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ABSTRACT 

Digital fingerprinting is a means to offer protection to digital data 
by which fingerprints embedded in the multimedia are capable of 
identifying unauthorized use of digital content. A powerful attack 
that can be employed to reduce this tracing capability is collusion. 
In this paper, we study the collusion resistance of a fingerprinting 
system employing Gaussian distributed fingerprints and orthogo- 
nal modulation. We propose a likelihood-based approach to esti- 
mate the number of colluders, and introduce the thresholding de- 
tector for colluder identification. We first analyze the collusion 
resistance of a system to the average attack by considering the 
probability of a false negative and the probability of a false pos- 
itive when identifying colluders. Lower and upper bounds for the 
maximum number of colluders K,,, are derived. We then show 
that the detectors are robust to different attacks. We further study 
different sets of performance criteria. 

1. INTRODUCTION 

Due to the ease with which digital content can be accessed. re- 
trieved and manipulated, there is a demand for methods to  pro- 
tect digital media and facilitate digital rights management. Digital 
fingerprinting is one such technique, whereby-some unique infor- 
mation, such as a serial number, is embedded in media using wa- 
termarking techniques. One powerful class of attacks is collusion, 
whereby a coalition of users combine their different marked copies 
of the same multimedia content in an attempt to attenuatelremove 
the trace of any original fingerprint. The fingerprint must therefore 
survive both standard distortions and collusion attacks by users in- 
tending to destroy it. Several methods have been proposed in the 
literature to embed and hide fingerprints (watermarks) in different 
media [Z, 3, 51. The spread spectrum watermarking method pro- 
posed in [3], where the watermarks have a component-wise Gaus- 
sian distribution and are statistically independent, was argued to 
be highly resistant to collusion attacks [3, 61. 

The research on the collusion-resistant fingerprinting systems 
can be broadly divided into two main directions. One direction fo- 
cuses on designing collusion-resistant fingerprint codes [ I ,  9, IO]. 
The other direction of research is on examining the resistance per- 
formance of specific watermarking schemes under different at- 
tacks. We are aware of only a few works on the collusion re- 
sistance of digital watermarks [4, 6, 7, 81. Proposing a simple 
linear collusion attack that consists of adding noise to the aver- 
age of K independent copies, the authors concluded in [61 that 
O( m) independently marked copies are sufficient for an 
attack to defeat the underlying system with non-negligible proba- 
bility, when Gaussian watermarks are considered. It was further 

shown [61 to be optimal no other watermarking scheme can of- 
fer better collusion resistance. These results are also supported by 
141. Stone suggested that the most powerful attack may succeed 
to defeat uniformly distributed watermarks if as few as one to  two 
dozen independent copies are available [XI. We do not know of 
any work that provides a precise analysis of the collusion resis- 
tance of watermarks when employed with different possible detec- 
tion schemes. This paper will address this issue. We employ some 
basic assumptions in this paper: 

We consider independent Gaussian watermarks. Further- 
more. we assume that the fingerprints use orthogonal mod- 
ulation, or at least the correlations among different finger- 
prints can be ignored. 
A nan-blind detection scenario is assumed, meaning that 
the host signal is available in the detector side. Analysis 
shows that 2 or 3 independent copies may defeat water- 
marks under blind scenario. 
The additive distortion is modeled as iid Gaussian noise. 

We begin, in Section 2, with the problem description and pro- 
pose an approach to estimate the number of colluders. We then 
introduce the thresholding detector, and examine the collusion re- 
sistance of our fingerprinting system when considering the average 
attack and the criteria represented by the probabilities of a false 
positive and a false negative. In Section 4, we further examine 
other types of collusion and two more sets of performance criteria. 
We refer the interested readers to [ I  I] for all detailed derivations. 

2. A CLASSIFIER APPROACH 

Additive embedding is a widely used watermarking scheme. As 
shown in Figure I ,  the content owner has a family of wate,marks. 
denoted by { s j }  and they are fingerprints associated with different 
users, for distributing marked copies to different users and allow- 
ing tracing of pirated copies to their original users. For the j t h  
user, the marked version of the content y, is computed by adding 
the watermark sj to the host signal x. Now the observed content 
y after the average collusion is 

where all vectors have dimension N .  K is the number of colluders, 
andS,indicatesasubsetwithsizeK, whereS, [S, ..., n] withn 
be the total number of users. The normally distributed fingerprint 
s, for each user j is assumed to have the equal energy and be 
orthogonal to each other. The distortion d is assumed to be an 
N-dimensional vector following an iid N(0 ,  uf) distribution. 
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Fig. 1. Model for collusion by averaging. 

Here the number of colluders K and the subset S, are un- 
known parameters. We have HK : y = $ C,,s, sj + x + d 
for 1 5 K 5 K,. To estimate K ,  we classify an observation y 
into one of K ,  classes and estimate S, correspondingly. by the 
MAP or Bayesian classifier 

( R ,  3,) = argmaxp(y/Hti,S,)~(H~)p(S~IHK) ( 2 )  

where p ( . )  represents likelihood functions. We choose a nonin- 
formative prior such that p(Hti)p(S,IHx) is constant and thus 
can be ignored as long as IS,l = K is satisfied. Due to the non- 
blind assumption, the host signal x is always subtracted from y for 
analysis. Because of the orthogonality of basis { s , } ,  it suffices to 
consider the correlator vector TN. with 

K , S ,  

. . .  

T N ( ~ )  = (Y - x)Tsj/diLiF (3)  

for j = 1, ..., n. It is straightforward to show that 

Sc = the index of i? largest T ~ ( j ) ' s  ( 5 )  

where T$)'s are the order statistics of the sample TN such that 
T(') > T(') > . . . 2 Tk), N - N -  

3. DETECTION APPROACHES 

In this section, we consider one of the most popular criteria, the 
probability of a false negative (PI") and the probability of a false 
positive (Pfp).  A detection approach fails if either the detector 
fails to identify any of the colluders (a false negative) or the de- 
tector falsely indicates that an innocent user is a colluder (a false 
positive) [4,6]. It is desirable to minimize Pf",  with a given Pfp .  
Although it might be interesting to study PI" and Pfp  for the 
approach introduced in Section 2 and use Sc obtained via ( 5 )  to 
indicate colluders, the approach is not designed to address the de- 
sirable goal represented by Pfn  and Pfp. and furthermore it lacks 

the capability of adjusting parameters to meet a given Pfp. Next 
we introduce the thresholding detector and study its collusion re- 
sistance under the average attack. 

We employ the traditional correlator T N ( ~ )  and compare it to 
a threshold h, and report that the j - th fingerprint is present if 
T N ( ~ )  exceeds h. This simple approach is described as 

j = a%=l,.. . , , ,{T~(A 2 h} (6)  

where the set j indicates the indices of colluders, and an empty set 
means that no user is accused. The threshold h here is determined 
by such parameters as the document length N ,  the total number of 
users n, the number of colluders K ,  and the WNR. 

3.1. Performance Analysis 

The threshold h in test (6) is chosen io yield P f p  = 5,  where t is a 
desired small value. For simplicity, we assume that the number of 
colluders K is known. We now have 

Pfp  = Pv{j n 5, # a }  = 1 - (1 - Q(h/od))"-K (7) 

where 3, is the complementary set of S,. According to (8). we 
can numerically calculate h to yield Pfp  = t with given K ,  n, and 
WNR, and then compute the corresponding Pd. 

We illustrate the resistance performance using an example, 
where W N R  = OdB, N = lo4, and 0: = 1. In this example, the 
system requirements are defined as Pd 2 0.8 and P f p  5 
As shown in Figure 2(a) and (b), when the number of users n is 
on the order of lo4, the fingerprinting system can resist to up to 28 
colluders; when n is set as a small number 75, the system can resist 
to up to 46 colluders. This behavior can he intuitively explained 
by the expressions of Pfp and Pd in (8). To have an overall under- 
standing of the collusion resistance of this orthogonal fingerprint- 
ing scheme, we plat the maximum resistible number of colluders 
K,,, as a function of the total number of users n in Figure 3. It 
is no!ed that the system can resist to up to n colluders when the 
total number of users n is less than 60. However, for B system ac- 
commodating more than 60 users, ifs collusion resistance starts to 
decrease. For a system accommodating more than one thousand 
users, the number K,,, is around 28. 

3.2. Lower and Upper Bounds of K,,, 

Since the above analysis is based on numerical computation, we 
shall study analytic hounds on the-maximum number of collud- 
ers K,,, for an orthogonal fingerprinting system employing the 
thresholding detector. 

with the WNR II = //sll'/lld11'. We restate the system require-' 
ments as 

pfp 5 E: pd 2 8, (8) 
in which c is a small number and 8 is close to 1. A key point in 
determining K,,, is to figure out the appropriate threshold h in 
the above equation (8). The assumption that c is small implies that 
the choice of h can meet the condition Q(h) << lln. Based on 
this observation and the two Lemmas, we obtain a lower bound 
hL and upper hound hH of the threshold h. We now proceed to 
show that a lower and upper bound of the maximum number of 

Setting U: = 1 for convenience, note that now ~~s~~ = 
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colluders K,,, can be obtained by using the bounds of h. The 
basic idea is to find a lower bound K L  of K,,, such that the re- 
sulting pair ( K L ,  h x )  simultaneously satisfies the conditions that 
the corresponding Pd is larger than but close to the requirement fl  
and PfP is smaller than but close to the requirement e.  Similarly, 
an upper hound KH is chosen such that the pair ( K H ,  hL) results 
in a Pd, which is smaller than but close to the requirement f l ,  and a 
Pfp, which is larger than but close to the requirement E .  A detailed 
derivation leads to the following collusion resistance: 

I 

where &-'(.) represents the inverse &-function, and k serves as 

an upper bound of the upper hound K H :  K = 
h L - Q - l ( 1 -  "m) 

It is worth mentioning that a tighter lower and upper bound of 
K,,, can be obtained by solving the one-dimensional problem 
Pd = p when hH and hL are considered, respectively. However, 
more computational load will be involved and no explicit expres- 
sions of KH and Kr. as in (9) be available due to the complex 
nature of Pd. 

We plot the lower and upper bound of K,,, vorsus the num- 
ber of users n, along with the numerical K,,,. in Figure 3, where 
U: = 1, W N R  = OdB, N = IO4, and the requirements Pfp 5 

and Pd 2 0.8. It i s  noted that the lower and upper bounds 
are within a factor of 2 of the true value of K,,,. Some interest- 
ing observations are noted from this example. From the attacker 
point of view, if an attack can only collect up to 20 copies, he/she 
can never succeed in removing all the traces; however, an attacker 
is guaranteed to celebrate hisher success if 80 independent copies 
are available. From the owner (detector) point of view, if the owner 
has a mean to ensure that apotential attacker has no way to obtain 
as many as 20 independent copies, the fingerprinting system is 
claimed to he collusion-free. Meanwhile, in order to maximize the 
worst case of Pd, the owner should limit the number of indepen- 
dent distributions. 

3.3. Simulations 

Since the knowledge of K is normally not available in practice, we 
need to first estimate K before setting a threshold h for the detec- 
tion process. Our simulations used the following implementation: 

J;;; 

Fig. 3. The lower and upper bound of K,,, as a function of 
the number of users n when apply the thresholding detector in (6) .  
Here W N R  = OdB, N = lo", L = and 4 = 0.8. 

Estimate the number of colluders K via ( 5 ) .  

Determine the threshold h correspondingly to yield a de- 
sired Pfp, according to (8). The threshold h i s  only a func- 
tion of  K when N ,  W N R  and n are given. 

Apply the thresholding test statistic described in (6) .  

We compare the simulation results with the ideal performance 
in Figure 2(a) and (b). When K is estimated based on simulated 
observations, the resulting P d  always decreases with increasing K .  
A good match is observed over the non-increasing part of  the ideal 
case (when K is small). Mis-match is noted over the increasing 
part of the ideal case (when K is close to n), since K is under- 
estimated in this situation due to the increasing overlap between 
the two Gaussian distributions N(O,& and N ( ~ / s ~ ~ / K , u ~ )  as 
K increases. However, estimating K does not significantly affect 
the results of K,,,, compared with that of the ideal performance 
analysis, since only the non-increasing part (also the matched part) 
of  the ideal case in the pd versus K curve is evaluated to decide 
K.",,. 

4. EXTENSIONS 

In this section, we consider three nonlinear attacks suggested by 
Stone in [XI. We show in [ I  I ]  that different attacks provide very 
close performance as long as the powers of the composite obser- 
vations satisfy 

where g(.) represents the attack operation. Note that the power of 
the observation indicates the level of MSE introduced to the host 
signal. The above fact that, from the detector point of view, differ- 
ent attacks provide close performance suggests that with the same 
MSE distortion allowed, the average attack is most efficient from 
the attacker point of view. This is because from the detector point 
of view, there exists better detection schemes than the thresholding 
detector given a specific attack except the average attack. 

Different goals arise under different situations, and there are 
other possible sets of performance measures. These measures pro- 
vide different balance between capturing colluders and accusing 
innocents. We consider two new sets of performance criteria and 
study the thresholding detector under the average attack. 
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Case 1: Capture More This set of performance criteria consists 
of the expected fraction of colluders that are successfully captured, 
denoted as T ~ ,  and the expected fraction of innocent users that are 
falsely placed under suspicion, denoted as ri. Here the major con- 
cern is to catch more colluders, possibly at a cost of accusing more 
innocents. The system requirements are represented as 

We obtain the following 

It is interesting to note that the threshold h is a constant value 
determined by ai, and K,,, is not affected by the total number 
of users n. If placing a larger fraction of innocents into suspicion 
is allowed, the system can resist to more colluders. 
Case 2: Capture All This set of performance criteria consists of 
the efficiency rate R, which describes the amount of expected in- 
nocents accuszd per colluder, and the probability of capturing all 
K colluders, referred as Pd. Here the goal is to capture all col- 
luders with a high probability. The tradeoff between capturing 
colluders and placing innocents under suspicion is through the ad- 
justment of the efficiency rate R. The system requirements are 
expressed as 

(13) 
We may find lower and upper bounds for K,,, under this criteria, 
and an example is given in Figure 4. 

The analysis in this section reveals that the maximum number 
of colluders allowed is on the same order under two different sets 
of criteria. Basically, a few dozen of colluders could break down 
the Gaussian fingerprinting system using orthogonal modulation 
by generating a new composite copy such that the identification of 
the original fingerprints will unlikely be successful. 

5. CONCLUSION 

In this paper, we investigated how many independently marked 
copies of the same multimedia content is required for an attacker 
to thwart a fingerprinting system. We studied the collusion resis- 
tance of a fingerprinting system to the average attack when con- 
sidering the performance criteria represented by Pip and Pnp. 
We derived lower and upper bounds of the maximum number of 
colluders K,,,. Using the upper bound, an attacker can know 
how many independent copies are required to guarantee the suc- 
cess of a collusion attack; on the other hand, an owner will benefit 
from these bounds in designing a fingerprinting system. Our work 
was further extended to different attacks and performance crite- 
ria. From the detector point of view, the thresholding detector is 
robust to different attacks, since different attacks yield very close 
performance as long as the levels of MSE distortion introduced 
by different attacks are the same. And it seems that attacks based 
on a few dozen independent copies will confound a fingerprinting 
system accommodating as many as ten thousand users. This obser- 
vation suggests that the number of independently marked copies of 

I, 
Id ‘I’ 

Fig. 4. Resistance performance of the orthogonal fingerprinting 
system under the criteria R and Pd. Here N = lo5, q = 1, 
a = 0.01 and Pd = 0.99. 

the same content that can be distributed should be determined by 
many concerns, such as the system requirements, and the cost of  
obtaining multiple independent copies. Furthermore, it suggests 
that tracing colluders via fingerprints should work in concert with 
other operations, for example, suspecting a user leads the owner to 
more closely monitor that user and further gather other evidences. 
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