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Abstract— Orthogonal frequency division multiplexing (OFDM)
scheme gains growing interests in broadband data communications for
wireless communications because of its great immunity to fast fading and
inter-symbol interference. The channel estimation is a crucial aspect in
the design of OFDM systems. In this work, we propose a channel es-
timation algorithm based on polynomial approximation of the channel
parameters in both time and frequency domains. The method exploits
both the time and frequency correlation of the channel parameters. The
estimator is robust and needs a little prior knowledge about the delay
and fading properties of the channel. It can even adjust itself to follow the
variation of the channel statistics. Our simulation shows it has more than
5dB improvement over the existing method under the practical channel
conditions.

I. INTRODUCTION

OFDM is now considered an effective technique for broad-
band wireless communications [1]. It partitions the entire
bandwidth into parallel subchannels by dividing the transmit
data into parallel low bit rate data streams to modulate the sub-
carriers corresponding to those subchannels. Thus, OFDM
has a relative longer symbol duration which provides great
immunity to fast fading and impulse noise. The independence
among subchanenls further simplifies the design of the equal-
izer and provides an easy way for transmitter optimization [4].
Because of all these advantages, OFDM becomes a promis-
ing technique in digital video/audio broadcasting and wireless
communications [1][2].

Channel estimation and equalization problem is an essen-
tial problem in OFDM system design. Without channel in-
formation, non-coherent detection has to be used, which in-
curs performance loss compared to coherent detection. It is
observed that the channel responses of subchannels are actu-
ally correlated, though the subchannels are treated indepen-
dently during the signal detection. The channel estimation
algorithms should exploit such correlation to improve the es-
timation. It is well known that if the correlation function of
channel response is known, we can get the MMSE estimation
by using the singular value decomposition of the correlation
matrix. However, in practice such knowledge is usually not
available and the channel statistics may vary by time. We are
trying to design an estimation scheme under the condition that
the channel statistics are not known or not completely known.

One such scheme is proposed in [6][7][8]. The algorithm
designed with the assumption that the correlation function can
be viewed as band limited in transform domain. Then an
Fourier transform based estimation or sinc-function interpo-

lator is used to get the channel estimation. The assumption
is true when we consider infinite samples of the channel pa-
rameters. In practice, we can only have finite observations
which may cause severe leakage when Fourier transform is
performed. In this work, we consider the problem from the
other point of view. We consider the fading multipath channel
as a smoothly varying function in time and frequency domains
that can be approximated by time-frequency polynomial ex-
pansions [15]. The estimation noise therefore can be greatly
suppressed by estimating a small number of coefficients of the
basis functions over a large number of observations. The ap-
proach in [6][7][8] can be considered as the same type of ap-
proach as the proposed method by replacing polynomial basis
with Fourier basis. Comparing these two types of basis, the
polynomial model does not has the leakage problem and is
more robust to the channel statistics and system parameters.

A key issue in using the polynomial model to estimate the
channel is to decide the model order and time-frequency win-
dow dimensions of observations. The approximation error
in polynomial model decreases when increasing model or-
der or decreasing the window dimensions, while the residual
noise increases. It is important to reach a tradeoff between
the model error and noise reduction. We propose an adap-
tive algorithm that adjusts the window dimensions to balance
the tradeoff. The adaptive algorithm can track the tradeoff
point without the knowledge of the specific channel correla-
tion function or the fading and delay characteristic.

II. OFDM SYSTEMS

The OFDM system divides the whole bandwidth Bd into
m subchannels and modulates a block of data onto a set of
subcarriers of corresponding subchannels. In most of OFDM
systems, the subchannels are divided evenly, the bandwidth of
the subchannels is �f = Bd=m.

Input data are first buffered to blocks and then divided into
m bit streams. These bit streams are mapped to some complex
constellation points Xi;k; i = 0; � � � ; m � 1 at kth block.
The modulation is implemented by m-point inverse discrete
Fourier transform (IDFT). Then the modulated data are passed
through P/S converter to form serial data x i;k . A cyclic prefix
which is constructed by the last v samples of xi;k’s is inserted
before sending xi;k’s to the channel. Now it follows that the
symbol duration is m

Bd
, however, the actual block duration is

Tf = m+v
Bd

with sampling rate Bd. If there is no cyclic prefix,
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Fig. 1. Two typical delay profiles (a) TU (b) HT

then Tf = 1
�f

. For a system with Bd = 800kHz, m = 512
and v = 64, the block duration is Tf = 720�s. Such system
will be used in the rest of this paper.

At the receiver, the prefix part is discarded. The demodu-
lation is performed by the discrete Fourier transform (DFT)
operation. The demodulated data is Y i;k’s. If the cyclic prefix
is long enough, the interference between two OFDM blocks is
eliminated and the subchannels can be viewed as independent
with each other, i.e.,

Yi;k = Hi;kXi;k +Ni;k; (1)

where Hi;k is the channel frequency response at i�f of kth
block and Ni;k is the corresponding channel noise. N i;k is
assumed to be white Gaussian process with zero mean and
variance �2.

Because of the simple relationship of (1), only a one-tap
equalizer is needed for each subchannel at the receiver, i.e.,
X̂i;k = Yi;kWi;k ;where the equalizer coefficientWi;k is some
function of Hi;k. For example, the zero-forcing equalizer is
constructed as Wi;k = 1

Hi;k
: Then the decision is made upon

X̂i;k. The problem for us is to estimate Hi;k’s.

III. TIME-FREQUENCY POLYNOMIAL CHANNEL MODEL

A. Fading Multipath Channel

In wireless broadband communications, the channel im-
pulse response can be modeled as [13]:

h(t; �) =
X
i


i(t)Æ(� � �i); (2)

where 
i(t)’s are independent Gaussian process with zero
mean and variance pi. pi’s and �i’s are delay profiles describ-
ing the channel dispersion which is also often characterized

by the maximum delay Td
4
= maxi �i. Three types of delay

profiles are used in this work, TU, HT and 2-ray. The TU and
HT delay profiles are shown in Fig. 1. The 2-ray delay profile
has two equal power paths and the delay between two paths
is Td. We also assume that the channel is normalized in our
simulation, i.e.,

P
i pi = 1.

The channel parameters Hi;k’s are the samples of
H(t; f) =

R
h(t; �)e�j2��fd� , which is Hi;k =

H(kTf ; i�f). It is obvious that the Fourier transform of
H(t; f) is band limited by fD and Td. Therefore, by discard-
ing the high frequency components out of the band, we can
reduce the noise and improve the estimation. This is the idea
used in in [6][7][8]. However, the problem is that we only
have finite sample of Hi;k’s in a practical OFDM system. The
Fourier transform over these finite samples may suffer severe
leakage which degrades the performance greatly. In this pa-
per, we use another type channel model described in the next
section.

B. Polynomial Channel Model

The channel variation in physical world is smooth in both
time and frequency domains. We know from the approxima-
tion theory [15] that such a smoothly varying function can be
approximated by projecting to a finite set of basis functions.
Moreover, since the OFDM channel parameters are located in
a time-frequency plane, it is natural to project the channel re-
sponses over a time-frequency window (2I +1)�f � (2K +
1)Tf to a small set of polynomial basis functions around a
center point (i0; k0), i.e.,

Hi;k =

M�1X
m=0

N�1X
n=0

Hi0;k0(nm)(k � k0)
m(i� i0)

n +RMN ;

(3)
for k0 �K � k � k0 +K and i0 � I � i � i0 + I , where

Hi0;k0(nm) =
Tmf �fn

m!n!

@m@nH(t; f)

@tm@fn

����
t=k0Tf ;f=i0�f

;

and

RMN = RM +RN�

((k � k0)Tf )
M ((i� i0)�f)

N

M !N !

@M@NH(t; f)

@tM@fN

���� t = t0

f = f 0

;

RM =
((k � k0)Tf )

M

M !

@MH(t; f)

@tM

����
t=t0

and

RN =
((i� i0)�f)

N

N !

@NH(t; f)

@fN

����
f=f 0

with k0Tf � t0 � kTf and i0�f � f 0 � i�f .
For the Rayleigh fading channel [13], assuming M = N ,

one upper bound of the mean squared model error is:

E[kRMMk
2] �

2M !(2�KTffD)
2M

22M (M !)4
+

(2�I�fTd)
2M

(M !)2

+
2M !(4�2KITf�ffDTd)

2M

22M (M !)6
: (4)

When we ignore the prefix part since usually v � m, the
first term in (4) is determined by fDTf = mfD

Bd
, while the
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second term is determined by �fTd = BdTd
m

. The third
term is actually determined by fDTd and is much smaller
than the first two terms if they are both smaller than one.
To make the model error small, we can choose larger model
order M if fDTf < 1 and �fTd < 1. The other way
is to adjust the window dimensions K and I . When m is
large, the first term is dominating, we should choose smaller
K. When m is small and the second term is dominating, we
should choose smaller I . By carefully choosing the window
dimensions, the time-frequency model error can be limited to
certain level once the Doppler frequency fD, maximum de-
lay Td, and the bandwidth Bd are fixed. For example, when
fDTf = Td�f = 10�2 and window size I = K = 5, the
model error is under 40dB if M = 3.

IV. CHANNEL ESTIMATION ALGORITHM WITH

POLYNOMIAL MODEL

In OFDM systems, temporary estimation can be con-
structed as

~Hi;k =
Yi;k
Xi;k

:

As stated in section III-B, with carefully chosen model pa-
rameters, we can control the model error to some small extent
such that it can be ignored. Then arrange (3) into matrix form:

Hi0;k0 ' QM;N(I;K)bi0;k0 ; (5)

where

Hi0;k0 = [H�I+i0;�K+k0 � � � H�I+i0;K+k0

� � � HI+i0;�K+k0 � � � HI+i0;K+k0 ]
T ;

bi0;k0 = [Hi0;k0(0; 0) � � � Hi0;k0(0; N � 1) � � �

Hi0;k0(M � 1; 0) � � � Hi0;k0(M � 1; N � 1)]T ;

QM;N(I;K) =
2
6666664

q�I;�K0;0 � � � q�I;�K
0;N q�I;�K1;0 � � � q�I;�KM;N

...
...

...
...

qI;�K0;0 � � � qI;�K0;N qI;�K1;0 � � � qI;�KM;N

...
...

...
...

qI;K00 � � � qI;K0;N qI;K1;0 � � � qI;KM;N

3
7777775
;

with qi;km;n = inkm, for i = �I; � � � ; 0; � � � ; I , k =
�K; � � � ; 0; � � � ; K, m = 0; � � � ; M and n = 0; � � � ; N .

Define

~Hi0;k0 = [ ~H�I+i0;�K+k0 � � � ~H�I+i0;K+k0

� � � ~HI+i0;�K+k0 � � � ~HI+i0;K+k0 ]
T

then

~Hi0;k0 = Hi0;k0 +Ni0;k0 ' QM;N (I;K)bi0;k0 +Ni0;k0 ;
(6)

where

Ni0;k0 = [N�I+i0;�K+k0 � � � N�I+i0;K+k0

� � � NI+i0;�K+k0 � � � NI+i0;K+k0 ]
T

.
Using LS methods, we can get the estimation of the coeffi-

cients of the polynomial basis from the temporary estimation

b̂i0;k0 = Q
y
M;N(I;K) ~Hi0;k0 ; (7)

whereQy
M;N (I;K) is the pseudo inverse ofQM;N (I;K).

The channel estimation then can be constructed as

Ĥi;k = qM;N (i� i0; k � k0)
T b̂i0;k0

= qM;N (i� i0; k � k0)
TQy(I;K) ~Hi0;k0 ; (8)

where qM;N (i � i0; k � k0) = [qi�i0 ;k�k00;0 � � � qi�i0;k�k00;N�1 �

qi�i0;k�k0M�1;0 � � � qi�i0;k�k0M�1;N�1]
T .

Usually we fix the value of i � i0 and k � k0, i.e., fix the
point of estimation inside the window and slide the window
to get all the estimations. Then the estimator can be viewed
as a two-dimensional filtering process. Moreover, the polyno-
mial basis has the symetric property and a recursive algorithm
can be derived to implement the filtering which reduces the
computation complexity.

V. OPTIMAL MODEL PARAMETERS ADAPTATION

With estimation point chosen at the center of the frequency
domain window and end point at the time domain window, the
estimation error from (8) becomes

�I;K = E[kHi0;k0 � Ĥi0;k0k
2] = �h + �n; (9)

where

�h = rH(0; 0)� E[Hi0;k0H
T
i0;k0

]QyT
M;N(I;K)qM;N (0;K)

� qM;N (0;K)TQy
M;N(I;K)E[Hi0;k0H

�
i0;k0

]

+ qM;N (0;K)TQy
M;N(I;K)E[Hi0;k0H

T
i0;k0

]

Q
yT
M;N(I;K)qM;N (0;K); (10)

and

�n = �2qM;N (0;K)TQy
M;N(I;K)QyT

M;N(I;K)qM;N (0;K):
(11)

The channel estimation error consists of two part, one is
the model error �h related to model approximation, and the
other is the residual noise �n. The model error �h = 0,
if Qy

M;N(I;K)E[Hi0;k0H
T
i0;k0

]QyT
M;N is a diagonal matrix.

This can be realized when the eigen basis of the channel corre-
lation function is used. However, the statistics of the channel
must be known which is difficult in practice and also difficult
to implement. Then for a model basis like polynomial model,
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TABLE I

WINDOW DIMENSION ADAPTIVE ALGORITHM

1. Initialization: use I0 �K0 calculate estimation
and �̂0 = �̂I0;K0

.
2. Use window dimensions I �K to estimate the

kth block and compute the estimated estimation
error �̂I;K , �̂I+1;K and �̂I;K+1.

3. If �̂I;K < �̂0, then I0 = I , K0 = K, �̂0 = �̂I;K ,
a) If j�̂I;K � �̂I+1;K j < �fth, then I unchanged.
Otherwise, if �̂I;K > �̂I+1;K , then I = I + 1,
or if �̂I;K < �̂I+1;K , then I = I � 1.
b) If j�̂I;K � �̂I;K+1j < �tth, then K unchanged.
Otherwise, if �̂I;K > �̂I;K+1, then K = K + 1,
or if �̂I;K < �̂I;K+1, then K = K � 1.
Otherwise, I = I0 and K = K0.

4. Go to step 2 for block k + 1.

the model error increases when the model order M � N be-
comes small or the window dimension I �K becomes large.
However, the noise is reduced more in this case. With fixed
polynomial model order M and N , the optimal window di-
mension is obtained by

min
I;K

�I;K = �h + �n: (12)

Usually, there are several local minima in this optimization
problem. We prefer the one with the small window dimension
which has less computation complexity and often has the least
estimation error since the model error is small.

Suppose the noise statistics is known, we can calculate the
estimated estimation error from the estimates and the received
signal by

�̂I;K =
X
i

X
k

k ~Hi0;k0 � Ĥi0;kk
2 � �2

+ E[Ni0;k0N
H
i0;k0

]Qy
M;N (I;K)qM;N (0;K)

+ qM;N (0;K)TQy
M;N (I;K)E[Ni0;k0N

�
i0;k0

]

Use this approximation, the window dimension adaptive algo-
rithm is given in Table I.

VI. SIMULATION RESULTS

The OFDM system used in the simulations is the system
introduced in section II. Fig. 2 shows the mean-squared esti-
mation error comparison of the algorithm based on expansions
in both time and frequency domains with those based on ex-
pansion either in time or frequency domain. It is shown that
the estimation error with both time and frequency domain ex-
pansions is about 3dB smaller at SNR of 10dB compared to
frequency domain expansion [7] and more than 7dB smaller
compared to time domain expansion [9]. This means that the
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Fig. 2. Estimation error vs. SNR (2-ray, fD = 30Hz and Td = 25�s,
I �K = 6� 6 and M �N = 3� 3)

channel responses have to be projected to both time and fre-
quency domain bases to fully exploit the channel correlation.

Fig. 3 shows the estimation error under different delay pro-
files. Fig. 3(a) shows the estimation error with TU delay pro-
file and 2-ray delay profile of Td = 5�s which is same as
that of TU while Fig. 3(b) shows the estimation error with HT
delay profile and 2-ray delay profile of Td = 17:2�s which
is same as that of HT. The results using the Fourier trans-
form based method of [8] are also shown for comparison. In
this method, all the delay paths of the channel have to be at
the sampling instances of the system to avoid leakage other-
wise sever performance loss occurs. It is shown that for TU
or HT the proposed algorithm has more than 5dB gain over
the method in [8]. However for 2-ray channel with T d = 5�s,
the method in [8] has better performance. The reason is that
the two delay paths the channel has, Td = 0 and Td = 5�s
are all at the sampling instance of the system. There is no
leakage in Fourier transform which is used as frequency do-
main estimator in [8]. However, the leakage becomes large for
TU or HT delay profiles and 2-ray with Td = 17:2�s based
on the sampling frequency of the OFDM system. It should
be noticed that the two curves about HT delay profile and the
corresponding 2-ray delay profile are almost the same. In con-
trast, the polynomial model based method is more robust to
the channel statistics. There is only small difference between
the TU or HT and its corresponding 2-ray channel with same
Td respectively.

Fig. 4 shows the window dimension adaptation. Both the
window dimension variation and the estimation error variation
with iteration are shown in Fig 4 (a) and (b), respectively. At
the beginning the window dimension is 2� 2. Then, after 100
iteration, the algorithm converges to a window dimension of
46 � 4 and an estimation error under -27dB. With this adap-
tation algorithm, the polynomial model based method is not
only robust to the specific correlation of the channel variation
and dispersion, but also robust to Td and fD and can follow
the variation of the channel statistics.
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Fig. 3. Estimation error vs. SNR (M � N = 3 � 3) (a) I �K = 40 � 4

(b) I �K = 11� 5

VII. CONCLUSION

In this paper, we studied the channel estimation problem for
the OFDM system when the statistics of the multipath fading
channel is not known or partialy known. A channel estimation
approach based on polynomial approximation of the channel
response is proposed. The method exploits the channel corre-
lation in both time and frequency domain. It is shown in sim-
ulation that the method is robust to different channel statistics.
Moreover, a window dimension adaptation algorithm is pro-
posed to adapt the channel estimator to the channel statistics
which further improves the robustness of the system.
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