
Establishment of Conference Keys in Heterogeneous Networks

Wade Trappe, Yuke Wang, K. J. Ray Liu
Department of Electrical and Computer Engineering, University of Maryland

Abstract—In order to secure communication amongst members
of a conference, a secret shared by all group members must be
established. The Diffie-Hellman problem is often the basis for gen-
erating keys in two-party communication, and can also be used to
establish conference keys. In heterogeneous networks, many con-
ferences have participants of varying computational power and
resources. Most conference keying schemes do not address this
concern and place the same burden upon less-powerful clients as
more-powerful ones. The establishment of conference keys should
try to minimize the burden placed on more resource-limited users
while ensuring that the entire group can establish the group se-
cret. In this paper, we present a scheme for establishing a confer-
ence key using the two-party Diffie-Hellman scheme. The scheme
is hierarchical, forming subgroup keys for successively larger sub-
groups en route to establishing the group key. A full, binary tree
called the conference tree governs the order in which subgroup
keys are formed. Key establishment schemes that consider users
with varying costs or budgets are designed by appropriately choos-
ing the conference tree. The tree that minimizes the total group
cost is produced via the Huffman algorithm. A criterion is pre-
sented for the existence of a conference tree when users have vary-
ing budgets, and a greedy algorithm is presented that minimizes
the total length of the conference tree under budget constraints.

Index Terms— Conference key, Diffie-Hellman, Huffman Cod-
ing

I. I NTRODUCTION

The advancement of communication technology is leading
to a future where group-based applications will become a re-
ality. Many applications will require that the communication
amongst group members be protected from unwanted eaves-
droppers. Corporate conferences, with members from different
parts of the world, might contain industrial secrets that are in
the best interests of the corporation to keep unknown to rivals.
In order to protect the communication traffic, the information
must be encrypted, which requires that the privileged parties
share an encryption and decryption key. Key distribution is ac-
complished either by using a centralized entity that is responsi-
ble for distributing keys to users, or by contributory protocols
where legitimate members exchange information that they can
use to agree upon a key.

In the centralized approach to group key establishment, ei-
ther a group leader or a trusted third party is responsible for the

Wade Trappe is with the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, MD 20742 USA, E-mail:
wxt@eng.umd.edu

Yuke Wang is with the Department of Computer Science, University of Texas
at Dallas, Dallas, TX USA, E-mail: yuke@UTDALLAS.EDU

K.J. Ray Liu is with the Department of Electrical and Computer Engineering
& Institute for Systems Research, University of Maryland, College Park, MD
20742 USA, E-mail: kjrliu@eng.umd.edu

generation and distribution of keying material. The problem of
centralized group key distribution has seen considerable atten-
tion recently in the literature [1–3]. In many cases, however, it
is not possible to have a third party arbitrate the establishment
of a group key. This might occur in applications where group
members do not explicitly trust a single entity, or no member
has the resources to maintain, generate and distribute informa-
tion by himself. In these cases, the group members make inde-
pendent contributions to the formation of the group key, and the
process of forming the key is calledkey agreement.

The classic example of a two-party key agreement protocol
is the Diffie-Hellman key exchange scheme [4]. Establishing
a shared secret amongst more than two parties is significantly
more complicated than the two-party case. Several researchers
[5–8] have studied the problem of establishing aDiffie-Hellman
like conference key.

Typically, these conference key establishment schemes seek
to minimize either the amount of rounds needed in establishing
the group key, or the size of the message. Many applications,
however, will involve a heterogeneous clientele in which group
members will have different computational capabilities, pricing
plans, and bandwidth resources. For these applications, mini-
mizing the total bandwidth or amount of rounds might not be an
appropriate metric. Instead, one should aim to minimize a cost
function that incorporates the different costs of each user. Ad-
ditionally, users might have resource constraints imposed upon
them, in which case the key generation procedure must decide
whether it is feasible to generate a key and determine a proce-
dure for generating the group key while minimizing the total
cost subject to resource budget constraints.

In this paper we study the problem of establishing Diffie-
Hellman conference keys for applications with clients of differ-
ing cost profiles. Using the two-party Diffie-Hellman protocol
as the basic building block, we can establish a group key by
forming intermediate keys for successively larger subgroups. A
full, binary tree that we call the conference tree governs the or-
der in which subgroup keys are formed. We then consider two
problems: first, designing the conference tree such that the to-
tal group cost is minimized, and second, addressing the issue
of forming a group key when users have varying budget con-
straints.

II. GROUPDH OVERVIEW

In many communication scenarios, there might not be a cen-
tralized entity that is available to manage and distribute the keys

2201
0-7803-7400-2/02/$17.00 © 2002 IEEE

to group members. In these cases, the members must interac-
tively establish a shared secret by exchanging messages.

One of the most popular key establishment procedures for
forming a shared key to secure a two-party communication is
the Diffie-Hellman (DH) scheme [4]. In the basic DH scheme,
the operations take place in an Abelian groupG, typically cho-
sen to beZp (the integers mod a primep), or the points on an
elliptic curve. For consistency, we shall develop our results for
the groupZp. A group elementg is chosen such thatg gener-
ates a suitably large subgroup ofZp. Both party A and party
B choose a private secretαj ∈ Z∗p , wherej ∈ {A,B} and
Z∗p denotes the non-zero elements ofZp. They each calculate
yj = gαj and exchangeyj with each other. Party A then calcu-
lates the keyK via K = (gαB)αA = gαBαA , and similarly for
party B. The Diffie-Hellman problem (for someone who inter-
ceptsgαA andgαB to determinegαAαB) is thought to be com-
putationally intractable for large subgroups generated byg.

Schemes that employ the Diffie-Hellman problem for estab-
lishing a secret amongst more than two parties have been de-
scribed recently in [5–8]. The amount of messages sent and
received, as well as the amount of bandwidth consumed are im-
portant measures of a protocol’s efficiency. Another important
measure that arises is the amount of rounds that a protocol re-
quires to establish a group secret. In [8], the communication
complexity involved in establishing a group key is studied, and
lower bounds are provided for the total number of messages
exchanged, and the amount of rounds needed to establish the
group key. They also present a key establishment scheme based
upon a hypercube structure in which the amount of rounds
needed to establish the key is logarithmic in the group size. A
similar technique was proposed in [9], where the problem of
group key establishment was examined in terms of signal flow
graphs. The basic approach, called thebutterflyscheme, had
communication flow that was reminiscent of the butterfly dia-
grams of FFT calculations. In fact, the hypercube approach of
[8] is similar to the butterfly scheme when the two-party DH
scheme is used as the basic building block. We describe the
butterfly scheme in the following section.

III. C ONFERENCETREES ANDGROUPKEYS

In the butterfly scheme [9], the users form keys for small
subgroups, and these subgroups act as single entities that form
larger subgroups and establish new keys using the previous sub-
group keys. The process repeats until the entire group has
formed a key that was shared by all members. A description
of the butterfly scheme forn = 2r members is provided using
the DH scheme.

Initially, suppose each useruj has a random secret inte-
ger αj ∈ Z∗p . The n users are broken into pairs of users
u1

j = {u2j−1, u2j}. The superscript in the notation denotes
which round of pairings we are dealing with, while the subscript
references the pair. We shall refer to the initial secrets that each
user possesses asx0

j = αj . In the first round, the members of

a pair exchangegx0
j . For example,u1 sendsgx0

1 to u2, andu2

u

u

u

u

u

u

u

u

1

2

3

4

5

6

7

8

u

u

u

u

u

u

u

u

1

2

3

4

5

6

8

7

(a) (b)

Fig. 1. The radix-2 butterfly scheme for establishing a group
key for 8 users. (a) Without broadcasts, (b) Using broadcasts.

sendsgx0
2 to u1. Then, the usersu2j−1 andu2j each calculate

x1
j = gx0

2j−1x0
2j = gα2j−1α2j . Observe thatx1

j ∈ Z∗p , and that
both members of a pair have established a conventional DH key.
We may now pair the pairsu1

j into a second level of pairs, e.g.
u2

1 = {u1
1, u

1
2}, and more generallyu2

j = {u1
2j−1, u

1
2j}. Hence,

the second level of pairings consists of 4 users in a pair. Each
user fromu1

2j−1 has an associated member ofu1
2j to whom they

sendgx1
2j−1 and similarly receivegx1

2j from. Every member in
u2

j can calculatex2
j = gx1

2j−1x1
2j . A third pairing, consisting of

8 users may be formed and a similar procedure carried out if

needed. In general,uk
j = {uk−1

2j−1, u
k−1
2j } andxk

j = gxk−1
2j−1xk−1

2j .
Ultimately, the procedure works its way down to where there
are only two intermediate values that can be combined to get
the group secret.

A trellis diagram depicting the communication flows be-
tweenn = 8 users is depicted in Figure 1(a). It is not necessary
that each user perform a communication during each round. In
fact, such an operation is inefficient since many users are trans-
mitting identical information. In networks, such as wireless net-
works, where broadcasting is available, the communication can
be arranged so that one user broadcasts a message to multiple
users. An example trellis for such an arrangement is depicted
in Figure 1 (b).

The general form of the butterfly scheme uses the scheme of
[5] as the basic building block, and provides a broad family of
approaches whose total rounds were logarithmic in the group
size. It can be shown that using the two-party DH scheme
(which is a special case of the scheme of [5]), produces the
group key in the fewest amount of rounds. Therefore, we shall
use only the two-party DH scheme in constructing the group
key.

The idea of forming successively larger subgroups in the but-
terfly scheme can be generalized. Consider three usersu1, u2,
andu3 who have made public a generatorg ∈ Z∗p and who have
secret exponentsαj ∈ Z∗p . If u2 andu3 participate in a two-
party DH scheme, they establish the shared secrety = gα2α3 .
This shared secrety can be used as the key for the subgroup
{u2, u3}, and also as a new secret exponent for a two-party DH
scheme betweenu1 and the subgroup{u2, u3}. To do this, a
representative of{u2, u3} sendsgy to u1 while u1 sendsgα1 to

2202

u
1

u
2

u
3

Fig. 2. The conference tree forn = 3 users, where usersu2

andu3 form a subgroup.

both members of{u2, u3}. All three members can calculate the
group secretgα1y = gα1gα2α3 .

The tree depicted in Figure 2 describes the formation of the
group key. Since the subgroup{u2, u3} established a subgroup
key beforeu1 could participate, we represent the formation of
this subgroup key by an internal node in a binary tree. Sinceu1

was involved in the final stage of the procedure, the key formed
is represented by the root node.

Any full binary tree withn terminal nodes can be used to de-
scribe a procedure for generating a group key forn users. We
define aconference treeto be a full binary tree that describes
the successive subgroups and intermediate keys that are formed
en route to establishing the key for the entire group. The confer-
ence tree allows for great design flexibility. In the next section
we shall use the concept of a conference tree to address the
varying costs and limitations of the users.

Another useful application of the conference tree is that it
allows for the specification of which subgroups can securely
communicate amongst themselves since the internal nodes of
the tree specify subgroup keys. As an example, consider the
conference tree for the radix-2 butterfly scheme of [9] for
n = 8 users, which is depicted in Figure 3. Observe that
there is a node on the conference tree that is the grandparent of
{u1, u2, u3, u4} and hence there is a subgroup key that is shared
by {u1, u2, u3, u4}. This subgroup can choose to use this key
to communicate securely amongst themselves if desired.

If a subgroupU of users desires to communicate securely
amongst themselves in addition to participating in the entire
group conference, then they must simply assure that a node
of the conference tree covers the users ofU . When two sub-
groups are nested, e.g.U1 ⊂ U2, it is possible to design a
conference tree whereU2 is covered by a node that is an an-

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

Fig. 3. The conference tree for the radix-2 butterfly scheme
for establishing a group key forn = 8 users.

cestor of the node coveringU1. When the two subgroups are
disjoint, i.e.U1 ∩ U2 = ∅, the two subgroups can be placed on
separate branches of the conference tree and the generation of
their subgroup keys occurs independently. The conference tree
does not allow for all possible hierarchies of subgroups, but in-
stead allows for nested hierarchies of subgroups. For example,
if U1 ∩ U2 6= ∅ andU1 6⊂ U2 or U2 6⊂ U1, then the users of
U1 ∩ U2 must participate in two separate subgroup key genera-
tion procedures. The conference tree structure only allows for
subgroups of users to participate in one two-party DH proce-
dure at a time. Generalizations of the tree, such as graphs, may
allow for more arbitrary subgroup arrangements.

IV. COMPUTATIONAL CONSIDERATIONS

In many application environments the users will have vary-
ing amounts of computational resources available. Low-power
devices, such as wireless appliances, cannot be expected to ex-
pend the same amount of computational effort as a high-power
device, such as a personal computer, when establishing a group
secret. It is therefore important to study the problem of ef-
ficiently establishing a conference key while considering the
varying user costs.

In this section we present methods for designing the confer-
ence tree used in establishing the group secret. In particular, we
study two problems: minimizing the total cost in establishing a
group key, and the feasibility of establishing the group key in
the presence of budget constraints.

A. Minimizing Total Cost

First, assume that we haven users, and that each useruj

has a costwj ∈ [1, B] associated with performing one two-
party Diffie-Hellman protocol. For example, this cost might be
related to the amount of battery power consumed. The valueB
is used to denote an upper bound placed on the cost that a user
may have. Suppose we place then users on a conference tree
with n terminal nodes in such a manner that each useruj has
a lengthlj from his terminal node to the root of the conference
tree. Our goal is to minimize the total costC of this treeC =∑

wj lj .
We first address the question of what is the minimum amount

of total computation necessary for establishing the group key
for n users. This problem can be addressed using coding the-
ory. Definepj = wj/ (

∑
k wk), then

∑
j pj lj is just a scal-

ing of
∑

j wj lj by W =
∑

k wk. If we defineX to be a ran-
dom variable with a probability mass function given bypj then
minimizing

∑
j pj lj is equivalent to finding a code forX with

lengthslj that minimizes the average code length. With this ob-
servation, we may infer the following lower bound on the total
cost for establishing a group key, which follows from the lower
bound for expected codelength of an instantaneous binary code
for X:

Lemma 1:Suppose thatn users wish to establish a group
secret and each useruj has a costwj associated with per-

2203

15

28 25

16

8

7 5

20

Fig. 4. Huffman example

forming one two-party Diffie-Hellman protocol. Then the to-
tal costC of establishing the group secret satisfies the bound
−W

∑
j pj log2 pj ≤ C, wherepj = wj/W .

The observation that efficiently establishing a group key is
related to coding allows us to use procedures from coding the-
ory to determine efficient conference trees. In particular, Huff-
man coding [10] produces the conference tree that minimizes
the cost: ifC∗ is the cost of forming the group key using the
Huffman tree, then the costC ′ of using a different conference
tree assignment will satisfyC ′ ≥ C∗.

Since Huffman coding produces an optimal code, we know
that the expected cost

∑
j wj l

∗
j satisfies the boundWH(p) ≤∑

j wj l
∗
j < W (H(p) + 1), whereH(p) is the entropy of the

distributionp. Thus, the Huffman construction of the confer-
ence key tree has a total cost that is withinW of the lower
bound.

Consider the following example that demonstrates the advan-
tage of using the Huffman algorithm for forming the conference
tree when compared to using the full balanced tree that corre-
sponds to the radix-2 butterfly scheme.

Example 2:Consider a group of8 users with costsw1 = 28,
w2 = 25, w3 = 20, w4 = 16, w5 = 15, w6 = 8,
w7 = 7, and w8 = 5. The Huffman algorithm yields the
tree depicted in Figure 4. The corresponding length vector is
l∗ = (2, 2, 3, 3, 3, 4, 5, 5), and the total cost is351. The total
cost for a full balanced tree is372.

We would like to be able to quantify the improvement that
is available when one uses the Huffman code compared to the
cost of using an arbitrary conference tree. For an arbitrary con-
ference tree, suppose that the length for useruj is lj . If we
define a probability distributionq by qj = 2−lj , then the ex-
pected length under the probabilitypj of the code with lengths
lj satisfies [10]

H(p) + D(p‖q) ≤
n∑

j=1

pj lj < H(p) + D(p‖q) + 1. (1)

HereD(p‖q) is the Kullback-Leibler distance between the two
probability distributionsp andq. The cost for using this tree
is C = W

∑
pj lj . We can combine the above bound with the

bound for the cost of the optimal codeC∗ < W (H(p) + 1) to
get

C − C∗ > W (D(p‖q)− 1) . (2)

WhenD(p‖q) > 1 this bound is an improvement over the triv-
ial boundC − C∗ ≥ 0.

Next, we consider the effect one user can have upon the com-
putational cost of the remaining users. Recall that if the weights
are ordered asw1 ≥ w2 ≥ · · · ≥ wn then the lengths of the
Huffman code can be ordered asl∗1 ≤ l∗2 ≤ · · · ≤ l∗n. There-
fore, if useru1 would like to adversely affect the lengths of the
other users, he should announce as large of a weight as possible.

Suppose useru1 publishes a weightw1 = B. We now quan-
tify the extra cost he places upon the othern− 1 users. Define
W̃ =

∑n
k=2 wk and define the probabilityqj = wj/W̃ for

j ∈ {2, 3, · · · , n}, andq1 = 0. Thenqj represents the proba-
bilities that would be used in constructing a conference tree if
useru1 were not participating. Letl∗j denote the optimal code-

lengths constructed usingpj , andl̃∗j be the optimal codelengths
constructed usingqj .

We defineC∗ =
∑n

j=1 wj l
∗
j , C̃∗ =

∑n
j=2 wj l̃

∗
j , andC∗ex =∑n

j=2 wj l
∗
j . We are interested in comparingC∗ex, which is the

total cost of the remainingn − 1 users given the probabilities
pj which incorporateu1’s cost, withC̃∗, which is the total cost
of then − 1 usersu2, u3, · · · , un without consideringu1’s an-
nounced cost.

First, sinceC̃∗ arises as the optimal code for then− 1 users
with costsw2, w3, · · · , wn, we knowC̃∗ minimizes costs of the
form

∑n
j=2 wj lj . In particular,C∗ex must satisfy:

C∗ex =
n∑

j=2

wj l
∗
j ≥

n∑

j=2

wj l̃
∗
j = C̃∗. (3)

We now derive an upper bound forC∗ex. Observe that the code
given by l̃∗j can be used to construct a code forpj by taking

l1 = 1 and lj = l̃∗j + 1. The optimal code for the weights
w1, w2, · · · , wn must be better than this code, and hence

C∗ ≤ w1 +
n∑

j=2

wj(l̃∗j + 1) = C̃∗ + W. (4)

SinceC∗ex = C∗ − w1l
∗
1, we have the following bound

C∗ex ≤ C̃∗ + W − w1l
∗
1 ≤ C̃∗ + W̃ . (5)

Gathering the results together, we get the overall bound

C̃∗ ≤ C∗ex ≤ C̃∗ + W̃ . (6)

This can be interpreted as meaning that useru1 can, in the
worst case, force the othern − 1 users to spend an extrãW of
resources. Combining this result with the bound for the optimal
code forq produces

W̃H(q) ≤ C∗ex < W̃H(q) + 2W̃ . (7)

B. Budget Constraints

In many cases, the devices wishing to establish a conference
key might have a limited budget to spend. The optimal con-
ference key tree assignment that results from Huffman coding

2204

might assign more computation to some users than they are ca-
pable of performing, while assigning less computation to other
users than they are capable of performing. In these cases, rather
than minimize the total cost, one wants to ensure that one can
first establish the group key, and then consider reducing the to-
tal amount of computation as a secondary issue.

Suppose that useruj publishes a budgetbj that describes the
amount of two-party Diffie-Hellman key establishment proto-
cols that he is willing to participate in when establishing the
group key. Without loss of generality, we assume that the user’s
budgetsbj satisfybj ≤ bk for j < k. Define the budget vector
b = (b1, b2, · · · , bn). The necessary conditions on the budget
vectorb for the existence of a conference key tree with lengths
lj ≤ bj is provided by the Kraft Inequality [10]:

Lemma 3:Suppose that the budget vectorb =
(b1, b2, · · · , bn). Then a conference key tree with lengths
lj exists that satisfies the budget constraintlj ≤ bj for all j if∑n

j=1 2−bj ≤ 1.
A budget vector that satisfies the Kraft Inequality is said to

be feasible. In the case that a budget assignment does not sat-
isfy the Kraft Inequality, if we choose to drop a single member
in hopes of having a feasible budget vector for the remaining
users, then the best strategy is to drop the member with the
lowest budgetb1.

Using the budget vector as the length vector does not nec-
essarily lead to a full conference tree in which every node has
two children. We must trim the budget vector in order to get
a full tree. This can be accomplished by reducing elements of
the length vector by amounts that do not violate the Kraft In-
equality. The following lemma provides a useful approach to
trimming the length vector assignment while still satisfying the
Kraft Inequality.

Lemma 4:Supposeb = (b1, b2, · · · , bn) strictly satisfies the
Kraft Inequality,

∑
2−bj < 1, then the modified budget vector

c defined byc = (b1, b2, · · · , bn−1, bn − 1) satisfies the Kraft
Inequality

∑
2−cj ≤ 1.

A consequence of this is that if we subtract1 from one of
the bj then choosing the largestbj least affects

∑
2−bj . The

following algorithm uses this idea. It starts with an admissible
budget vectorb, initializes the length vectorl = b, and produces
a length assignmentl = (l1, l2, · · · , ln) satisfyinglj ≤ bj such
that

∑
2−lj = 1 and

∑
lj is minimized over all length vectorsc

satisfying
∑

2−cj ≤ 1. It can be shown that the greedy strategy
employed in the algorithm leads to the optimal length vector.

As an example of the algorithm, supposen = 8 and that the
initial budget isb = (1, 3, 3, 4, 5, 5, 6, 8). This budget vector

Data : A length vectorl satisfying
∑

2−lj ≤ 1.

while
∑

2−lj < 1 do
j = arg max{lk} ;
lj = lj − 1 ;

end

is feasible and performing the algorithm gives the final assign-
mentl = (1, 3, 3, 4, 4, 4, 5, 5).

V. CONCLUSIONS

In this paper we have studied the problem of establishing
conference keys when the users have different cost profiles or
different budget constraints. It was shown that the users can
use the two-party Diffie-Hellman protocol as a primitive for
building a procedure that produces a group key. This proce-
dure involves subgroups establishing keys that are then used
to establish keys for successively larger subgroups. A binary
tree, called the conference tree, governs the order in which the
subgroups combine and this observation allows for determin-
ing procedures using Huffman coding that establish the group
key and minimize the total user cost. Bounds were provided
that describe the amount of improvement that can be achieved
when compared to an arbitrary conference tree. We also stud-
ied the effect that one user can have upon the cost of the other
n − 1 users. It was shown that the amount of additional cost
that one user can impose upon the other users is bounded be-
tween the optimal cost for then−1 users to establish the group
key, and the optimal cost for then − 1 users plus the sum of
then − 1 users’ costs. We then addressed the problem of es-
tablishing a group secret when the users have limitations on the
amount of Diffie-Hellman rounds they may participate in. We
observed that in order for the group to establish a key, it is nec-
essary that the budget vector satisfy the Kraft Inequality. We
then presented an algorithm that trimmed the budget vector to
produce a length assignment that satisfies the budget constraint
and minimizes the unweighted total length of the conference
tree.

REFERENCES

[1] R. Canetti, Juan Garay, Gene Itkis, Daniele Miccianancio, Moni Naor,
and Benny Pinkas, “Multicast security: a taxonomy and some efficient
constructions,” inIEEE INFOCOM’99, 1999, pp. 708 –716.

[2] C. Wong, M. Gouda, and S. Lam, “Secure group communications using
key graphs,” IEEE/ACM Trans. on Networking, vol. 8, pp. 16–30, Feb.
2000.

[3] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu, “A dynamic key dis-
tribution scheme using data embedding for secure multimedia multicast,”
Submitted to IEEE Trans. on Multimedia, 2000.

[4] W. Diffie and M. Hellman, “New directions in cryptography,”IEEE
Trans. on Information Theory, vol. 22, pp. 644–654, 1976.

[5] I. Ingemarsson, D. Tang, and C. Wong, “A conference key distribution
system,” IEEE Transactions on Information Theory, vol. 28, pp. 714–
720, September 1982.

[6] M. Burmester and Y. Desmedt, “A secure and efficient conference key
distribution scheme,”Advances in Cryptology- Eurocrypt, pp. 275–286,
1994.

[7] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution
extended to group communication,” inProc. 3rd ACM Conf. on Computer
Commun. Security, 1996, pp. 31–37.

[8] K. Becker and U. Wille, “Communication complexity of group key dis-
tribution,” in 5th ACM Conf. on Computer Commun. Security, 1998, pp.
1–6.

[9] W. Trappe, Y. Wang, and K.J.R. Liu, “Group key agreement using divide-
and-conquer strategies,” inConference on Information Sciences and Sys-
tems, The John’s Hopkins University, March 2001.

[10] T. Cover and J. Thomas,Elements of Information Theory, John Wiley
and Sons, 1991.

2205

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

