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ABSTRACT class of additive watermark schemes. We then review orthogonal
modulation in Section 3, describe the effect that collusion has upon

An effective atta_ck against fingerprint_s for multimedia is COIIUSionthe constellation points of the modulation scheme, and present a de-
where several dlfferently ma”‘ed copies of the same content are g, algorithm with reduced complexity. In Section 4, we present
eraged or combined to disrupt the underlying fingerprint. In thi

. tigate th bl f desianing fi ints that ur design of anti-collusion codes (ACC), which are used in con-
paper, we investigate the probiem of designing INGErprints that Cyiy, - yyith binary code modulation to construct fingerprints that

\tl)wth_stznc_i ctollgsm_n atnhd a”an fpr the |(:;Iantlf|fcatlc;nd§;f COHUdSrZ‘dW are resistant to collusion and able to identify members of a colluder
€gin by introducing e coliusion probiem for additive Embeddingyo - o, approach is suitable for both averaging-based collusion

ar?llntrtc;]stlqg ar;lfgﬁlclﬁnthetecthntalgorlth.mtfc:jr \?}é:fg{?réal mo attacks, and for interleaving collusion attacks. Finally, we present
ulation that identifies the fingerprints associate olluders .-l isions in Section 5.

and requiresD (K log(n/K)) correlations for a group of users.

We present a construction of collusion-resistant fingerprints based

upon anti-collusion codes (ACC) and binary code modulation. Us- 2. FINGERPRINTING AND COLLUSION

ing ACC, we build fingerprints that identify groups &f or less

colluders. We present a construction of binary-valued ACC un#/e first review additive embedding. Suppose that the host sig-
der the logical AND operation using the theory of combinatoriahal is a vector denoted as and that we have a family of water-
designs. Our code construction requires oflf,/n) orthogonal marks{w} that are fingerprints associated with the different users
signals to accommodateusers. We demonstrate the performancevho purchase the rights to access Before the watermarks are
of our ACC for fingerprinting multimedia and identifying colluders added to the host signal, every component of eaghis scaled

through experiments using Gaussian signals. by an appropriate factor that corresponds to an amplification, i.e.
s;j(k) = a(k)w,(k), where we refer the theth component of a
1. INTRODUCTION vectorw; by w; (k). Corresponding to each user is a marked ver-

sion of the content; = x + s;, which typically experiences addi-

The rapid advancement of communication networks and multimdlona! distortionz; that is due to such factors as compression and
dia technologies has created a need for mechanisms that ensure ficks made to remove the embedded fingerprints. We will denote
content is used for its intended purpose, and by legitimate usef: combination of the noise and the interference of the or!glnal
with appropriate distribution rights. Digital fingerprinting is an ef-Signal byd; = x + z;. We can thus assume that each user will be
fective tool used to control the redistribution of content. These findiven & marked content; = s; + d;. Typically, the watermarks
gerprints can be embedded in multimedia content through a varietyVs } &€ chosen to correspond to orthogonal noise-like signals [1],
of robust watermarking techniques[L, 2]. However, a cost-efficierfil &€ constructed using code modulation and represented using a
attack against watermarking can be waged by a coalition of use‘?%s's of orthogonal noise-like signals via w; = > ._, bi;u,

with the same content that contains different marks. One of théherebi; € {0, 1} orby; € {£1}.

simplest approaches to performing suotoflusionattack is to av- e can identify auser who is redistributing marked congerity

erage multiple copies of the content together[3]. Other collusiof€tecting the watermark associated with the user to whgwas
attacks might involve forming a new content by selecting differeng!d- The detection of additive watermars or the correspond-
pixels or blocks from the different colluders’ content. By gatherind"9 codes{b;; } can be form_ulated asa hypothe5|_s testing problem,

a large enough coalition of colluders, it is possible to sufficiently atVnere the embedded data is considered as the signal thatis to be de-
tenuate each of the colluders’ identifying fingerprints and producicted in the presence of noise. If the distribution of the components
a new version of the content with no detectable fingerprints. It i€f d; is modelled as independent Gaussian, the optimal detector is
therefore important to design fingerprints that are not only able ¢ S&t Of correlators of andu; with proper normalization. The de-
resist collusion, but also identify the colluders. tector can be further refined with more realistic statistical model for

In this paper, we investigate the problem of making fingerprintglj- ) . ] ) )
for multimedia content that are resistant to averaging-based col- When two parties who have the same image but fingerprinted dit-
lusion attacks. Our investigation differs from collusion-resistanferently come together, they can perform a collusion attack to gener-
schemes for generic data sources by incorporating the special préj$¢ & new image from the two fingerprinted images so that the traces
erties of multimedia, such as the embedding method and appropri&egither fingerprint in the new image is attenuated. For fingerprint-
choice of detection statistics. In Section 2 we describe multimedig9 through additive embedding, this can be done by averaging the

fingerprinting, and introduce the problem of user collusion for &V fingerprinted imageg. = Aiy1 + A2y2 whered: + A2 = 1,
so that the energy of each of the fingerprints is reduced; toof
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to thei-th fingerprint is scaled by a factor of. In a K-colluder two possibilities for choosing the valuesigf corresponds to on-off
averaging-collusion the watermarked content sigyglsire com-  keying (OOK) while the second choice ¢f:1} corresponds to an
bined according t(gjil \;y;. The objective of each colluder is ar_1tipoda| form. The dett_arminati'on of edﬁl?l i_s done by correlating
to avoid being detected, yet remain fair to his fellow colluders an¥ith the u;, and comparing against a decision threshold.

retain good image quality. We have shown in [4], that under realis- We assign a different bit sequengg;; } for each usew;. We
tic assumptions about the detection statistics for each user, choos[RgY View the assignment of the bis; for different watermarks
\; = 1/K forall j is the most fair choice for each colluder to avoidin @ matrixB, which we call thederivedcode matrix, where each
detection. column of B contains aderivedcodevector for a different user. In
the following section, we shall design a code matthwhose ele-
ments are eithebd or 1. By applying a suitable mapping depending
on whether the OOK or antipodal form of code modulation is used,
the code matriXC is used to derive the matris,

3. ORTHOGONAL MODULATION AND COLLUSION

In orthogonal modulation, there areorthogonal signals; that
are used to convey B = log, v bit ID by inserting one of the
signals into the host signal. The effect of collusion on orthogona}-1. Anti-Collusion Codes
modulation is studied by calculating the distance between the co
stellation points and averages of the constellation points, as well
the distance between the averages of the constellation points and

origin. ngpotse eackh vvt?]terrpharlfj!stembefldedthuélegﬁr%y.Ollf we I(tconstruct such code sequences. As we will explain in this section,
averages watermarks, then the distance from the coliuded markig, proposed code construction makes more efficient usage of the

any of the watermarks used in forming it{g&(K — 1)/K. The  pagis vectors than the codes described in [5].

distance from the colluded mark to any of the other watermarks not \ye assume, when a sequence of watermarks is averaged and de-
used in the collusion is/E(K +1)/K. Further, the distance of tection is performed, that the detected binary sequence is the logical
the colluded mark from the origin i§/5/K. Thus, ask increases, AND of the codevectorg; used in constructing the watermarks.
the watermarks in the colluded mark will become harder to detector example, when the watermarks corresponding to the codevec-

The classical method for estimating which signal was embedddérs (1110) and(1101) are averaged, the output of the detector is
in the host signal is done via= 27 correlators. The fact that de- (1100). This assumption might not necessarily hold since the aver-
tection complexity is linear in the amount of signals was considere@ge of manyl's and a few0's may produce a decision statistic large
a major drawback of the method of orthogonal modulation[1]. ~ €nough to pass through the detector as a 1.

For a setd = {w,};cs whereJ is an indexing set, we define ~ We want codes that can identify up #§ colluders. We pre-
the sum of4 by SUM(A) = Zjej w;. We present a recursive fer shorter codes since longer code; would distribute the.flngerpnnt
algorithm for efficiently detecting the identity &f colluders as fol- €Nergy over more basis vectors, which would lead to a higher error
lows: Let us denote b§ = {w,} the set of orthogonal watermark rate in the_detectlon process. To identify collgd_ers,_ we first require
signals, and suppose the test signayisAt each stage we divide that there is some non-zero component remaining in the code when
S into two non-overlapped sef§ and S, and perform a correla- the_ codes for thes& coIIude_rs are_combln_ed. Secondly, we re-
tion of y againstSU M (S,) and SUM (S1), respectively. If a set aquire that there are no repetitions in the dlﬁergnt combinations Qf
passes a threshold test, we further decompose it and test the corrdfa®r fewer codevectors. We call codes that satisfy these properties
tions. We repeat until we are no longer able to decompose further, afti-collusion codes.
which point we output the element in the corresponding set. The
are many possible choices for dividitgginto Sp and.S1 = S\So
in such an algorithm. For example, if we choaSe such that
|So| = 2M°e21511=1 "then the number of correlations, denoted a
C(n, K), that must be performed to identify signals in a test sig-

naly satisfiesC(n, K) < 2 (—1 + K (log,(2/'*®2"1 /K) + 1)). We now present a construction offé-resilient AND-ACC that

This is an improvement over the traditional linear computationglequires only®(+/n) basis vectors for. users. Our construction
complexity and is demonstrated by our experiments described jges balanced incomplete block designs (BIBD)[6].(1Ak, \)-

[N this section we design a family of codevectérs } whose over-
with each other can identify groups of colluding users. A simi-
idea was proposed in [5], where projective geometry was used to

Befinition 1. A binary code&® = {ci, - - -, ¢, } such that the logical
AND of any subset @f or fewer codevectors is non-zero and distinct
grom the logical AND of any other subset/obr fewer codevectors
is a k-resilient AND anti-collusion code.

detail in [4]. BIBD hasn = A(v?—v)/(k*—k) blocks. Corresponding to a block
design is the x n incidence matribXM = (m;;), wherem;; is 1 if
4. CODE MODULATION EMBEDDING AND ACC theith element belongs to thgh block, and) otherwise. If we de-

fine the codematrixC as the bit-complement &1, and assign the
A drawback for using orthogonal modulation in data embedding isodevectorg; as the columns of, then we have & —1)-resilient
the large number of orthogonal signals needed to comgjts. In  AND-ACCJ[4]. Our codevectors are thereforedimensional, and
this section we use code modulation to convey more bits of infowe are able to accommodate= A\(v? —v)/(k?—k) users. Assum-
mation for a given amount of basis vectors than orthogonal moding that a BIBD exists, for: users we therefore need~ O(y/n)
lation. We use this modulation technique, in conjunction with apbasis vectors. In generdly, k, A)-BIBDs do not necessarily exist
propriately designed codewords, known as anti-collusion codes, tor an arbitrary choice of andk. The existence of different BIBDs,
construct a family of fingerprints that have the ability to identifyand techniques for constructing BIBDs can be found in [6].

members of the colluding set of users. A useful metric for evaluating the efficiency of an AND-ACC
In code modulation, there areorthogonal basis signafsu;},  for a given resiliency is its raté&? = v/n, which describes the
and information is encoded into a watermark sigwalvia w; =  amount of basis vectors needed per user. AND-ACCs with lower

25:1 biju;, whereb;; € {0,1} orb;; € {£1}. The first of the rates are better. Fdw, k, A)-BIBD AND-ACC, their rate isR =



o then they produce an averaged test signathose contribution in
Algorithm: Suspect Alg(T’) theu component is the average of thig values for that basis vector.
P =1; For example, in the antipodal case, the are either—1 or 1 and
DefineJ to be the set of indices whefg =1 ; therefore the values 1, —(K — 2)/K, —(K — 4)/K,---, (K —
for ¢ =1to|J|do 4)/K, (K —2)/K, 1 are possible for the averagef theb;; values
Jj=J(); for a basis vecton. From these possibilities, it is clear that larger
Definee; to be thejth row of C; values ofK are undesirable from a detection point-of-view. In the
P =>2-ej antipodal case, the separation betweentthe (K — 2)/K and
end b = 1 hypotheses is critical to the validity of using AND as the
Algorithm 1: Algorithm SuspectAlg(I"), which determines the ~ binary operation in designing an ACC. In order to strengthen the
vector® that describes the suspect set. validity of the AND assumption for d<-resilient AND-ACC, the

separation between the= (K — 2)/K andb = 1 hypotheses
can be increased by devoting more enefgip the watermark, or
by increasing the coding gain though employing longer orthogonal

2 i ) i
(k* — k)/(A(v — 1)). By Fisher’s Inequality[6], we also know that basis vectorgu, }.

n > v for a (v, k, A)-BIBD, and thusR < 1 using the BIBD con-
struction. In contrast, thé-resilient construction in [5] has rate
much larger than 1, and thus requires more spreading sequende®. ACC Simulations with Gaussian Signals
(or marking locations) to accommodate the same amount of users . )
as our scheme. It is possible to use the collusion-secure code cdhthis section we study the behavior of our AND-ACC when used
structions of [7] in conjunction with code modulation for embed-With code modulation in an abstract model, whgre= x +s; =
ding. However, the construction described in [7] has codeleng®h+ @ >_,_, bi;u:. The host signak and the orthogonal basis sig-
O(log* nlog(1/¢)), wheree < 1/n is the decision error proba- na!gui are ass_umed to be mdependt_ant an_d each of them are vectors
bility. This codelength is considerably large for small error probagf i.i.d. Gaussian samples. In the simulations that follow, we used
bilities and practicah values. Additionally, for the same amount of @ (16,4, 1) BIBD to construct our AND-ACC code[6] and used
users, the use of code modulation watermarking with an AND-AC¢he antipodal form of code modulation. Tlie, 4,1) codes exist
constructed using &, k, 1)-BIBD requiresv orthogonal sequences If and only ifv = 1or4  (mod 12) and can uniquely identify up
forn = (v —v)/(k2 — k) users, while orthogonal modulation dis- 10 /& = 3 colluders. Our host signat was aN = 10000 point
cussed in Section 3 would requiresequences. vector whose components were Gaussi4d, 1). The scaling fac-
Given that the output of the detector is a vectBr — tor o was applled equally to each component of the2water2mark, and
(T1, T, ---,T\), we would like to narrow down the entire user "Vas détermined from the desired WNR10 log,, [|s||" /||| "dB.

set to a subset of suspect users by udhtp determine auspi- We first studied the behavior of the detector and the legitimacy
ciousset from the entire user set. In Algorithm 1, we determine of the AND logic for the detector under the collusion scenario. We

vector® = (&, &, ®,) € {0,1}" that describes the suspi- randomly selected users as colluders and averaged their marked
cious set via thé Ioéation of compz)nents whose valuelaiBhus,  content signals to produge.. The colluded content signal was cor-

if &, = 1, then thejth user is suspected of colluding. In the al-"elated using’y. , _

gorithm, we denote thgth row vector ofC by e;, and use the fact For three colluders, there arepossible values fob, namely
that the element-wise multiplication™of the binary vectors cor- —1» —1/3,1/3, and1. We refer to the cases1, -1/3 and1/3
responds to the logical AND operation. The algorithm starts wit@S the nonk hypothesis. We calculatge(1]1) andp(1|non-1) as

I and® — 1, wherel is then dimensional vector consisting of & function of WNR for different thresholds. The thresholds used
all ones. The algorithm then uses the indices whgiis equal to  Were7: = 0.9E(Tw) , 2 = 0.7E(Tx), and7s = 0.5E(Tw).

1, and narrows down the suspicious set through updates by 10 calculateE(Ty), we assumed that the detector knows the the

performing the AND of with the rows of the code matrig: cor- ~ WNR and hence the power of the distortion. The plopof|1)
responding to indices wheiis 1. for different threshold strategies is presented in Figure 1(a), and

he plot of p(1|non-1) is presented in Figure 1(b). We observe
hat for the smaller threshold 0f5E(Tx) the probabilityp(1|1)
is higher, but at an expense of a higher probability of false classi-
ficationp(1|non-J). Increasing the threshold allows us to decrease
the probability of falsely classifying a bit asla but at an expense
of decreasing the probability of correctly classifying a bit ds a
We calculated the fraction of colluders that were captured as well
plitude separation between the constellation points fo@#wed1 in as _the fracti_on of the total group t_hat were falsely placed under sus-
) . . . . picion for different WNRs and different thresholds. We assumed
OOK is /€ /w, while the separation betweenl and1 in antipo- that there were alway3 colluders, which were randomly selected
dalis24/&/v. Since it is desirable to have the separation betweefiom the entire user set. We used Algorithm 1 to determine the set
the constellation points as large as possible, we should choose O@Ksuspicious users. The fraction of the colluders that belong to the
only whenw < v/4. In the AND-ACCs presented in Section 4.1, suspicious set, and the fraction of the total user set that are innocents
the weight of each codevectords= v — k. OOK is advantageous falsely placed under suspicion were calculated and averaged over
when (3/4)v < k, and antipodal modulation is preferable other-2000 realizations for each WNR. The results are presented in Figure
wise. Typically, in BIBDs withA = 1, k << v and therefore the 2. Compared to lower thresholds, for all WNRs, the higher thresh-
antipodal form is preferred. old is able to capture more of the colluders, but also places more
If K colluders come together and average their marked conteiitnocent users falsely under suspicion. As WNR increases, the

i

We now focus on the detector involved in detecting collusion foE
binary code modulation. Suppose that a codevectdras weight
w = wt(c;). Inthe OOK case the remaining— w positions would
be zeros, while in the antipodal case the remainirgw positions
would be—1. If we allocate€ energy to this codevector, then the
OOK case would usé /w energy to represent eathwhile the an-
tipodal case would us€/v energy to represent eaehl. The am-
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Fig. 1. (a) The probability of detection(1]1) and (b) the probabil- Fig. 2. (a) The fraction of colluders placed under suspicion, and (b)
ity of false alarmp(1|non-1). the fraction of the total group falsely placed under suspicion.

antipodal form of binary code modulation. We performed experi-

detector has lowep(1|non-1), and therefore does not incorrectly ’ .
eliminate colluders from suspicion. Similarly, at higher WNR, thenents to evaluate the proposed ACC-based fingerprints. We used a

detector has a highgx1]1), thereby correctly identifying mores, Gaussian signal model to examine the ability of the ACC to iden-

which allows for us to eliminate more innocents from s.uspiciontncy the colluders, as well as reveal the amount of innocent users

Therefore, at higher WNR we can capture more colluders as well g%at vx{oulsvl’)\lenglsely plactehd under stusfpflcllon.lV\iﬁ otbserv?g thathdti'
place less innocent users under suspicion. We note, however, t@% asing increases the amount ot fa’se 1S that pass through the

e o ) ector, which leads to a small amount of colluders captured at low
in Figure 2(b), at low WNR between 25dB and—15dB, the frac WNR. By raising the threshold, we improve the ability to capture

tion of innocents under suspicion using thresholds lower than colluders at all WNR, but also increase the amount of innocents
at slightly higher WNR. This behavior can be explained by examin: ho are falsely placed under suspicion. The ACC fingerprinting

ing Figure 1(a) and Figure 1(b). We observe that at low WNR, thé’ N . )
p(1|non-1) is higher than slightly higher WNR, particularly for the proposed in Fh's. paper has qlso been applied to natural images and
thresholdr; . However, forr thep(1|1) at these WNR is relatively shown effective in tracing traitors and colluders [4].

flat. These two observations combined indicate that at lower WNR
we falsely decidd more often than at slightly higher WNR, while
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