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ABSTRACT

An effective attack against fingerprints for multimedia is collusion,
where several differently marked copies of the same content are av-
eraged or combined to disrupt the underlying fingerprint. In this
paper, we investigate the problem of designing fingerprints that can
withstand collusion and allow for the identification of colluders. We
begin by introducing the collusion problem for additive embedding,
and introduce an efficient detection algorithm for orthogonal mod-
ulation that identifies the fingerprints associated withK colluders
and requiresO(K log(n/K)) correlations for a group ofn users.
We present a construction of collusion-resistant fingerprints based
upon anti-collusion codes (ACC) and binary code modulation. Us-
ing ACC, we build fingerprints that identify groups ofK or less
colluders. We present a construction of binary-valued ACC un-
der the logical AND operation using the theory of combinatorial
designs. Our code construction requires onlyO(

√
n) orthogonal

signals to accommodaten users. We demonstrate the performance
of our ACC for fingerprinting multimedia and identifying colluders
through experiments using Gaussian signals.

1. INTRODUCTION

The rapid advancement of communication networks and multime-
dia technologies has created a need for mechanisms that ensure that
content is used for its intended purpose, and by legitimate users
with appropriate distribution rights. Digital fingerprinting is an ef-
fective tool used to control the redistribution of content. These fin-
gerprints can be embedded in multimedia content through a variety
of robust watermarking techniques[1, 2]. However, a cost-efficient
attack against watermarking can be waged by a coalition of users
with the same content that contains different marks. One of the
simplest approaches to performing such acollusionattack is to av-
erage multiple copies of the content together[3]. Other collusion
attacks might involve forming a new content by selecting different
pixels or blocks from the different colluders’ content. By gathering
a large enough coalition of colluders, it is possible to sufficiently at-
tenuate each of the colluders’ identifying fingerprints and produce
a new version of the content with no detectable fingerprints. It is
therefore important to design fingerprints that are not only able to
resist collusion, but also identify the colluders.

In this paper, we investigate the problem of making fingerprints
for multimedia content that are resistant to averaging-based col-
lusion attacks. Our investigation differs from collusion-resistant
schemes for generic data sources by incorporating the special prop-
erties of multimedia, such as the embedding method and appropriate
choice of detection statistics. In Section 2 we describe multimedia
fingerprinting, and introduce the problem of user collusion for a
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class of additive watermark schemes. We then review orthogonal
modulation in Section 3, describe the effect that collusion has upon
the constellation points of the modulation scheme, and present a de-
tection algorithm with reduced complexity. In Section 4, we present
our design of anti-collusion codes (ACC), which are used in con-
junction with binary code modulation to construct fingerprints that
are resistant to collusion and able to identify members of a colluder
set. Our approach is suitable for both averaging-based collusion
attacks, and for interleaving collusion attacks. Finally, we present
conclusions in Section 5.

2. FINGERPRINTING AND COLLUSION

We first review additive embedding. Suppose that the host sig-
nal is a vector denoted asx and that we have a family of water-
marks{wj} that are fingerprints associated with the different users
who purchase the rights to accessx. Before the watermarks are
added to the host signal, every component of eachwj is scaled
by an appropriate factor that corresponds to an amplification, i.e.
sj(k) = α(k)wj(k), where we refer the thekth component of a
vectorwj by wj(k). Corresponding to each user is a marked ver-
sion of the contenttj = x + sj , which typically experiences addi-
tional distortionzj that is due to such factors as compression and
attacks made to remove the embedded fingerprints. We will denote
the combination of the noise and the interference of the original
signal bydj = x + zj . We can thus assume that each user will be
given a marked contentyj = sj + dj . Typically, the watermarks
{wj} are chosen to correspond to orthogonal noise-like signals [1],
or are constructed using code modulation and represented using a
basis of orthogonal noise-like signalsui via wj =

∑v

i=1
bijui,

wherebij ∈ {0, 1} or bij ∈ {±1}.
We can identify a user who is redistributing marked contentyj by

detecting the watermark associated with the user to whomyj was
sold. The detection of additive watermarkswj or the correspond-
ing codes{bij} can be formulated as a hypothesis testing problem,
where the embedded data is considered as the signal that is to be de-
tected in the presence of noise. If the distribution of the components
of dj is modelled as independent Gaussian, the optimal detector is
a set of correlators ofy andui with proper normalization. The de-
tector can be further refined with more realistic statistical model for
dj .

When two parties who have the same image but fingerprinted dif-
ferently come together, they can perform a collusion attack to gener-
ate a new image from the two fingerprinted images so that the traces
of either fingerprint in the new image is attenuated. For fingerprint-
ing through additive embedding, this can be done by averaging the
two fingerprinted imagesyc = λ1y1 + λ2y2 whereλ1 + λ2 = 1,
so that the energy of each of the fingerprints is reduced toλi

2 of
the corresponding original and the detection statistics with respect



to thei-th fingerprint is scaled by a factor ofλi. In a K-colluder
averaging-collusion the watermarked content signalsyj are com-
bined according to

∑K

j=1
λjyj . The objective of each colluder is

to avoid being detected, yet remain fair to his fellow colluders and
retain good image quality. We have shown in [4], that under realis-
tic assumptions about the detection statistics for each user, choosing
λj = 1/K for all j is the most fair choice for each colluder to avoid
detection.

3. ORTHOGONAL MODULATION AND COLLUSION

In orthogonal modulation, there arev orthogonal signalssj that
are used to convey aB = log2 v bit ID by inserting one of thev
signals into the host signal. The effect of collusion on orthogonal
modulation is studied by calculating the distance between the con-
stellation points and averages of the constellation points, as well as
the distance between the averages of the constellation points and the
origin. Suppose each watermark is embedded usingE energy. If we
averageK watermarks, then the distance from the colluded mark to
any of the watermarks used in forming it is

√
E(K − 1)/K. The

distance from the colluded mark to any of the other watermarks not
used in the collusion is

√
E(K + 1)/K. Further, the distance of

the colluded mark from the origin is
√
E/K. Thus, asK increases,

the watermarks in the colluded mark will become harder to detect.
The classical method for estimating which signal was embedded

in the host signal is done viav = 2B correlators. The fact that de-
tection complexity is linear in the amount of signals was considered
a major drawback of the method of orthogonal modulation[1].

For a setA = {wj}j∈J whereJ is an indexing set, we define
the sum ofA by SUM(A) =

∑
j∈J

wj . We present a recursive
algorithm for efficiently detecting the identity ofK colluders as fol-
lows: Let us denote byS = {wj} the set of orthogonal watermark
signals, and suppose the test signal isy. At each stage we divide
S into two non-overlapped setsS0 andS1, and perform a correla-
tion of y againstSUM(S0) andSUM(S1), respectively. If a set
passes a threshold test, we further decompose it and test the correla-
tions. We repeat until we are no longer able to decompose further, at
which point we output the element in the corresponding set. There
are many possible choices for dividingS into S0 andS1 = S\S0

in such an algorithm. For example, if we chooseS0 such that
|S0| = 2dlog2 |S|e−1, then the number of correlations, denoted as
C(n, K), that must be performed to identifyK signals in a test sig-
naly satisfiesC(n, K) ≤ 2

(
−1 + K

(
log2(2

dlog2 ne/K) + 1
))

.
This is an improvement over the traditional linear computational
complexity and is demonstrated by our experiments described in
detail in [4].

4. CODE MODULATION EMBEDDING AND ACC

A drawback for using orthogonal modulation in data embedding is
the large number of orthogonal signals needed to conveyB bits. In
this section we use code modulation to convey more bits of infor-
mation for a given amount of basis vectors than orthogonal modu-
lation. We use this modulation technique, in conjunction with ap-
propriately designed codewords, known as anti-collusion codes, to
construct a family of fingerprints that have the ability to identify
members of the colluding set of users.

In code modulation, there arev orthogonal basis signals{uj},
and information is encoded into a watermark signalwj via wj =∑v

j=1
bijui, wherebij ∈ {0, 1} or bij ∈ {±1}. The first of the

two possibilities for choosing the values ofbij corresponds to on-off
keying (OOK) while the second choice of{±1} corresponds to an
antipodal form. The determination of eachbij is done by correlating
with theui, and comparing against a decision threshold.

We assign a different bit sequence{bij} for each useruj . We
may view the assignment of the bitsbij for different watermarks
in a matrixB, which we call thederivedcode matrix, where each
column ofB contains aderivedcodevector for a different user. In
the following section, we shall design a code matrixC whose ele-
ments are either0 or 1. By applying a suitable mapping depending
on whether the OOK or antipodal form of code modulation is used,
the code matrixC is used to derive the matrixB,

4.1. Anti-Collusion Codes

In this section we design a family of codevectors{cj} whose over-
lap with each other can identify groups of colluding users. A simi-
lar idea was proposed in [5], where projective geometry was used to
construct such code sequences. As we will explain in this section,
our proposed code construction makes more efficient usage of the
basis vectors than the codes described in [5].

We assume, when a sequence of watermarks is averaged and de-
tection is performed, that the detected binary sequence is the logical
AND of the codevectorscj used in constructing the watermarks.
For example, when the watermarks corresponding to the codevec-
tors (1110) and(1101) are averaged, the output of the detector is
(1100). This assumption might not necessarily hold since the aver-
age of many1’s and a few0’s may produce a decision statistic large
enough to pass through the detector as a 1.

We want codes that can identify up toK colluders. We pre-
fer shorter codes since longer codes would distribute the fingerprint
energy over more basis vectors, which would lead to a higher error
rate in the detection process. To identify colluders, we first require
that there is some non-zero component remaining in the code when
the codes for theseK colluders are combined. Secondly, we re-
quire that there are no repetitions in the different combinations of
K or fewer codevectors. We call codes that satisfy these properties
anti-collusion codes.

Definition 1. A binary codeC = {c1, · · · , cn} such that the logical
AND of any subset ofk or fewer codevectors is non-zero and distinct
from the logical AND of any other subset ofk or fewer codevectors
is ak-resilient AND anti-collusion code.

We now present a construction of aK-resilient AND-ACC that
requires onlyO(

√
n) basis vectors forn users. Our construction

uses balanced incomplete block designs (BIBD)[6]. A(v, k, λ)-
BIBD hasn = λ(v2−v)/(k2−k) blocks. Corresponding to a block
design is thev×n incidence matrixM = (mij), wheremij is 1 if
theith element belongs to thejth block, and0 otherwise. If we de-
fine the codematrixC as the bit-complement ofM, and assign the
codevectorscj as the columns ofC, then we have a(k−1)-resilient
AND-ACC[4]. Our codevectors are thereforev-dimensional, and
we are able to accommodaten = λ(v2−v)/(k2−k) users. Assum-
ing that a BIBD exists, forn users we therefore needv ≈ O(

√
n)

basis vectors. In general,(v, k, λ)-BIBDs do not necessarily exist
for an arbitrary choice ofv andk. The existence of different BIBDs,
and techniques for constructing BIBDs can be found in [6].

A useful metric for evaluating the efficiency of an AND-ACC
for a given resiliency is its rateR = v/n, which describes the
amount of basis vectors needed per user. AND-ACCs with lower
rates are better. For(v, k, λ)-BIBD AND-ACC, their rate isR =



Algorithm: SuspectAlg(Γ)

Φ = 1;
DefineJ to be the set of indices whereΓj = 1 ;
for t = 1 to |J | do

j = J(t) ;
Defineej to be thejth row ofC;
Φ = Φ · ej ;

end
Algorithm 1: AlgorithmSuspectAlg(Γ), which determines the
vectorΦ that describes the suspect set.

(k2 − k)/(λ(v − 1)). By Fisher’s Inequality[6], we also know that
n ≥ v for a (v, k, λ)-BIBD, and thusR ≤ 1 using the BIBD con-
struction. In contrast, thek-resilient construction in [5] has rate
much larger than 1, and thus requires more spreading sequences
(or marking locations) to accommodate the same amount of users
as our scheme. It is possible to use the collusion-secure code con-
structions of [7] in conjunction with code modulation for embed-
ding. However, the construction described in [7] has codelength
O(log4 n log2(1/ε)), whereε < 1/n is the decision error proba-
bility. This codelength is considerably large for small error proba-
bilities and practicaln values. Additionally, for the same amount of
users, the use of code modulation watermarking with an AND-ACC
constructed using a(v, k, 1)-BIBD requiresv orthogonal sequences
for n = (v2−v)/(k2−k) users, while orthogonal modulation dis-
cussed in Section 3 would requiren sequences.

Given that the output of the detector is a vectorΓ =
(Γ1, Γ2, · · · , Γn), we would like to narrow down the entire user
set to a subset of suspect users by usingΓ to determine asuspi-
ciousset from the entire user set. In Algorithm 1, we determine a
vectorΦ = (Φ1, Φ2, · · · , Φn) ∈ {0, 1}n that describes the suspi-
cious set via the location of components whose value are1. Thus,
if Φj = 1, then thejth user is suspected of colluding. In the al-
gorithm, we denote thejth row vector ofC by ej , and use the fact
that the element-wise multiplication “·” of the binary vectors cor-
responds to the logical AND operation. The algorithm starts with
Γ andΦ = 1, where1 is then dimensional vector consisting of
all ones. The algorithm then uses the indices whereΓ is equal to
1, and narrows down the suspicious set through updates toΦ by
performing the AND ofΦ with the rows of the code matrixC cor-
responding to indices whereΓ is 1.

We now focus on the detector involved in detecting collusion for
binary code modulation. Suppose that a codevectorcj has weight
ω = wt(cj). In the OOK case the remainingv−ω positions would
be zeros, while in the antipodal case the remainingv − ω positions
would be−1. If we allocateE energy to this codevector, then the
OOK case would useE/ω energy to represent each1, while the an-
tipodal case would useE/v energy to represent each±1. The am-
plitude separation between the constellation points for the0 and1 in
OOK is

√
E/ω, while the separation between−1 and1 in antipo-

dal is2
√
E/v. Since it is desirable to have the separation between

the constellation points as large as possible, we should choose OOK
only whenω < v/4. In the AND-ACCs presented in Section 4.1,
the weight of each codevector isω = v − k. OOK is advantageous
when (3/4)v < k, and antipodal modulation is preferable other-
wise. Typically, in BIBDs withλ = 1, k << v and therefore the
antipodal form is preferred.

If K colluders come together and average their marked content,

then they produce an averaged test signaly whose contribution in
theu component is the average of thebij values for that basis vector.
For example, in the antipodal case, thebij are either−1 or 1 and
therefore the values−1,−(K − 2)/K,−(K − 4)/K, · · · , (K −
4)/K, (K−2)/K, 1 are possible for the averageb of thebij values
for a basis vectoru. From these possibilities, it is clear that larger
values ofK are undesirable from a detection point-of-view. In the
antipodal case, the separation between theb = (K − 2)/K and
b = 1 hypotheses is critical to the validity of using AND as the
binary operation in designing an ACC. In order to strengthen the
validity of the AND assumption for aK-resilient AND-ACC, the
separation between theb = (K − 2)/K and b = 1 hypotheses
can be increased by devoting more energyE to the watermark, or
by increasing the coding gain though employing longer orthogonal
basis vectors{uj}.

4.2. ACC Simulations with Gaussian Signals

In this section we study the behavior of our AND-ACC when used
with code modulation in an abstract model, whereyj = x + sj =
x + α

∑v

i=1
bijui. The host signalx and the orthogonal basis sig-

nalsui are assumed to be independent and each of them are vectors
of i.i.d. Gaussian samples. In the simulations that follow, we used
a (16, 4, 1) BIBD to construct our AND-ACC code[6] and used
the antipodal form of code modulation. The(v, 4, 1) codes exist
if and only if v ≡ 1 or 4 (mod 12) and can uniquely identify up
to K = 3 colluders. Our host signalx was aN = 10000 point
vector whose components were GaussianN (0, 1). The scaling fac-
tor α was applied equally to each component of the watermark, and
was determined from the desired WNR= 10 log10 ‖s‖2/‖x‖2dB.

We first studied the behavior of the detector and the legitimacy
of the AND logic for the detector under the collusion scenario. We
randomly selected3 users as colluders and averaged their marked
content signals to produceyc. The colluded content signal was cor-
related usingTN .

For three colluders, there are4 possible values forb, namely
−1,−1/3, 1/3, and1. We refer to the cases−1,−1/3 and1/3
as the non-1 hypothesis. We calculatedp(1|1) andp(1|non-1) as
a function of WNR for different thresholds. The thresholds used
wereτ1 = 0.9E(TN ) , τ2 = 0.7E(TN ), andτ3 = 0.5E(TN ).
To calculateE(TN ), we assumed that the detector knows the the
WNR and hence the power of the distortion. The plot ofp(1|1)
for different threshold strategies is presented in Figure 1(a), and
the plot of p(1|non-1) is presented in Figure 1(b). We observe
that for the smaller threshold of0.5E(TN ) the probabilityp(1|1)
is higher, but at an expense of a higher probability of false classi-
ficationp(1|non-1). Increasing the threshold allows us to decrease
the probability of falsely classifying a bit as a1, but at an expense
of decreasing the probability of correctly classifying a bit as a1.

We calculated the fraction of colluders that were captured as well
as the fraction of the total group that were falsely placed under sus-
picion for different WNRs and different thresholds. We assumed
that there were always3 colluders, which were randomly selected
from the entire user set. We used Algorithm 1 to determine the set
of suspicious users. The fraction of the colluders that belong to the
suspicious set, and the fraction of the total user set that are innocents
falsely placed under suspicion were calculated and averaged over
2000 realizations for each WNR. The results are presented in Figure
2. Compared to lower thresholds, for all WNRs, the higher thresh-
old is able to capture more of the colluders, but also places more
innocent users falsely under suspicion. As WNR increases, the
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Fig. 1. (a) The probability of detectionp(1|1) and (b) the probabil-
ity of false alarmp(1|non-1).

detector has lowerp(1|non-1), and therefore does not incorrectly
eliminate colluders from suspicion. Similarly, at higher WNR, the
detector has a higherp(1|1), thereby correctly identifying more1’s,
which allows for us to eliminate more innocents from suspicion.
Therefore, at higher WNR we can capture more colluders as well as
place less innocent users under suspicion. We note, however, that
in Figure 2(b), at low WNR between−25dB and−15dB, the frac-
tion of innocents under suspicion using thresholdτ1 is lower than
at slightly higher WNR. This behavior can be explained by examin-
ing Figure 1(a) and Figure 1(b). We observe that at low WNR, the
p(1|non-1) is higher than slightly higher WNR, particularly for the
thresholdτ1. However, forτ1 thep(1|1) at these WNR is relatively
flat. These two observations combined indicate that at lower WNR
we falsely decide1 more often than at slightly higher WNR, while
we do not experience much difference in the amount of correctly
identified1’s. As more1’s pass through the detector we remove
more users from suspicion. Since the amount of correctly detected
1’s is roughly constant for WNRs between−25dB and−15dB, the
additional1’s from false detections at lower WNR eliminates more
innocent users (as well as colluders) from suspicion.

5. CONCLUSION

In this paper, we investigated the problem of making fingerprints
for multimedia content that are resistant to collusion attacks. We
developed an efficient detection scheme for orthogonal modulation
that is able to identifyK colluders in an amount of correlations
that is logarithmic in the number of orthogonal signals. Further,
we developed a fingerprinting scheme based upon code modula-
tion that requires onlyO(

√
n) orthogonal signals to accommodate

n users. We proposed anti-collusion codes (ACC) that are used in
conjunction with modulation to fingerprint multimedia sources. We
constructed binary-valued ACC under the logical AND operation
using combinatorial designs, and is suitable for both the OOK and
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Fig. 2. (a) The fraction of colluders placed under suspicion, and (b)
the fraction of the total group falsely placed under suspicion.

antipodal form of binary code modulation. We performed experi-
ments to evaluate the proposed ACC-based fingerprints. We used a
Gaussian signal model to examine the ability of the ACC to iden-
tify the colluders, as well as reveal the amount of innocent users
that would be falsely placed under suspicion. We observed that de-
creasing WNR increases the amount of false 1s that pass through the
detector, which leads to a small amount of colluders captured at low
WNR. By raising the threshold, we improve the ability to capture
colluders at all WNR, but also increase the amount of innocents
who are falsely placed under suspicion. The ACC fingerprinting
proposed in this paper has also been applied to natural images and
shown effective in tracing traitors and colluders [4].
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