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Abstmct- Orthogonal frequency division multiplexing 
(OFDM) scheme gains growing interests in broadband 
data communications for wireless communications be- 
cause of its great immunity to fast fading and inter- 
symbol interference. The channel estimation is a crucial 
aspect in the design of OFDM systems. In this work, we 
propose a channel estimation algorithm based on poly- 
nomial approximation of the channel parameters in both 
time and frequency domains. The method exploits both 
the time and frequency correlation of the channel param- 
eters. The estimator is robust and needs a little prior 
knowledge about the delay and fading properties of the 
channel. It can even adjust itself to follow the variation 
of the channel statistics. Our simulation shows it has 
more than 5dB improvement over the existing method in 
[5][6][7] under the practical channel conditions. 

I. INTRODUCTION 

OFDM is now considered an effective technique for 
broadband wireless communications [l] . It partitions 
the entire bandwidth into parallel subchannels by di- 
viding the transmit data into parallel low bit rate data 
streams to  modulate the subcarriers corresponding to 
those subchannels. Thus, OFDM has a relative longer 
symbol duration which provides great immunity to  fast 
fading and impulse noise. The independence among 
subchanenls further simplifies the design of the equal- 
izer and provides an easy way for transmitter optimiz& 
tion. Because of all these advantages, OFDM becomes a 
promising technique in digital video/audio broadcasting 
and wireless communications [ 11 [2]. 

Channel estimation and equalization problem is an 
essential problem in OFDM system design. Without 
channel information, non-coherent detection has to be 
used, which incurs performance loss compared to coher- 
ent detection. It is observed that the channel parame- 
ters for the subchannels are actually correlated, though 
the subchannels are treated independently when doing 
the signal detection. The channel estimation algorithms 
should exploit such correlation to improve the estima- 
tion. It is well known that if the correlation function 
of channel response is known, we can get the MMSE 
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estimation by using the singular value decomposition of 
the corre1,ation matrix [5].  However, in practice the cor- 
relation function is usually not known and the channel 
statistics may vary by time. Our goal is to  design an 
estimation scheme under the condition that the channel 
statistics are not known or not completely known. One 
such scheme proposed in [5][6][7] assumes that the corre- 
lation matrix can be diagonalized by Fourier 1;ransform. 
The assumption is true when we consider infinite sam- 
ples of the channel response. In practice, we can only 
have finite observations which may cause severe leakage 
when Fourier transform is performed. 

In this work, we consider the problem from the other 
point of view. It is observed that the fading multipath 
channel is, such a smoothly varying function in time or 
frequency domains that can be approximated by time- 
frequency polynomial expansions [12]. The estimation 
noise therefore can be greatly suppressed by estimat- 
ing a small number of coefficients of the basis functions 
over a large number of observations. The approach in 
[5][6][7] c~tn be considered as the same type of' approach 
as the polynomial model based method by replacing 
polynomial basis with Fourier basis. Comparing these 
two types of basis, the polynomial model does not has 
the leakage problem and is more robust to the channel 
statistics and system parameters. 

A key issue in using the polynomial model to estimate 
the channel parameters is to  decide the model order 
and time- frequency window dimensions of observations. 
The approximation error in polynomial model decreases 
when increasing model order or decreasing the window 
dimensions, while the residual noise increases. It is im- 
portant to reach a tradeoff between the model error and 
noise reduction. We propose an adaptive algorithm that 
adjusts the window dimensions to balance the trade- 
off. The adaptive algorithm can track the tradeoff point 
without the knowledge of the specific channel correla- 
tion function or the fading and delay characteristic. 
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11. TIME-FREQUENCY POLYNOMIAL CHANNEL 
MODEL FOR MCM SYSTEMS 

The OFDM system divides the whole bandwidth B d  
into m subchannels and modulates a block of data onto a 
set of subcarriers of corresponding subchannels. In most 
of MCM systems, the subchannels are divided evenly, 
the bandwidth of the subchannels is A f = Bd/m. Input 
data are fist buffered to blocks and then divided into 
m bit streams. These bit streams are mapped to some 
complex constellation points X i $ ,  i = 0, - - - ,  m - 1 
at kth block. The modulation is implemented by m- 
point inverse discrete Fourier transform (IDFT). Then 
the modulated data are passed through P/S converter 
to form serial data xi$.  A cyclic prefix which is the copy 
of the last v samples of xi,k'S is inserted before sending 

to the channel. Now it follows that the symbol 
duration is E, however, the actual block duration is 
T f  = % with sampling rate B d .  For a system with 
B d  = 800kHz,  m = 512 and v = 64, the block duration 
is Tf  = 7 2 0 , ~ s .  Such system will be used in the rest of 
this paper. 

At the receiver, the prefix part is discarded. The de- 
modulation is performed by the discrete Fourier trans- 
form (DFT) operation. The demodulated data is x,k'S. 
If the cyclic prefix is long enough, the interference be 
tween two OFDM blocks is eliminated and the subchan- 
nels c m  be viewed as independent of each other, i.e., 

%,k = Hi,kxi,k -b Ni,k, ( 1 )  

where Hi,k is the channel frequency response at iA f of 
kth block and Ni,k is the corresponding channel noise. 
Ni,k is assumed to be white Gaussian process with zero 
mean and variance 02. 

Because of this simple relationship, only a one-tap 
equaljzer is needed for each subchannel at the receiver, 
i.e., x;,k = x,kWi,k, where the equalizer coefficient Wj,k 
is some function of Hi&. For example, the zero-forcing 
equalizer is constructed as Wi,k = &. Then the de- 

i . h  

cision is made upon x i $ .  The problem 
estimate Hi,k's. 

In wireless broadband communications, 
impulse response can be modeled as [ l l ] :  

h(t ,  .) = ri(t)s(T - Ti ) ,  
i 

for us is to 

the channel 

(2) 

where -yi ( t ) ' s  are independent Gaussian process with 
zero mean and variance pi .  pi's and q's are delay pro- 
files describing the channel dispersion which is also of- 
ten characterized by the maximum delay Td = maxi T*. 

Three types of delay profiles are used in this paper, TU, 

A 

(a) (b) 
Fig. 1. Two typical delay profiles (a) TU (b) HT 

HT and 2-ray. The TU and HT delay profiles both have 
6 paths [ll], while the 2-ray delay profile has two equal 
power paths. We also assume that the channel is nor- 
malized in our simulation, i.e., Cipi = 1 .  

The channel parameters Hi,k'S are the samples 
of H ( t ,  f )  = ~ h ( t , ? - ) e - j z T r f d ~ ,  which is Hi,k = 
H ( k T f ,  i A  f). It is obvious that the Fourier transform of 
H ( t ,  f )  is band limited by fD and Td- Therefore, by dis- 
carding the high frequency components out of the band, 
we can reduce the noise and improve the estimation. 
This is the idea used in [5][6][7] .  However, the problem 
is that we only have finite sample of Hi,k's in a practical 
OFDM system. The Fourier transform over these finite 
samples may suffer severe leakage, which degrades the 
performance greatly. 

Now let's look at this problem from the other point of 
view. The channel variation in physical world is smooth 
in both time and frequency domains. We know from the 
approximation theory [12] that such a smoothly varying 
function can be approximated by projecting to a finite 
set of basis functions. Moreover, since the OFDM chan- 
nel parameters are located in a timefrequency plane, 
it is natural to project the parameters over a time- 
frequency window (21 + l ) A  f x (2K + 1)Tf to a small 
set of polynomial basis functions around a center point 
(io, ko), i.e., 

Without loss of generality, assuming M = N and us- 
ing the Rayleigh fading model, the mean squared model 
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error is bounded by 

2M!(2rKTf fo)2M (2xIA fTd)2M 
( M ! ) 2  

. (4) 

E[IIRMM1121 5 2 2 M ( M ! ) 4  + 
2M!(4a2KITfA f f ~ T d ) ~ ~  

2 2 M ( M ! ) 6  
+ 

When we ignore the prefix part since usually v << m, 
the first term in ( 4 )  is determined by fDTf = e, 
while the second term is determined by A fTd = y .  
The third term is actually determined by fDTd and is 
much smaller than the first two terms if they are both 
smaller than one. To make the model error small, we can 
choose larger model order M if fDTf < 1 and A f Td < 1 .  
However, the goal for using modeling is to express the 
channel responses by a small number of model coeffi- 
cients, which means we want M to be small. The other 
way to  reduce the above bound is to adjust the win- 
dow dimensions K and I .  When m is large, the first 
term is dominating, then we should choose smaller K to 
make the model error small. On the other hand, when 
m is small and the second term is dominating, then we 
should choose smaller I .  By carefully choosing the win- 
dow dimensions, the time-frequency model error can be 
limited to certain level once the Doppler frequency f D ,  

maximum delay Td and the bandwidth Bd are fixed. It 
should be pointed out that unlike using only time or 
frequency domain model [8][9][10], the model error of 
time-frequency model does not depend on the subchan- 
ne1 number m. 

111. CHANNEL ESTIMATION WITH POLYNOMIAL 
MODEL 

Suppose we have chosen the appropriate model order 
and window dimensions such that the following approx- 
imation is valid. 

Hio ,ko  Q M , N ( I ,  K ) b h , k o ,  (5) 

I t  : I  

Then C0nStrlK.t f i i o , k o  = [ f i - ~ + i ~ , - _ ~ + k ~  . . . 
H - I + i o , K - l - k o  . . . H I + i o , - K + k o  . . . H r + i , , ~ + k ~ ] ~  with 
Hi& = xz = ~ i , k  + as the temp0rar.y estima- 
tion, where N i , k  is the channel noise and is assumed 
to be white Gaussian with zero mean and variance u2. 

can be obtained either from training or from the 
detected signal. Then 

y; b 

H i o , k o  = Hio,ko + Nio ,ko  Q k f , N ( I , K ) b i o , k o  f N i o , k o ,  

N-l+i - K + k  ... N - I + i  , K + h  ... 
where N i o ' k o  = [ X - - l + i : : - K + k ;  X - I + i : , K + b :  

X I + i o , - K + k o  X I + i o . K + k o  N I + i o , K + k o  1 T -  
N J + i o , - K + h p  . . . 

Using L;S methods, we can get the estimation of the 
coefficients of the polynomial basis from the temporary 
estimation 

&,ko = Q L , N ( I t K ) H i o , k o ,  (6) , 

where QL, ,N(I ,  K )  is the pseudo inverse of Q M , N ( I ,  K ) .  
The channel estimation then can be constrwted as 

&i,k '= q M , N ( i  - 20, k - k O ) T b i o , k o  

'= q M , N ( i  - 20, - k ~ ) ~ Q ' ( I , K ) f i i ~ , k ~ ,  (7) 

i - i o ,k -ko  . 
i - io ,k-ko . . . Q ~ ~ ~ , ~ - ~ ]  i - i o ,k -ko  T . Usually we fix the value of 

where qM,.v(i -io, k - ko) = [q&,io'k-ko . . . q0,N-1 

qM-l,O 
i - io  and k-ko, i.e., fix the point of estimation inside the 
window and slide the window to get all the estimations. 
Then the estimator can be viewed as a two-dimensional 
filtering process. Moreover, the polynomial basis has 
the symmetric property and a recursive algorithm can 
be derived to implement the filtering which reduces the 
computation complexity. 

With estimation point chosen at the center of the fre- 
quency doinain window and end point at the time do- 
main window, the estimation error from (7) becomes 

and 
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TABLE I 
WINDOW DIMENSION ADAPTIVE ALGORITHM 

1. 

2. 

Initialization: use IO x KO calculate estimation 

Use window dimensions I x K to estimate the 
kth block and compute the estimated estimation 
error E I , K ,  EI+I,K and ~ I , K + I .  

If ~ I , K  < EO, then IO = I ,  KO = K ,  20 = E I , K ,  
a) If ~ Z I , K  - ZI+l,KI < eih,  then I unchanged. 
Otherwise, if ~ I , K  > i ~ + l , ~ ,  then I = I + 1, 
or if E ^ I , K  < E I + I , K ,  then I = I - 1. 
b) If I ~ I , K  - t 1 , ~ + 1 1  < e&, then K unchanged. 
Otherwise, if Z I , K  > E I , K + ~ ,  then K = K + 1, 
or if 2 1 , ~  < E I , K + ~ ,  then K = K - 1. 
Otherwise, I = IO and K = KO. 
Go t o  step 2 for block k + 1. 

and Eo = :io , K ~ .  

3. 

4. 

The channel estimation error consists of two parts, 
one is the model error eh related to model approxima- 
tion, and the other is the residual noise en. The model 
error € h  = 0, if QL,N( I ,  K)EIHio,koH:,ko]QEN is a di- 
agonal matrix. This can be realized when the eigen-basis 
of the channel correlation function is used. However, the 
statistics of the channel must be known which is diffi- 
cult in practice and also difficult to implement. Then 
for a model basis like polynomial model, the model error 
increases when the model order M x N becomes small 
or the window dimension I x K becomes large. How- 
ever, the noise is reduced more in this case. With fixed 
polynomial model order M and N ,  the optimal window 
dimension is obtained by 

min € 1 , ~  = + en. (9) 
I , K  

Usually, there are several local minima in this optimiza- 
tion problem. We prefer the one with the small window 
dimension which has less computation complexity and 
often has the least estimation error since the model error 
is small. 

Suppose the noise statistics is known, we can calculate 
the estimated estimation error from the estimates and 
the received signal by 

i 1 ,K  = IIfii0,ko - fii0,k1l2 - fY2 
i k  

+ E I N i o , k o N ~ , k o I Q L , ~ ( I ,  K)C~M,N(O, K) 
+ q M , N  (0, W T Q L , N  ( I ,  K)E[Nio ,to Xo ,kol 

Use this approximation, the window dimension adaptive 

Fig. 2. Estimation error v8. SNR (2-ray, f~ = 30Hz and T d  = 
2 5 ~ 3 ,  I x K = 6 x 6 and M x N = 3 x 3) 

algorithm is given in Table I. 

IV. SIMULATION RESULTS 

The MCM system used in the simulations is the sys- 
tem introduced in section 11. Fig. 2 shows the compar- 
ison of mean-squared estimation errors of the channel 
estimations based on expansions in both time and fre- 
quency domains with those based on expansion either 
in time or frequency domain. We can see that the es- 
timation error with both time and frequency domain 
expansions is about 3dB less at SNR of lOdB compared 
to frequency domain expansion [9] and more than 7dB 
less compared to time domain expansion [SI. 

Fig. 3 shows the estimation error under different de- 
lay Profiles with Doppler shift of 40Hz. Fig. 3(a) shows 
the estimation error with TU delay profile and 2-ray de- 
lay profile with the same maximal delay as TU and (b) 
shows the estimation error with HT delay profile and 
2-ray delay profile with the same maximal delay as HT. 
The results using the Fourier transform based method 
of [7] are also shown for comparison. With limited sub- 
channels, all the delay paths of the channel have to be 
at the sampling instances of the system to avoid leak- 
age otherwise severe performance loss occurs. For 2-ray 
channel with Td = 5 p ,  the method in [7] has better 
performance since the two delay paths at Td = 0 and 
T d  = 5ps are all at the sampling instance of the sys- 
tem. There is no leakage in Fourier transform which 
is used as frequency domain estimator in [7]. However, 
the leakage becomes large for TU or HT delay profiles 
because not all their delay paths are at the sampling in- 
stances and the performance of the Fourier transform 
based method is much degraded. However, the pro- 
posed polynomial model method does not such severe 
leakage problem and has more than 5dB gain over the 
Fourier transform based method and is more robust to 
the channel statistics variation. There is only small dif- 
ference between the TU or HT and its corresponding 
2-ray channel with same Td respectively. 
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Fig. 3. Estimation error vs. SNR (M x N = 3 x 3) (a) I x K = 
40 x 4 (b) I x K = 11 x 5  

Fig. 4. Window dimensions adaptation (TU, SNR::lOdB, fo = 
40Hz) (a)'Window dimensions (b) Estimation error 

Fig. 4 shows the window dimension adaptation. Both 
the window dimension variation and the estimation er- 
ror variation with iteration are shown in Fig 4 (a) and 
(b), respectively. At the beginning the window dimen- 
sion is 2 x 2. Then, after 100 iteration, the algorithm 
converges to a window dimension of 46x4 and an estima- 
tion error under 27dB. With this adaptation algorithm, 
the polynomial model based method is not only robust 
to the specific correlation of the channel variation and 
dispersion, but also robust to  T d  and fD and can follow 
the variation of the channel statistics. 

V. CONCLUSION 
In this paper, we studied the channel estimation prob- 

lem for the OFDM system when the statistics of the mul- 
tipath fading channel is not known or partialy known. 
A channel estimation approach based on polynomial 
approximation of the channel parameters is proposed. 
The method exploits the channel correlation in both 
time and frequency domain. It is shown in simulation 
that the method is robust to different channel statistics. 
Moreover, a window dimension adaptation algorithm is 
proposed to adapt the channel estimator to the channel 
statistics which further improves the robustness of the 
system. 
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