frequency representations,
we will simply use the magnitude spectrogram of the input signal.

Given a discrete-time single-channel music signal x(n), the
magnitude spectrogram of the input signal is a real-valued nonneg-
ative matrix X ∈ R

M×N
+ , where X = [x1 x2 ... xN ], whose N

columns are the discrete Fourier transform (DFT) magnitudes of
consecutive, possibly overlapping, frames of the input signal. Given
the matrix X, our primary goal is to find two matrices, the dictionary
A ∈ R

M×K
+ and gain matrix S ∈ R

K×N
+ , which minimize some

distance between X and AS. If we denote ||X||F as the Frobenius
norm of X, where ||X||2F = tr(XT X) =

∑
i,j x2

ij , then we can
describe the problem as follows:

min
A,S

||X−AS||2F s.t. A ∈ R
M×K
+ ,S ∈ R

K×N
+ . (1)

The columns of the matrix A = [a1 a2 ... aK ] correspond to
the individual atoms of the dictionary. In this musical context, these
atoms resemble the spectra of individual sources or notes found in
the musical mixture. The gain matrix S = [s1 s2 ... sK ]T represents
the contribution of each dictionary atom in the spectrogram X, i.e.,
the element skn indicates the amount of atom ak present in observa-
tion xn. We refer to the row vector sT

k as the kth row of S, i.e., sk

indicates the activity of atom ak across time.
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3. DICTIONARY LEARNING: EXISTING METHODS

To motivate our proposed algorithm, we discuss existing dictio-
nary learning procedures based upon singular value decomposition
(SVD), including K-SVD and its nonnegative variant, NN-K-SVD
[4, 5]. SVD computes the matrix factorization X = UΣVT where
U = [u1 u2 ... uM ] and V = [v1 v2 ... vN ] are both orthnormal
matrices and the diagonal matrix Σ is such that for any choice of
K, the difference ||X − ∑K

k=1 σkkukv
T
k ||F is minimized. In our

context, the dictionary A corresponds to the first K columns of U,
and the gain matrix S corresponds to the first K rows of ΣVT .
Intuitively, through SVD, we find the K dictionary atoms and their
associated gains which best represent the magnitude spectrogram
X.

However, SVD does not guarantee sparsity or nonnegativity of
the factorization. On the other hand, K-SVD is an iterative algo-
rithm that learns a dictionary that can be overcomplete and whose
gain coefficients are sparse. Instead of immediately solving for A
and S jointly, this algorithm solves the minimization in (1) one dic-
tionary atom at a time, ignoring the nonnegativity constraints, while
the other atoms remain constant. In other words, for a given k, each
iteration of K-SVD solves the minimization

min
ak,sk

||X−AS||2F . (2)

Note that

||X−AS||F =

∣∣∣∣∣
∣∣∣∣∣X−

K∑
j=1

ajs
T
j

∣∣∣∣∣
∣∣∣∣∣
F

=

∣∣∣∣∣∣
∣∣∣∣∣∣
⎛
⎝X−

∑
j �=k

ajs
T
j

⎞
⎠ − aks

T
k

∣∣∣∣∣∣
∣∣∣∣∣∣
F

. (3)

For convenience, denote

Ek = X−
∑
j �=k

ajs
T
j . (4)

Then, the solution to (2) is the rank-one approximation of the SVD
Ek = UΣVT , specifically, ak = u1 and sk = σ11v1. K-SVD
adjusts ak and sk accordingly in each iteration and moves on to the
next dictionary atom in the next iteration. The entire process is re-
peated until convergence of the dictionary occurs. Sparse coding is
applied to update the gain matrix before each set of K iterations.

While K-SVD encourages sparsity and accommodates overcom-
pleteness, it still does not influence the nonnegativity of either the
dictionary A or the gain matrix S. On the other hand, nonnegative
K-SVD (NN-K-SVD) retains the same flavor of K-SVD while main-
taining nonnegativity of the matrix elements. Consider the following
constrained minimization:

min
ak

||Ek − aks
T
k ||2F s.t. ak ∈ R

M
+ . (5)

Here, we keep sk constant and enforce the nonnegativity of ak. By
differentating the objective function, it can be shown that the optimal
solution for ak (similarly, for sk by keeping ak constant) is

ak =

[
Eksk

sT
k sk

]
+

sk =

[
ET

k ak

aT
k ak

]
+

, (6)

where [·]+ denotes a matrix or vector whose negative elements are
set to zero. By observing that the Hessian of the objective function

with respect to ak is proportional to the identity matrix, the optimal
projection from the unconstrained minimum to the constrained min-
imum is performed simply by setting all negative elements of the
unconstrained solution to zero, hence the solution in (6). Each itera-
tion of NN-K-SVD uses these rules to update ak and sk. While we
no longer minimize ak and sk jointly, the updates still guarantee a
decrease in the objective function while maintaining nonnegativity
of the matrices A and S.

4. PROPOSED ALGORITHM

While NN-K-SVD can find numerically acceptable solutions to (1),
some problems remain. First, there is no guarantee that the indi-
vidual atoms of the learned dictionary will each correspond to only
one musical source. In particular, when multiple atoms coincide in
time (e.g., s1 and s2 are highly correlated), the aforementioned algo-
rithms will learn a single atom that contains information from both
a1 and a2. For example, consider the learned atoms in Fig. 1. We
fabricate a dictionary A with two atoms whose gain coefficients S
have significant overlap in time, and then construct the spectrogram
X = AS. The dictionaries learned by K-SVD, NN-K-SVD, and
NMF with multiplicative updates yield output dictionaries which do
not match the input dictionary. However, the dictionary learned by
our proposed method, discussed below, does accurately resemble the
original dictionary.
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Fig. 1. Two dictionary atoms (top left) and their gain coefficients
(top right) were used to construct a spectrogram. Using either K-
SVD (middle left), NN-K-SVD (middle right), or NMF-MU (bot-
tom left), the learned dictionary atoms do not resemble the original
atoms. Using the proposed algorithm (bottom right), the original and
learned atoms match.
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Fig. 2. Dictionary atom of original spectrum (top) and atom after
filtering spectrum through a comb filter (bottom).

The second problem deals with the size of the dictionary, K.
For the popular existing algorithms, the dictionary size K must be
chosen before the algorithm begins. If the chosen value of K is
too low, then the learned dictionary cannot accurately represent the
input spectrogram. If K is too high, computation and memory re-
quirements can increase dramatically and unnecessarily. When exe-
cuting eigendecompositions and/or matrix multiplications, these re-
quirements can become overwhelming.

In order to solve these problems, we propose a novel approach
to dictionary learning that emphasizes the presence of at most one
pitch per dictionary atom. Our method builds upon the technical
foundations of NN-K-SVD mentioned earlier. As illustrated in Fig.
1, existing dictionary learning algorithms are intended for general
purposes, i.e., they do not enforce any perceptual constraints on the
learned dictionary atoms. Under the assumption that individual mu-
sical sources do not overlap in time or frequency, existing algorithms
can learn dictionaries accurately. However, this assumption is not
necessarily true for musical contexts where individual sources are
highly correlated.

Motivated by the observation that music contains a series of
pitched and unpitched sounds, we enforce a harmonic constraint on
the learned atom by filtering the spectrum represented by ak through
a comb filter, thus preserving the spectral energy around the har-
monic frequencies and eliminating the energy at other frequencies
as shown in Fig. 2. To estimate the fundamental frequency, we sim-
ply compute the harmonic product spectrum [7] from the first five
harmonics for candidate pitches. Other frequency-domain pitch es-
timation algorithms can work, as well.

The other notable feature of our algorithm is the initialization
and growth of the dictionary. For the best A ∈ R

M×K , if ||X −
AS||F is still not low enough, we increment K and add another
column vector aK to A and another row vector sT

K to S. There
are many reasonable ways to initialize aK . One could randomly
generate aK , or aK could equal the mean of the columns of X−AS.
For this work, we simply set aK to equal a column of E, en, where
n is chosen such that en has high energy. Then, we initialize sK =[
ET

KaK

aT
K

aK

]
+

as shown in (6).

With each of the basic building blocks described, we now sum-
marize the proposed algorithm.

1. Set the dictionary size K to equal 1.

2. Initialize aK and sK as desired.

3. For each k ∈ {K, K − 1, ..., 2, 1},

(a) Compute Ek:

Ek = X−
∑
j �=k

ajs
T
j .

(b) Find ak:

ak =

[
Eksk

sT
k sk

]
+

.

(c) Estimate the fundamental frequency, f0, for the spec-
trum ak using the harmonic product spectrum.

(d) Filter ak through a comb filter tuned to f0 to emphasize
its harmonicity.

(e) Find sk:

sk =

[
ET

k ak

aT
k ak

]
+

.

Repeat step 3 until the dictionary A converges.

4. If ||X − AS||2F is low enough, stop. Otherwise, increment
K, and go to step 2.

5. EXPERIMENTS

For our experiments, we synthesize a dictionary Ain of harmonic
atoms similar to the atoms in Fig. 1 having a fixed envelope on the
order of exp(−m2), where m ∈ {1, 2, ..., M} is the frequency bin
index, and M = 2048 corresponds to the the Nyquist frequency. We
also synthesize the corresponding gain coefficients to be a K × N
matrix with N = 100 and with L ones randomly placed in each col-
umn and zero otherwise. These two matrices are multiplied to obtain
X, the input to each dictionary learning algorithm. Six dictionary
learning algorithms are tested: the proposed algorithm, NMF-MU
[3], K-SVD and NN-K-SVD [8], the method of optimal directions
[6, 8], and basic SVD.

The output dictionary Aout from each algorithm is compared
against the input dictionary in terms of hits, misses, and false alarms.
A hit occurs if both dictionaries contain corresponding atoms whose
normalized correlation exceeds 0.9. A miss occurs if an atom from
Ain does not correlate with any atom in Aout, and a false alarm
occurs if an atom from Aout does not correlate with any atom in
Ain. Two measures are used to measure performance: recall and
precision. Recall is equal to hits/(hits + misses), and precision is
equal to hits/(hits + false alarms). These measures are averaged over
ten trials of each experiment.

First, we illustrate the effects of the dictionary size K and the
number of simultaneously active atoms L on dictionary learning. For
each trial, we generate a dictionary with K harmonic atoms, each
with a randomly-selected fundamental frequency that is uniformly
distributed over the MIDI interval [48, 84]. Fig. 3 illustrates results
for K = 5 and L ∈ {1, 2, 3, 4}, while Fig. 4 illustrates results for
K = 20 and L ∈ {1, 2, ..., 19}. Because the existing algorithms are
initialized to strictly contain K atoms, each miss must accompany a
false alarm, thus making their recall and precision is equal. On the
other hand, the proposed algorithm must infer the proper value for
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Fig. 3. Recall and precision when K = 5 for L ∈ {1, 2, 3, 4}.
Ground-truth pitches are initialized randomly over ten trials.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

L

R
ec

al
l a

nd
 P

re
ci

si
on

 

 
Proposed (recall)
Proposed (precision)
NMF-MU
NN-K-SVD

Fig. 4. Recall and precision when K = 20 for L ∈ {1, 2, ..., 19}.
Ground-truth pitches are initialized randomly over ten trials.

K as described earlier. When the estimated and true values of K
differ, then misses and false alarms can occur independently.

As shown in Figs. 3 and 4, the recall and precision for the pro-
posed algorithm is better than the other algorithms for most com-
binations of K and L, particularly when L is high. The perfor-
mance of all methods degrades as L increases because the amount
of spectral-temporal overlap also increases. However, the proposed
method learns more accurate atoms when L is high because of the
additional harmonic constraints. The two existing methods with
nonnegative constraints, NMF-MU and NN-K-SVD, both perform
well except when L is high because of their inability to resolve the
spectral-temporal overlap. The remaining methods – K-SVD, MOD,
and SVD – all fail because of the lack of a nonnegativity constraint.

Next, we show results when the pitches of the input dictionary
atoms have overlapping harmonics. To ensure a high amount of over-
lap, we fix K = 5 and L = 3. The five chosen pitches are 200, 300,
400, 500, and 600 Hz. The gain matrix is once again randomly gen-
erated by assigning L ones to each column of S as described earlier.
Fig. 5 shows that the best recall and precision is achieved by the pro-
posed algorithm. Again, recall and precision and equal for each of
the existing methods because K is fixed to its correct value thus cre-
ating a one-to-one correspondence between misses and false alarms.
Finally, we fix K = 10 and L = 5 where f0 ∈ {200, 300, 400, 500,
600, 800, 900, 1000, 1200, 1500}. Fig. 5 again shows that the best
recall and precision is achieved by the proposed algorithm.
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Fig. 5. Recall and precision when K = 5 and L = 3 (light gray)
and when K = 10 and L = 5 (dark gray). Pitches are chosen such
that large spectral-temporal overlap occurs.

6. CONCLUSIONS

We have presented a novel method of dictionary learning based upon
nonnegative K-SVD which can separate sources that are otherwise
inseparable using common methods. Despite the simplicity of our
algorithm, it performs well for a variety of musical scenarios involv-
ing pitched sounds with spectral-temporal overlap. In the future,
we plan to investigate the robustness proposed algorithm under dif-
ferent acoustic conditions, particularly for music that includes addi-
tive noise or unpitched sources, along with decomposition of time-
frequency representations of natural music signals.

After learning a dictionary of perceptually meaningful atoms,
the next stage involves clustering of the dictionary atoms according
to their musical source. While some clustering methods already ex-
ist, difficulties remain when doing this in an unsupervised manner.
If combined with a successful atom clustering method, we believe
that the proposed algorithm can offer state-of-the-art accuracy and
robustness in music transcription and source separation tasks.
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