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Abstract—In order to secure communication amongst members generation and distribution of keying material. The problem of
of a conference, a secret shared by all group members must be centralized group key distribution has seen considerable atten-
established. The Diffie-Hellman problem is often the basis for gen- tion recently in the literature [1-3]. In many cases, however, it

erating keys in two-party communication, and can also be used to . : - . .
establish conference keys. In heterogeneous networks, many con-'S not possible to have a third party arbitrate the establishment

ferences have participants of varying computational power and ©Of & group key. This might occur in applications where group
resources. Most conference keying schemes do not address thisnembers do not explicitly trust a single entity, or no member
concern and place the same burden upon less-powerful clients ashas the resources to maintain, generate and distribute informa-
more-powerful ones. The establishment of conference keys ShOUIdtion by himself. In these cases, the group members make inde-

try to minimize the burden placed on more resource-limited users S .
while ensuring that the entire group can establish the group se- pendent contributions to the formation of the group key, and the

cret. In this paper, we present a scheme for establishing a confer- Process of forming the key is callégty agreement

ence key using the two-party Diffie-Hellman scheme. The scheme  The classic example of a two-party key agreement protocol
is hierarchical, forming subgroup keys for successively larger sub- js the Diffie-Hellman key exchange scheme [4]. Establishing

groups en route to establishing the group key. A full, binary tree 5 gp4-0q secret amongst more than two parties is significantly
called the conference tree governs the order in which subgroup .
keys are formed. Key establishment schemes that consider usersmore Compl'cat.ed than the two-party ca.se.. S?V_eral researchers
with varying costs or budgets are designed by appropriately choos- [5—8] have studied the problem of establishirgitiie-Hellman

ing the conference tree. The tree that minimizes the total group like conference key.

cost is produced via the Huffman algorithm. A criterion is pre- Typically, these conference key establishment schemes seek

sented for the existence of a conference tree when users have vary- . : . o
ing budgets, and a greedy algorithm is presented that minimizes to minimize either the amount of rounds needed in establishing

the total length of the conference tree under budget constraints. € group key, or the size of the message. Many applications,
however, will involve a heterogeneous clientele in which group

members will have different computational capabilities, pricing
plans, and bandwidth resources. For these applications, mini-
mizing the total bandwidth or amount of rounds might not be an

. INTRODUCTION . . . A
he ad ¢ . hnol is leadi appropriate metric. Instead, one should aim to minimize a cost
The advancement of communication technology is leadifgn ion, that incorporates the different costs of each user. Ad-

to a future where group-based applications will become a '§tionally, users might have resource constraints imposed upon
ality. Many applications will require that the communlcatloqhem’ in which case the key generation procedure must decide
amongst group members be protected from unwanted eav@ener it is feasible to generate a key and determine a proce-

droppers. Corporate ponferencgs,. with members from diﬂer%ﬂ}re for generating the group key while minimizing the total
parts of the world, might contain industrial secrets that are st subject to resource budget constraints

the best interests of the corporation to keep unknown to rivals.
In order to protect the c_ommunl_canon traffic, the_ mformatlo_ple”man conference keys for applications with clients of differ-
must be encrypted, which requires that the privileged parti cost profiles. Using the two-party Diffie-Hellman protocol
share an encryption and decryption key. Key distribution is A%< the basic building block, we can establish a group key by
complished either by using a centralized entity that is respon Fming intermediate keys fc;r successively larger subgroups. A
ble for distributing keys to users, or by contributory protocolﬁl

" " : Il, binary tree that we call the conference tree governs the or-
where legitimate members exchange information that they &8 in which subgroup keys are formed. We then consider two
use to agree upon a key.

In the centralized approach to group key establishment, E{-OblemS: first, designing the conference tree such that the to-
t

ther a group leader or a trusted third party is responsible for al group cost is minimized, and second, addressing the issue
group party P oFforming a group key when users have varying budget con-
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In this paper we study the problem of establishing Diffie-
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to group members. In these cases, the members must interac-

tively establish a shared secret by exchanging messages. Uz Uz
One of the most popular key establishment procedures for Us Ug
forming a shared key to secure a two-party communication is u, U

the Diffie-Hellman (DH) scheme [4]. In the basic DH scheme,

the operations take place in an Abelian graeptypically cho- . v
sen to beZ, (the integers mod a primg), or the points on an Y Yo
elliptic curve. For consistency, we shall develop our results for Uz U,
the groupZ,. A group elemeny is chosen such thatgener- U U
ates a suitably large subgroup Bf. Both party A and party @) (b)

B choose a private secret; € Z*, wherej € {4, B} and
Z; denotes the non-zero elementsAf They each calculate
y; = g* and exchangg; with each other. Party A then calcu-
lates the keyk Y"."‘K = (g7%)%4 = g*=°4, and similarly f.or sendsy®? to u;. Then, the usersy;_; anduy; each calculate
party B. The Diffie-Hellman problem (for someone who inter- =~ o = o a1 cta 1 )
ceptsg®4 andg®® to determingg®°) is thought to be com- £i = 9 "% = g*=1%. Observe that; € Z;, and that
putationally intractable for large subgroups generategl.by both members OT apair h_avle _estabhshed a conventlon_al DH key.
Schemes that employ the Diffie-Hellman problem for estal§/e May now pair the pairs; into a second level of pairs, e.g.
lishing a secret amongst more than two parties have been He= {u1,u3}, and more generally} = {u3; ,,u;;}. Hence,
scribed recently in [5-8]. The amount of messages sent dhg second level of pairings _con5|sts of 4 users in a pair. Each
received, as well as the amount of bandwidth consumed are §€r fromu;;_; has an associated membergf to whom they

portant measures of a protocol’s efficiency. Another impOI’taBEndg‘”%a'*l and similarly receivg“‘éj from. Every member in
measure that arises is the amount of rounds that a protocolzg?;vcan calculate:? = gzéjflméj, A third pairing, consisting of
quires to establish a group secret. In [8], the communicatigiusers may be formed and a similar procedure carried out if
complexity involved in gstablishing a group key is studied, angheged. In general = {u5~1, ub~ 1) andzh = gmg_;_llmfj_,fl_
lower bounds are provided for the total number of messagggimately, the procjedure works its way down to where there
exchanged, and the amount of rounds needed to establish the

] only two intermediate values that can be combined to get
group key. They also present a key establishment scheme batﬁ%dgroup secret.

upon a hypercube structure in which the amount of roundsA trellis diagram depicting the communication flows be-

n.ee.ded to es.tablish the key is Iogarithmic in the group Size'tﬁeenn — g users is depicted in Figure 1(a). It is not necessary
similar technlque_ was proposed in .[9]’ V.Vhere the prpblem mat each user perform a communication during each round. In
group key establishment was examined in terms of signal fiqie gch an operation is inefficient since many users are trans-
graphs. The basic approach, called thaterfly scheme, had yiying identical information. In networks, such as wireless net-
communication flow that was reminiscent of the butterfly d'E%K/orks, where broadcasting is available, the communication can

grams of FFT calculations. In fact, the hypercube approach|l o .anged so that one user broadcasts a message to multiple

[8] is similar to the butterfly scheme when the two-party Dhqars - An example trellis for such an arrangement is depicted

scheme is used as the basic building block. We describe m%igure 1 (b)
butterfly scheme in the following section. '

Fig. 1. The radix-2 butterfly scheme for establishing a group
key for 8 users. (a) Without broadcasts, (b) Using broadcasts.

The general form of the butterfly scheme uses the scheme of
[5] as the basic building block, and provides a broad family of
Ill. CONFERENCETREES ANDGROUPKEYS approaches whose total rounds were logarithmic in the group
In the butterfly scheme [9], the users form keys for smadfze. It can be shown that using the two-party DH scheme
subgroups, and these subgroups act as single entities that fgﬂmich is a special case of the scheme of [5]), produces the
larger subgroups and establish new keys using the previous sginup key in the fewest amount of rounds. Therefore, we shall
group keys. The process repeats until the entire group hgg only the two-party DH scheme in constructing the group
formed a key that was shared by all members. A descriptiQay.
of the butterfly scheme for = 2" members is provided using  The jdea of forming successively larger subgroups in the but-
the DH scheme. _ terfly scheme can be generalized. Consider three users;,
Initially, suppose each user; has a random s_ecret inte-andu; who have made public a generatoe Z; and who have
gera; € Z;. Then users are broken into pairs of Usergecret exponents; € Z3. If uy andug participate in a two-
u; = {ug;—1,uz;}. The superscript in the notation denotegarty DH scheme, they establish the shared secretg®>®s.
which round of pairings we are dealing with, while the subscrifthis shared secref can be used as the key for the subgroup
references the pair. We shall refer to the initial secrets that e%’ us}, and also as a new secret exponent for a two-party DH
user possesses a$ = «;. In the first round, the members ofgcheme between; and the subgrougus,us}. To do this, a
a pair exchangg“”?. For exampley; senngm(f to ug, andus  representative ofus, uz} sendsy? to u; while u, sendgy®? to
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cestor of the node covering;. When the two subgroups are
disjoint, i.e.U; N Uy = (), the two subgroups can be placed on
| separate branches of the conference tree and the generation of
l their subgroup keys occurs independently. The conference tree
does not allow for all possible hierarchies of subgroups, but in-
! ! ! stead allows for nested hierarchies of subgroups. For example,
ul uz u3 if Uy NUy # 0 andU; ¢ Uy or Uy, ¢ Uy, then the users of
U, N U; must participate in two separate subgroup key genera-
tion procedures. The conference tree structure only allows for
subgroups of users to participate in one two-party DH proce-

both members ofus, u3}. All three members can calculate thgdure at a time. Generalizations of the tree, such as graphs, may

Fig. 2. The conference tree far = 3 users, where useis
andug form a subgroup.

group secrey1¥ = ga19"2"* allow for more arbitrary subgroup arrangements.
The tree depicted in Figure 2 describes the formation of the
group key. Since the subgrodp,, us } established a subgroup IV. COMPUTATIONAL CONSIDERATIONS

;:a.y be;oreul cl?uldbpartu_n?ate, Ivve (;ep_resir_]t thetformaESi:;)n of In many application environments the users will have vary-
IS subgroup key by an Internal node in a binary tree. € ing amounts of computational resources available. Low-power

was involved in the final stage of the procedure, the key form(a vices, such as wireless appliances, cannot be expected to ex-

is represented by the root node. pend the same amount of computational effort as a high-power

SC’:SZ gJ” gg:;ﬁreefo\;mzzé?;?r:na;norgﬁs (I:(aer;:jj:es;d t\/?/geaevice, such as a personal computer, when establishing a group
P 9 g a group i secret. It is therefore important to study the problem of ef-

define aconference tre¢o be a full binary tree that OIeS’C“bes‘ﬁci ntly establishing a conference key while considering the

the successive subgroups and intermediate keys that are forr\r)éa Jing user costs.

en route to establishing the key for the entire group. The com‘er—In this section we present methods for designing the confer-

ence tree allows for great design flexibility. In the next section ce tree used in establishing the group secret. In particular, we

we s_hall use the concept of a conference tree to address gﬁjedy two problems: minimizing the total cost in establishing a
varying costs and limitations of the users.

Another useful application of the conference tree is that %TOUD key, and the feasibility of establishing the group key in

allows for the specification of which subgroups can securetlye presence of budget constraints.

communicate amongst themselves since the internal nodes of
the tree specify subgroup keys. As an example, consider fhe Minimizing Total Cost

conference tree for the radix-2 butterfly scheme of [9] for First, assume that we haveusers, and that each usey
n = 8 users, which is depicted in Figure 3. Observe thafas a costw; € [1, B] associated with performing one two-
there is a node on the conference tree that is the grandparerjgty Diffie-Hellman protocol. For example, this cost might be
{u1, u2,u3, us} and hence there is a subgroup key that is shargslated to the amount of battery power consumed. The \Alue
by {u1,uz,u3,us}. This subgroup can choose to use this kelg used to denote an upper bound placed on the cost that a user
to communicate securely amongst themselves if desired.  may have. Suppose we place theisers on a conference tree
If a subgroupU of users desires to communicate securelyith » terminal nodes in such a manner that each useras
amongst themselves in addition to participating in the entikelengthi; from his terminal node to the root of the conference
group conference, then they must simply assure that a nqgige. Our goal is to minimize the total castof this treeC' =
of the conference tree covers the userd/ofWhen two sub- ;1.
groups are nested, e.d/; C Us, it is possible to design a e first address the question of what is the minimum amount
conference tree wher, is covered by a node that is an anof total computation necessary for establishing the group key
for n users. This problem can be addressed using coding the-
ory. Definep; = w;/ (3, wk), theny_; p;l; is just a scal-
ing of } . w;l; by W = 37, wy. If we defineX to be a ran-
dom variable with a probability mass function givenzpythen
minimizing Zj p;l; is equivalent to finding a code fot with
lengthsl; that minimizes the average code length. With this ob-
servation, we may infer the following lower bound on the total
{ cost for establishing a group key, which follows from the lower
‘ * * * * * * * bound for expected codelength of an instantaneous binary code
u u u u u u u u for X:
Lemma 1: Suppose that: users wish to establish a group

Fig. 3. The conference tree for the radix-2 butterfly schem@cret and each user, has a costw; associated with per-
for establishing a group key for = 8 users.
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WhenD(p||q) > 1 this bound is an improvement over the triv-
ial boundC — C* > 0.
/\ Next, we consider the effect one user can have upon the com-
% > putational cost of the remaining users. Recall that if the weights
are ordered as; > we > --- > w, then the lengths of the
20 16 15 Huffman code can be ordered s< 5 < --- < I*. There-
fore, if useru; would like to adversely affect the lengths of the
other users, he should announce as large of a weight as possible.
75 Suppose user; publishes a weighty; = B. We now quan-
i tify the extra cost he places upon the other 1 users. Define
Fig. 4. Huffman example W =3 ka and define the probability; = w;/W for

forming one two-party Diffie-Hellman protocol. Then the toJ € {2:3,---,n}, andg: = 0. Theng; represents the proba-
tal costC of establishing the group secret satisfies the bouRdities that would be used in constructing a conference tree if
~W'Y, pjlogy p; < C, wherep; = w;/W. useru; were not participating. Ldg denote the optimal code-
The observation that efficiently establishing a group key lengths constructed using, andi* be the optimal codelengths
related to coding allows us to use procedures from coding tH@nstructed using.
ory to determine efficient conference trees. In particular, Huff- We defineC* = 377, w;l, Cr = Py L, w;lt, andCy, =
man coding [10] produces the conference tree that minimle o w;l7. We are interested in comparig’,, which is the
the cost: ifC* is the cost of forming the group key using thetotal cost of the remaining — 1 users given the probabilities
Huffman tree, then the cost’ of using a different conference p; which incorporate:,’s cost, withC'*, which is the total cost
tree assignment will satisfg’ > C*. of then — 1 usersus, us, - - -, u, without considering:;’s an-
Since Huffman coding produces an optimal code, we knamounced cost.
that the expected co3t ; w;l} satisfies the bountV’ H (p) < First, sinceC* arises as the optimal code for the- 1 users
Do jwily < W (H(p) +1), whereH( ) is the entropy of the with cost5w2,w3, .-+, w,, we knowC* minimizes costs of the
dlstrlbutlonp Thus, the Huffman construction of the conferform >-7_, w;l;. In partlcular C, must satisfy:
ence key tree has a total cost that is witfin of the lower

bound * * e A
= 1F > iy .
Consider the following example that demonstrates the advan- Cea Z wily = Z wyly =C (3)
tage of using the Huffman algorithm for forming the conference
tree when compared to using the full balanced tree that cor¥e now derive an upper bound f6f;,. Observe that the code

sponds to the radix-2 butterfly scheme. given byl* can be used to construct a code fgrby taking
Example 2: Consider a group df users with costa), = 28, |, = 1 andl; = I} + 1. The optimal code for the weights
we = 25, w3 = 20, wy = 16, ws = 15, we = 8, wy,wy,---,w, Mustbe better than this code, and hence
wy; = 7, andwg = 5. The Huffman algorithm yields the N
tree depicted in Figure 4. The corresponding length vector is o < T _ A
. + (+1)=C"+W. 4
I* = (2,2,3,3,3,4,5,5), and the total cost i851. The total Swrt ) wili+1) @

=2
cost for a full balanced tree 2. !

We would like to be able to quantify the improvement thaginceC;, = C* — w;l], we have the following bound
is avallabl'e when one uses the Huffman code compgred to the Cr <G+ W —will < CF W )
cost of using an arbitrary conference tree. For an arbitrary con-
ference tree, suppose that the length for users /;. If we Gathering the results together, we get the overall bound
define a probability distributiog by ¢; = 27k, then the ex- ~ . T
pected length under the probability of the code with lengths <G, <O+ W. (6)

l; satisfies [10] This can be interpreted as meaning that usecan, in the

" worst case, force the othar— 1 users to spend an exti#l of
H(p) + D(pllg) <Y pjl; < H(p) + D(pllg) + 1. (1) resources. Combining this result with the bound for the optimal
=1 code forg produces

Here D(p||q) is the Kullback-Leibler distance between the two WH(q) < C;, < WH(q) +2W. )
probability distributionsp andq. The cost for using this tree
is C = W Y p;l;. We can combine the above bound with th&- Budget Constraints

bound for the cost of the optimal cod& < W (H(p) + 1) to In many cases, the devices wishing to establish a conference
get key might have a limited budget to spend. The optimal con-
C—-C*>W(D(p|q) —1). (2) ference key tree assignment that results from Huffman coding
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might assign more computation to some users than they areisdeasible and performing the algorithm gives the final assign-
pable of performing, while assigning less computation to othevent! = (1, 3,3,4,4,4,5,5).
users than they are capable of performing. In these cases, rather
than minimize the total cost, one wants to ensure that one can V. CONCLUSIONS
first establish the group key, and then cons_ider reducing the toy, this paper we have studied the problem of establishing
tal amount of computation as a secondary issue. conference keys when the users have different cost profiles or
Suppose that user; publishes a budgey that describes the gigerent budget constraints. It was shown that the users can
amount of two-party Diffie-Hellman key establishment protd;se the two-party Diffie-Hellman protocol as a primitive for
cols that he is willing to part|C|pa_te in when establishing thSuiIding a procedure that produces a group key. This proce-
group key. Without loss of generality, we assume that the usefigre involves subgroups establishing keys that are then used
budgetsy; satisfyb; < b for j < k. Define the budget vector 1, ggiaplish keys for successively larger subgroups. A binary
b = (b1, bz,---,by). The necessary conditions on the budggfee cajled the conference tree, governs the order in which the
vectorb for the existence of a conference key tree with length,orouns combine and this observation allows for determin-
lj < bjis prgwded by the Kraft Inequality [10]: ing procedures using Huffman coding that establish the group
Lemma 3:Suppose that the budget vectob = oy 'and minimize the total user cost. Bounds were provided
(b, ba,---,by).  Then a conference key tree with lengthg, s gescribe the amount of improvement that can be achieved
L gX'Stﬁ;[hat satisfies the budget constrajn b; for all jif \hen compared to an arbitrary conference tree. We also stud-
Zj:l 27 < L o o . ied the effect that one user can have upon the cost of the other
A budget vector that satisfies the Kraft Inequality is said 19 _ 1 sers. It was shown that the amount of additional cost
befeasible In the case that a budget assignment does not S5t one user can impose upon the other users is bounded be-
isfy the Kraft Inequality, if we choose to drop a single membey, cen the optimal cost for the— 1 users to establish the group
in hopes of having a feasible budget vector for the remainindy ang the optimal cost for the — 1 users plus the sum of

users, then the best strategy is to drop the member with {48, | ysers’ costs. We then addressed the problem of es-
Iowes_t budgeb, tablishing a group secret when the users have limitations on the
Using the budget vector as the length vector does not negyqnt of Diffie-Hellman rounds they may participate in. We
essarily lead to a full conference tree in which every node Ng§served that in order for the group to establish a key, it is nec-
two children. .We must trim the .budget vector in order to geetssary that the budget vector satisfy the Kraft Inequality. We
a full tree. This can be accomplished by reducing elementsiab, hresented an algorithm that trimmed the budget vector to

the length vector by amounts that do not violate the Kraft Insqyce a length assignment that satisfies the budget constraint
equality. The following lemma provides a useful approach g, minimizes the unweighted total length of the conference
trimming the length vector assignment while still satisfying thgq

Kraft Inequality.
Lemma 4:Supposé = (by, ba, - - -, by,) strictly satisfies the
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