IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 3, FEBRUARY 1, 2013 571

Sequential Chinese Restaurant Game
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Abstract—In a social network, agents are intelligent and have
the capability to make decisions to maximize their utilities. They
can either make wise decisions by taking advantages of other
agents’ experiences through learning, or make decisions earlier
to avoid competitions from huge crowds. Both these two effects,
social learning and negative network externality, play important
roles in the decision process of an agent. While there are existing
works on either social learning or negative network externality,
a general study on considering both effects is still limited. We
find that Chinese restaurant process, a popular random process,
provides a well-defined structure to model the decision process
of an agent under these two effects. By introducing the strategic
behavior into the non-strategic Chinese restaurant process, we
propose a new game, called the Chinese restaurant game, to
formulate the social learning problem with negative network
externality. Through analyzing the proposed Chinese restaurant
game, we derive the optimal strategy of each agent and provide
a recursive method to achieve the optimal strategy. How social
learning and negative network externality influence each other
under various settings is studied through simulations. We also
illustrate the spectrum access problem in cognitive radio networks
as one of the application of Chinese restaurant game. We find that
the proposed Chinese restaurant game theoretic approach indeed
helps users make better decisions and improves the overall system
performance.

Index Terms—Chinese restaurant game, Chinese restaurant
process, cognitive radio, cooperative sensing, game theory, ma-
chine learning, network externality, social learning.

I. INTRODUCTION

OW agents in a network learn and make decisions is an

important issue in numerous research fields, such as so-
cial learning in social networks, machine learning with commu-
nications among devices, and cognitive adaptation in cognitive
radio networks. Agents make decisions in a network in order to
achieve certain objectives. However, the agent’s knowledge on
the system may be limited due to the limited ability in obser-
vations or the external uncertainty in the system. This impaired
his utility since he does not have enough knowledge to make
correct decisions. The limited knowledge of one agent can be

Manuscript received December 15, 2011; revised June 10, 2012, September
14,2012, and September 24, 2012; accepted September 29, 2012. Date of publi-
cation October 16, 2012; date of current version January 11, 2013. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Ignacio Santamaria. This work was supported by the National Sci-
ence Council of Taiwan under Grant NSC-100-2917-1-002-038.

C.-Y. Wang is with the Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742 USA.. He is also with the
Graduate Institute of Communication Engineering, National Taiwan University,
Taiwan (e-mail: tomkywang@gmail.com).

Y. Chen and K. J. R. Liu are with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, MD 20742 USA (e-mail:
yan@umd.edu; kjrliu@umd.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2012.2225053

expanded through learning. One agent may learn from some in-
formation sources, such as the decisions of other agents, the ad-
vertisements from some brands, or his experience in previous
purchases. In most cases, the accuracy of the agent’s decision
can be greatly enhanced by learning from the collected infor-
mation.

The learning behavior in a social network is a popular topic
in the literature. Let us consider a social network in an uncer-
tain system state. The state has an impact on the agents’ re-
wards. When the impact is differential, i.e., one action results
in a higher reward than other actions in one state but not in all
states, the state information becomes critical for one agent to
make the correct decision. In most social learning literature, the
state information is unknown to agents. Nevertheless, some sig-
nals related to the system state are revealed to the agents. Then,
the agents make their decisions sequentially, while their ac-
tions/signals may be fully or partially observed by other agents.
Most of existing works [1]-[4] study how the believes of agents
are formed through learning in the sequential decision process,
and how accurate the believes will be when more information is
revealed. One popular assumption in traditional social learning
literature is that there is no network externality, i.e., the actions
of subsequent agents do not influent the reward of the former
agents. In such a case, agents will make their decisions purely
based on their own believes without considering the actions of
subsequent agents. This assumption greatly limits the potential
applications of these existing works.

The network externality, i.e., the influence of other agents’
behaviors on one agent’s reward, is a classic topic in economics.
How the relations of agents influence an agent’s behavior is
studied in coordinate game theory [5]. When the network exter-
nality is positive, the problem can be modeled as a coordination
game. In the literature, there are some works on combining the
positive network externality with social learning, such as voting
game [6]-[8] and investment game [9]-[12]. In voting game, an
election with several candidates is held, where voters have their
own preferences on the candidates. The preference of a voter
on the candidates is constructed by how the candidates can ben-
efit him if winning the election. When more voters vote for the
same candidate, he is more likely to win the election and thus
benefits the voters. In the investment game, there are multiple
projects and investors, where each project has different payoff.
When more investors invest in the same project, the succeeding
probability of the project increases, which benefits all investors
investing this project. Note that in both voting and investment
games, the agent’s decision has a positive effect on ones’ deci-
sions. When one agent makes a decision, the subsequent agents
are encouraged to make the same decision in two aspects: the
probability that this action has the positive outcome increases
due to this agent’s decision, and the potential reward of this ac-
tion may be large according to the belief of this agent.

When the externality is negative, it becomes an anti-coor-
dination game, where agents try to avoid making the same
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decisions with others [13]-[15]. The combination of negative
network externality with social learning, on the other hand, is
difficult to analyze. When the network externality is negative,
the game becomes an anti-coordination game, where one agent
seeks the strategy that differs from others’ to maximize his own
reward. Nevertheless, in such a scenario, the agent’s decision
also contains some information about his belief on the system
state, which can be learned by subsequent agents through social
learning algorithms. Thus, subsequent agents may then realize
that his choice is better than others, and make the same decision
with the agent. Since the network externality is negative, the
information leaked by the agent’s decision may impair the
reward the agent can obtain. Therefore, rational agents should
take into account the possible reactions of subsequent players
to maximize their own rewards.

The negative network externality plays an important rule in
many applications in different research fields. One important
application is spectrum access in cognitive radio networks. In
spectrum access problem, secondary users accessing the same
spectrum need to share with each other. The more secondary
users access the same channel, the less available access time or
higher interference for each of them. In this case, the negative
network externality degrades the utility of the agents making
the same decision. As illustrated in [16], the interference from
other secondary users will degrade a secondary user’s transmis-
sion quality and can be considered as the negative network ex-
ternality effect. Therefore, the agents should take into account
the possibility of degraded utility when making the decisions.
Similar characteristics can also be found in other applications,
such as service selection in cloud computing and deal selection
in Groupon website.

The aforementioned social learning approaches are mostly
strategic, where agents are considered as players with bounded
or unbounded rationality in maximizing their own rewards.
Machine learning, which is another class of approaches for the
learning problem, focuses on designing algorithms for making
use of the past experience to improve the performance of sim-
ilar tasks in the future [17]. Generally there exists some training
data and the devices follow a learning method designed by the
system designer to learn and improve the performance of some
specific tasks. Most learning approaches studied in machine
learning are non-strategic without the rationality on considering
their own benefit. Such non-strategic learning approaches may
not be applicable to the scenario where devices are rational and
intelligent enough to choose actions to maximize their own
benefits instead of following the rule designed by the system
designer.

Chinese restaurant process, which is a non-parametric
learning methods in machine learning [18], provides an inter-
esting non-strategic learning method for unbounded number
of objects. In Chinese restaurant process, there exists infinite
number of tables, where each table has infinite number of seats.
There are infinite number of customers entering the restaurant
sequentially. When one customer enters the restaurant, he can
choose either to share the table with other customers or to
open a new table, with the probability being predefined by the
process. Generally, if a table is occupied by more customers,
then a new customer is more likely to join the table, and the
probability that a customer opens a new table can be controlled
by a parameter [ 19]. This process provides a systematic method

to construct the parameters for modeling unknown distribu-
tions. Nevertheless, the behavior of customers in Chinese
restaurant game is non-strategic, which means they follow
predefined rules without rational concerns on their own utility.
We observe that if we introduce the strategic behaviors into
Chinese restaurant process, the model can be a general frame-
work for analyzing the social learning with negative network
externality. To the best of our knowledge, no effort has been
made to bring rationality concerns into such a decision making
structure in the literature.

By introducing the strategic behavior into the non-strategic
Chinese restaurant process, we propose a new game, called
Chinese Restaurant Game, to formulate the social learning
problem with negative network externality In our previous work
[20], we have studied the simultaneous Chinese restaurant game
without social learning where customers make decisions simul-
taneously. In this paper, we will study the sequential Chinese
restaurant game with social learning where customers make de-
cisions sequentially. Let us consider a Chinese restaurant with
J tables. There are N customers sequentially requesting for
seats from these .J tables for having their meals. One customer
may request one of the tables in number. After requesting,
he will be seating in the table he requested. We assume that
all customers are rational, i.e., they prefer bigger space for a
comfortable dining experience. Thus, one may be delighted if
he has a bigger table. However, since all tables are available
to all customers, he may need to share the table with others
if multiple customers request for the same table. In such a
case, the customer’s dining space reduces, due to which the
dining experience is impaired. Therefore, the key issue in the
proposed Chinese restaurant game is how the customers choose
the tables to enhance their own dining experience. This model
involves the negative network externality since the customer’s
dining experience is impaired when others share the same table
with him. Moreover, when the table size is unknown to the
customers, but each of them receives some signals related to the
table size, this game involves the learning process if customers
can observe previous actions or signals.

In the rest of the paper, we first provide detailed descriptions
on the system model of Chinese restaurant game in Section III.
Then, we study the sequential game model with perfect informa-
tion to illustrate the advantage of playing first in Section IV. In
Section V, we show the general Chinese restaurant game frame-
work by analyzing the learning behaviors of customers under
the negative network externality and uncertain system state. We
provide a recursive method to construct the best response for
customers, and discuss the simulation results in Section VI. In
Section VII, we illustrate how the traditional spectrum access
problem can be formulated as a Chinese restaurant game. Fi-
nally, we draw conclusions in Section VIII.

II. RELATED WORKS

A closely-related strategic game model to our work is the
global game [21], [22]. In the global game, all agents, with lim-
ited knowledge on the system state and information held by
other agents, make decisions simultaneously. The agent’s re-
ward in the game is determined by the system state and the
number of agents making the same decision with him. The influ-
ence may be positive or negative depending on the type of net-
work externality. An important characteristics of global game
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is that the equilibrium is unique, which simplifies the discus-
sion on the outcome of the game. It draws great attentions in
various research fields, such as financial crisis [23], sensor net-
works [24] and cognitive radio networks [25]. Since all players
in the global game make decisions simultaneously, there is no
learning involved in the global game.

In recent years, several works [10], [11], [26]-[28] make
efforts to introduce the learning and signaling into the global
game. Dasgupta’s first attempt was investigating a binary
investment model, while one project will succeed only when
enough number of agents invest in the project in [10]. Then,
Dasgupta studied a two-period dynamic global game, where
the agents have the options to delay their decisions in order to
have better private information of the unknown state in [11].

Angeletos et al. studied a specific dynamic global game called
regime change game [26], [27]. In the regime change game,
each agent may propose an attack to the status quo, i.e., the
current politic state of the society. When the collected attacks
are large enough, the status quo is abandoned and all attackers
receive positive payoffs. If the status quo does not change, the
attackers receive negative payoffs. Angeletos et al. first studied
a signaling model with signals at the beginning of the game
in [26]. Then, they proposed a multiple stages dynamic game
to study the learning behaviors of agents in the regime change
game in [27].

Costain provided a more general dynamic global game with
an unknown binary state and a general utility function in [28].
However, the positions of the agents in the game are assumed to
be unknown to simply the analysis. Nevertheless, most of these
works study the multiplicity of equilibria in dynamic global
game with simplified models, such as binary state, binary invest-
ment model, or lacking of position information. Moreover, the
network externality they considered in their models are mostly
positive. By proposing Chinese restaurant game, we hereby pro-
vides a more general game-theoretic framework on studying the
social learning in a network with negative network externality,
which has many applications in various research fields.

III. SYSTEM MODEL

Let us consider a Chinese restaurant with .J tables numbered
1.2,...,J and N customers labeled with 1,2,..., N. Each
customer requests for one table for having a meal. Each table has
infinite seats, but may be in different size. We model the table
sizes of a restaurant with two components: the restaurant state
¢ and the table size functions {1 (8), R2(f),..., R;(#)}. The
state # represents an objective parameter, which may be changed
when the restaurant is remodeled. The table size function RR;(6)
is fixed, i.e., the functions {R1(#), Ra2(#), ..., R;(6)} will be
the same every time the restaurant is remodeled. An example
of 8 is the order of existing tables. Suppose that the restaurant
has two tables, one is of size . and the other is of size S. Then,
the owner may choose to number the large one as table 1, and
the small one as table 2. The decision on the numbering can be
modeled as & € {1, 2}, while the table size functions R;(#) and
R,(0) are given as Ry (1) = L, R1(2) = S, and R2(1) = S,
R(2) = L. Let O be the set of all possible state of the restau-
rant. In this example, @ = {1, 2}.

We formulate the table selection problem as a game, called
Chinese Restaurant Game. We first denote X = {1,...,.J}
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as the action set (tables) that a customer may choose, where
x; € X means that customer 7 chooses the table z; for a seat.
Then, the utility function of customer i is U(R,.,, n., ), where
n,, 1s the number of customers choosing table z,;. According
to our previous discussion, the utility function should be an in-
creasing function of 2., , and a decreasing function of ., . Note
that the decreasing characteristic of U(R,,,n,,) over n,, can
be regarded as the negative network externality effect since the
degradation of the utility is due to the joining of other customers.
Finally, let n = (n1,n2,...,ny) be the numbers of customers
on the .J tables, i.e., the grouping of customers in the restaurant.

As mentioned above, the restaurant is in a state # € ©. How-
ever, customers may not know the exact state 8, i.c., they may
not know the exact size of each table before requesting. Instead,
they may have received some advertisements or gathered some
reviews about the restaurant. The information can be treated as
some kinds of signals related to the true state of the restaurant.
In such a case, they can estimate # through the available in-
formation, i.e., the information they know and/or gather in the
game process. We assume that all customers know the prior dis-
tribution of the state information &, which is denoted as gg =
{90.1lgos = Pr(6 = 1),¥l € O}. The signal each customer
received s; € S is generated from a predefined distribution
f(s|8). Notice that the signal quality may vary, depending on
how accurate the signal can reflect the state. A simple example
is given as follows. Considering a signal space S = {1,2} and
the system state space @ = {1,2}. Then, we define the signal
distribution as follows:

Pr(s=0|0)=p. Pr(s#08|)=1-p, 05<p<l. (1)
In such a case, the parameter p is the signal quality of this signal
distribution. When p is higher, the signal is more likely to reflect
the true system state.

We introduce belief, which is well-known in the Bayesian
game literature [3], to describe how a customer estimates the
system state #. Since customers make decisions sequentially, it
is possible that the customers who make decisions later learn
the signals from those customers who make decisions earlier.
Let us denote the signals customer i learned, excluding his own
signal s;, as h; = {s}. With the help of these signals h;, his own
signal s;, the prior distribution gg, and the conditional distribu-
tion f(s|f), each customer ¢ can estimate the current system
state in probability with the belief being defined as

g = {gi,l|gi,l = PT((‘) = l|hi,Si,g0),Vl & (”)}VI e N. (2)

According to the above definition, g; ; represents the proba-
bility that system state f is equal to / conditioning on the col-
lected signals h;, received signal s;, the prior probability gg,
and the conditional distribution f(s|¢). Notice that in the so-
cial learning literature, the belief can be obtained through either
non-Bayesian updating rule [1], [2] or fully rational Bayesian
rule [3]. For the non-Bayesian updating rule, it is implicitly
based on the assumption that customers are only limited rational
and follows some predefined rules to compute their believes.
Their capability to maximize their utilities is limited not only
by the game structure and learned information, but also by the
non-Bayesian updating rules. In the fully rational Bayesian rule,
customers are fully rational and have the potential to optimize
their actions without the restriction on the fixed belief updating
rule. Since the customers we considered here are fully rational,
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they will follow the Bayesian rule to update their believes as
follows:
o — go*,[p{r(hia 87|0 - l)
gil Zl’e(—) gO,I’PT(hi, S.[-‘H = l’) .
Notice that the exact expression for belief depends on how the

signals are generated and learned, which is generally affected
by the conditional distribution f(s|¢) and the game structure.

)

IV. PERFECT SIGNAL: ADVANTAGE OF PLAYING FIRST

We first study the perfect signal case, where the system state 4
is known by all customers. Let us consider a Chinese restaurant
game with .J tables and N customers. Since # is known, the
exact sizes of tables 21(#). Ra(#), ..., R;(f) are also known
by customers.

In sequential Chinese restaurant game, customers make de-
cisions sequentially with a predetermined order known by all
customers, e.g., waiting in a line of the queue outside of the
restaurant. Without loss of generality, in the rest of this paper, we
assume the order is the same as the customer’s number. We as-
sume every customer knows the decisions of the customers who
make decisions before him, i.e., customer ¢ knows the decisions
of customers {1,...,¢i — 1}. Letn; = (n41,752,...,n;7) be
the current grouping, i.e., the number of customers choosing
table {1,2, ..., .J} before customer i. The n; roughly represents
how crowded each tables is when customer ¢ enters the restau-
rant. Notice that n; will not be equal to n, which is the final
grouping that determines customers’ utilities. A table with only
few customers may eventually be chosen by many customers in
the end.

A strategy describes how a player will play given any pos-
sible situation in the game. In Chinese restaurant game, the cus-
tomer’s strategy should be a mapping from other customers’
table selections to his own table selection. Recalling that 7
stands for the number of customers choosing table j. Let us
denoten_; = (n_;1,n_52,...,%_4.7) with n_; ; being the
number of customers except customer ¢ choosing table ;. Then,
given n_;, the best response of a rational customer i should be

BE;(n_;.0) = arg Ijledi(U (R.(0),n_i.+1). €))
Notice that given n_;, n; = n_; ; + 1 if # = j. However,
the n_; may not be completely observable by customer 7 since
customers 7 + 1 ~ /N make decisions after customer ¢. There-
fore, as shown in the next subsection, customer % should predict
the decisions of the subsequent customers given the current ob-
servation n; and state .

A. Equilibrium Grouping

We first study the possible equilibria of Chinese restaurant
game. Nash equilibrium is a popular concept for predicting
the outcome of a game with rational customers. Informally
speaking, Nash equilibrium is an action profile, where each cus-
tomer’s action is the best response to other customers’ actions
in the profile. Since all customers use their best responses, none
of them have the incentive to deviate from their actions. We
observe that in Chinese restaurant game, the Nash equilibrium
can be translated into the equilibrium grouping [20], which is
defined as follows

Definition 1: Given the customerset {1, ..., N}, the table set
X =1{1,...,J}, and the current system state #, an equilibrium
grouping n* satisfies the following conditions

U(Ro(8),n) = U (Ry(8),n; + 1), if nt>0Va,yeX.
®)
Obviously, there will be more than one Nash equilibrium
since we can always exchange the actions of any two customers
in one Nash equilibrium to build a new Nash equilibrium
without violating the sufficient and necessary condition shown
in (5). Nevertheless, the equilibrium grouping n* may be
unique even if there exist multiple Nash equilibria. The suf-
ficient condition to guarantee the uniqueness of equilibrium
grouping is stated in the following Theorem.
Theorem 1: If the inequality in (5) strictly holds forall z, y €
X, then the equilibrium grouping n* = (n},...,n%) is unique.
Proof: We would like to prove this by contradiction. Sup-
pose that there exists another Nash equilibrium with equilib-
rium grouping n’ = (nf,...,n’;), where n/; # n’ for some
j € X. Since both n* and n’ are equilibrium groupings, we
have ij]:l n; = 271:1 n} = N.In such a case, there exists
two tables  and y with n, > n} and nj, < n. Then, since n*
is an equilibrium grouping, we have

U (Ry(0),n%) > U (Ro(6),07% +1). 6)

Since n), > nj}, nj, < ny,and U(-) is a deceasing function
of n, we have

U(R:(0),n) >U (R (0),nk +1) > U(R:(8),n), (7)
U (Ry(8).n,) >U (Ry(8),n;, + 1) > U (Ry(8),n;). (8)

Since n’ is also an equilibrium grouping, we have
U(R.(0),n,)>U (Ry(ﬂ),n; + 1) . 9)
According to (7), (8), and (9) we have

U (Ro(0), 0% +1) 2 U (Ru(0), )

> U (R, (6). ), +1)

>U (Ry(8),ny) (10)
which contradicts with (6). Therefore, the equilibrium grouping
n* is unique when the inequality in (5) strictly holds. ]

A concrete example that the equilibrium grouping is and is
not unique is as follows. Consider a Chinese restaurant with 3
customers and 2 tables with size 2 and Ks. When B = Ro,
we have two equilibrium grouping, which are n' = (1,2) and
n? = (2,1). The equilibrium grouping is not unique in this
case is because the inequality in (5) does not strictly hold, which
means that one customer may have the same utility if he chooses
another table given the decisions of others. In contrast, when
Ry > Roand U(R1,3) < U(Rga,1), we have a unique equilib-
rium grouping n® = (2, 1) since all other grouping cannot be
the equilibrium output as we proved in Theorem 1.

The equilibrium grouping can be found through a simple
greedy algorithm. In the algorithm, customers choose their
actions in the myopic way, i.e., they choose the tables that
can maximize their current utilities purely based on what
they have observed. Let n; = (n;1,72,...,n;5) with
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Z:j]:]_ n;; = ¢ — 1 be the grouping observed by customer 3.

Then, customer ¢ will choose the myopic action given by

BEfL-’":”oPic(ni, 9) = arg maicU (Re(0),n; - +1). (11
zeX ’

We check if the greedy algorithm indeed outputs an equilib-
rium grouping. Letn* = (nj,n3, ..., n%) be the corresponding
grouping. For a table j with n} > 0, suppose customer £ is the
last customer choosing table j. According to (11), we have

U(Rj(0),np;+1) 2U (R (), np 50 + 1)
>U (Rj(9),n) +1),Vj € X. (12)

Note that (12) holds for all j,j' € A& with n} > 0, ie,
U(R;(0),n}) > U(R;(0),n} +1), ¥i, 5" € & withn} > 0.
According to Definition 1, the output grouping n* from the
greedy algorithm is an equilibrium grouping.

B. Subgame Perfect Nash Equilibrium

In a sequential game, we will study the subgame perfect Nash
equilibrium. Subgame perfect Nash equilibrium is a popular re-
finement to the Nash equilibrium under the sequential game. It
guarantees that all players choose strategies rationally in every
possible subgame. A subgame is a part of the original game. In
Chinese restaurant game, any game process begins from player
i, given all possible actions before player i, could be a subgame.

Definition 2: A subgame in Chinese restaurant game is con-
sisted of two elements: 1) It begins from customer ¢; 2) The cur-
rent grouping before customer ¢ is n; = (nm, ..., ng 1) with
ST iy =i- 1

Definition 3: A Nash equilibrium is a subgame perfect Nash
equilibrium if and only if it is a Nash equilibrium for any sub-
game.

We would like to show the existence of subgame perfect Nash
equilibrium in Chinese restaurant game by constructing one. Ba-
sically, as a rational customer, customer ¢ should predict the final
equilibrium grouping according to his current observation on
the choices of previous customers n; and the system state 8.
Then, he may choose the table with highest expected utility ac-
cording to the prediction. Following from this idea, we derive
the best response of customers in a subgame.

We first implement the prediction part through two functions
as follows. First, let EFG(X'®, N*) be the function that generates
the equilibrium grouping for a table set X'* and number of cus-
tomers NV*. The equilibrium grouping is generated by the greedy
algorithm shown in previous section with A being replaced by
A'® and N being replaced by N”. Notice that X'* could be any
subset of the total table set X = {1,...,J}, and N* is less or
equal to V.

Then, let PC(X*® n® N¥), where n® denotes the current
grouping observed by the customer, be the algorithm that
generates the set of available tables given n® in the subgame.
The algorithm removes the tables that already occupied by
more than the expected number of customers in the equilibrium
grouping. This helps the customer remove those unreasonable
choices and correctly predict the final equilibrium grouping in
every subgame. The basic flow of this algorithm is shown as
follows 1) calculate the equilibrium grouping n® given the table
set X* and number of customers N7, 2) check if there is any
overly occupied table by comparing n® with n®. If so, 3) re-
move these tables from A'* and the customers occupying these
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tables from N?°, and go back to 1). Otherwise, the algorithm
terminates. The procedures of implementing PC(X*, n®, N*)
are described as follows:

1) Initialize: X° = X*, N* = N*

2) X' = x°,n® = EG(X' N"), X° = {z]z € X', n§ >

i N' = N = 37 e v a1

3) If X° # X, go back to step 2.

4) Output X°.

Now, we propose a method to construct a subgame perfect
Nash equilibrium. This equilibrium also satisfies (5). For each
customer #, his strategy in a subgame is

BEfe(nl/ 9) = arg U (Ri(ﬁ), n’,i',can(],) 7

(13)
where AHcond PC(X,n;,N), Nicand  — N _
Zme{’c’\){i)c’”*d i s and ni,cand EG(X‘i’Ca"d, ]V'z',cand).
The proposed best response BFE?**(n;,#) chooses the
table with the highest utility according to the predicted
equilibrium grouping n'°2?d and candidate table set
xbcend  The equilibrium grouping n'©2?d is obtained by
EG(xteand Nicand) where the candidate table set X*¢2"¢ is
derived by PC(X, n;, N). In Lemma 2, we show that the above
strategy results in the equilibrium grouping in any subgame.

Lemma 2: Given the available table set X°® =
PC(X.n* N), N° = N — 3 3\ ys ", the proposed
strategy shown in (13) leads to an equilibrium grouping
n* = EG(X?® N¥) over X'*.

Proof: We prove this by contradiction. Let n = (n;|j €
X'#) be the final grouping after all customers choose their ta-
bles according to (13). Suppose that n # n* = EG(X'*®, N*),
then there exists some tables j that n; > n7. Let table j be
the first table that exceeds n} in this sequential subgame. Since
nj > n;, there are at least n; + 1 customers choosing table ;.
Suppose the n} + 1-th customer choosing table j is customer «.
Letn; = (141,742, ..,n;.7) bethe current grouping observed
by customer ¢ before he chooses the table. Since customer ¢ is
the n’; + 1-th customer choosing table 7, we have n; ; = nj
Since table j is the first table exceeding n* after customer i’s
choice, we have n; , < niVe € X*.

According to the definition of PC(-), none of the tables
will be removed from candidates. Thus, X" = X* and
Nicand — N We have

max

, i, cand
TEXand po cplioan

ni,cand — EG(Xi’Cand, ]\ri,cand) :EG(XS, Ns) —n*. (14)

However, according to (13), the customer ¢ should not choose
table j since n; ; = n} = 'rL:l’c”'"d. This contradicts with our
assumption that customer i is the n7 + 1-th customer choosing
table 5. Thus, the strategy (13) should lead to the equilibrium
grouping n* = FG(X*, N*). [
Note that Lemma 3 also shows that the final grouping of the
sequential game should be n* = EG(X, N) if all customers
follow the proposed strategy in (13). In the following Lemma,
we show that PC(X*, n®, N*¥) removes the tables that are dom-
inated by other tables if all customers follow (13).
Lemma 3: Given a subgame with current grouping n®, if table
j & X% = PC(X,n®* N), then table j is never the best re-
sponse of the customer if all other customers follow (13).
Proof: Letn’ = EG(X, N), and n* be the final grouping.
We first show that for every table under the final grouping n*,
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there always exists a table providing a less or equal utility under
the grouping n’. According to Lemma 2, the final grouping n* is
an equilibrium grouping over X'? if all customers follow (13).
Additionally, n; = nj since no customers will choose table
Jj. Assuming that there exists a table & € X* with n), < nj.
Since n} = n3 > nf, we have Lwe ) e < Lpean(y) Mo
Therefore, 3k’ € X'* that n}, > nj},. Since n’ and n* are
equilibrium groupings over A, similar to (10), we have

U(Re(0), ny+1) > U(R(0),n5) > U(Riw (0), nly +1)
> U(Rye (8), mfy) > U(Ri(6),nf +1) (15)

The first and third inequalities are due to n}, < n) and
ny > nj,, and the second and fourth ones come from the
equilibrium grouping condition in (5). The equation is valid
only when all equalities hold. Thus, if n) < nj, Ik € X*
that U(Rk(0),n}) = U(Rw(F),n,.), which means that
we can always find a table k¥’ providing the same utility
as U(Ry(#),n}) under grouping n’. When n} > nj, we
have U(Ry(8),n}) > U(Rr(F),n}). Therefore, Vk € X%,
k" € X% that U(R(F),n}) > U(Rw (8).,n).).

Then, we show that table 7 is dominated by all other tables
under n*. Since table j is removed by PC(X,n®, N), we have
n% > n'.. Therefore, according the above discussion and the fact

J J
that n’ 1s an equilibrium grouping, we have Yk € A%,

U(Re(6),ni) > min U (Ru (6),n4)
>U (R;(0),n;+1) >U (R;(8),nj+1) . (16)

Since U(R;(#),n; + 1) is the highest utility that can be offered
by table j, it is dominated by all other tables in A® under the
final grouping n*. So, table 7 is never the best response of the
customer. |

Theorem 4: There always exists a subgame perfect Nash
equilibrium with the corresponding equilibrium grouping n*
satisfying (5) in a sequential Chinese restaurant game.

Proof: We would like to show that the proposed strategy
in (13) forms a Nash equilibrium. Suppose customer # chooses
table 7 in his round according to (13). Then, customer ¢’s utility
isu; = U(R;(#),n]) since based on Lemma 2, the equilibrium
grouping n* will be reached at the end.

Now we show that table j is indeed customer ¢’s best re-
sponse. Let’s assume that customer ¢ is the last customer, i.e,
1 = N, and chooses another table ;7' # j in his round, then his
utility becomes U(12;:(6), n}, + 1). However, according to (5),
we have

uj = U (Rj(0),n5) > U (Rye(8),m +1) . (17)

Thus, choosing table j is never worse than choosing table 7' for
customer V.

For the case that customer 4 is not the last customer, we as-
sume that he chooses table j instead of table j in his round.
Since all customers before customer ¢ follow (13), we have
N5 < n;‘-Vj € X. Otherwise, n* cannot be reached, which
contradicts with Lemma 2.

If n; ;v < n%, we have nyyq ;v < n;f,. In addition, we have

3
Nit1,5 = nij < njVj € A\ {4}, since other tables are not
chosen by customer i. Thus, X**1eemd = PC(X, njiq,N)
and N*°*"? — N According to Lemma 2, the final grouping

should be n* = FG(X, N). Thus, the new utility of customer i

becomes u; = U(R; (6),n}, ). However, according to (13), we
have
Uy = U (R,(H), nf)

J

max
2EX Ny <0

i (18)

Thus, choosing table ;' never gives customer i a higher
utility.

U (Ro(8),n)) > U (R;(8),n})

= arg ;

=u

If n;4 = n%, and the final grouping is
n’ = (n},nh,....n7). Since customer ¢ chooses table j° when
nijo = nh, wehave 0 > niy o = niyp +1 =0k + 1

Thus, we have

u; =U (RJ(Q)/WT) >U (Rjr(f}).ﬂj/ + 1) >U (Rj/(ﬁ),ﬂ,;»;)
=u},Vj' € X, (19)

where the first inequality comes from the equilibrium grouping
condition in (5), and the second inequality comes from the fact
that U (12, n) is decreasing over n and n/;, > n,+1. Thus, under
both cases, choosing table ;' is never better than choosing table
J. We conclude that {BE#¢(-)} in (13) forms a Nash equilib-
rium, where the grouping being the equilibrium grouping n*.

Finally, we show that the proposed strategy forms a Nash
equilibrium in every subgame. In Lemma 3, we show that if
the table j is removed by PC(X,n®, N), it is never the best
response of all remaining customers. Thus, we only need to
consider the remaining table candidates X'* = PC(X,n% N)
in the subgame. Then, with Lemma 2, we show that for every
possible subgame with corresponding X*, the equilibrium
grouping n* = EG(X*, N*) will be achieved at the end of
the subgame. Moreover, the above proof shows that if the
equilibrium grouping n® will be achieved at the end of the
subgame, BE?¢(-) is the best response function. Therefore, the
proposed strategy forms a Nash equilibrium in every subgame,
i.e., we have a subgame perfect Nash equilibrium. [ |

In the proof of Theorem 4, we observe that the sequential
game structure brings advantages for those customers making
decisions early. According to (13), customers who make deci-
sions early can choose the table providing the largest utility in
the equilibrium. When the number of customers choosing that
table reaches equilibrium number, the second best table will be
chosen until it is full again. For the last customer, he has no
choice but to choose the worst one.

V. IMPERFECT SIGNAL MODEL: HOW LEARNING EVOLVES

In Section IV, we have showed that in the sequential Chi-
nese restaurant game with perfect signal, customers choosing
first have the advantages for getting better tables and thus higher
utilities. However, such a conclusion may not be true when the
signals are not perfect. When there are uncertainties on the table
sizes, customers who arrive first may not choose the right ta-
bles, due to which their utilities may be lower. Instead, cus-
tomers who arrive later may eventually have better chances
to get better tables since they can collect more information to
make the right decisions. In other words, when signals are not
perfect, learning will occur and may result in higher utilities
for customers choosing later. Therefore, there is a trade-off be-
tween more choices when playing first and more accurate sig-
nals when playing later. In this section, we would like to study
this trade-off by discussing the imperfect signal model.
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In the imperfect signal model, we assume that the system state
6 € ©®© = {1,2,..., L} is unknown to all N customers. The
sizes of .J tables can be expressed as functions of #, which are
denoted as R1(f), R2(f), ..., R7(0#). The prior probability of ¢,
g0 — {g071, 90,25 - - - ,_1]07‘]} with go,1 = PT‘(H = l), is assumed
to be known by all customers. Moreover, each customer receives
a private signal s; € S, which follows a p.d.f. f(s|#). Here,
we assume f(s|#) is public information to all customers. When
conditioning on the system state 6, the signals received by the
customers are uncorrelated.

In Chinese restaurant game with imperfect signal model, the
customers make decisions sequentially with the decision orders
being their numbers. After a customer ¢ made his decision, he
cannot change his mind in any subsequent time and his decision
and signal are revealed to all other customers. Since signals are
revealed sequentially, the customers who make decisions later
can collect more information for better estimations of the system
state. We assume customers are fully rational, which means they
should apply Bayesian learning rule in their decision making
process [3]. Therefore, when a new signal is revealed, all cus-
tomers follow the Bayesian rule to update their believes based
on their current believes. Derived from (3), we have the fol-
lowing belief updating function

g1 = gi-1if(sil0 =1)
N ZwE(—) gifl,wf(s‘i‘e = w)

(20)

A. Best Response of Customers

Since the customers are rational, they will choose the action
to maximize their own expected utility conditioning on the in-
formation they collect. Let n; = (n;1,742,...,7;4) be the
current grouping observed by customer i before he chooses the
table, where n; ; is the number of customers choosing table j
before customer i. Then, leth; = {s1, s2,..., s,_1} be the his-
tory of revealed signals before customer ¢. In such a case, the
best response of customer ¢ can be written as

BE’i(ni, hi, Si) —=arg max E [U (RJ(H) 77,:,‘) ‘Ili, hi, S,L‘] . (21)
J

From (21), we can see that when estimating the expected
utility in the best response function, there are two key terms
needed to be estimated by the customer: the system state 6
and the final grouping n = (ny,n2,...,ns). The system
state # is estimated using the concept of belief denoted as
g ={9i1.9i2.--..9.0} withg;; = Pr(8 = I|hy, s;). Since
the information on the system state # in n; is fully revealed
by h;, given hy, g; is independent with n;. Therefore, given
the customer’s belief g;, the expected utility of customer :
choosing table 7 becomes

E[U (R;(0),n;) 0, hy, 85,05 = ]

= Z i wE [U (Rj(w),n;) ng, hy, 85,0, =5,0=w]. (22)
wes

Note that the decisions of customers ¢ + 1,..., /N are un-
known to customer ¢ when customer ¢ makes the decision.
Therefore, a close-form solution to (22) is generally impossible
and impractical. In this paper, we purpose a recursive approach
to compute the expected utility.
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B. Recursive Form of Best Response

Let BF;11(njy1,hit1, 8:11) be the best response function
of customer i+ 1. Then, according to BE; 1 (141, hit1, $i41),
the signal space & can be partitioned into S;111,...,S;11,7
subspaces with

Siy1; (i1, higq)
:{S SES, BEi—i—l (Ili_|_]_,hi_i_17 ‘:):J} VJ € {1/ ey J}

Based on (23), we can see that, given n;1; and h;;1,
BEi+1(ni+17 hi+1, 3i+1) = j if and only if Sit1 € Si+1,j-
Therefore, the decision of customer ¢ + 1 can be predicted
according to the signal distribution f(s|#) given by

(23)

F(s)ds.

8€8i11,5(niy1,hipr)

Pr(zip1=jniy1, hip)= (24)

Let us define m;_; as the number of customers choosing table

7 after customer ¢ (including customer ¢ himself). Then, we have

n; = n;; + m;;, where n; denotes the final number of cus-

tomers choosing table j at the end of the game. Moreover, ac-
cording to the definition of m; ;, we have

m; ;= { LT ML B (25)

i1, else.

The recursive relation of 7n; ; in (25) will be used in the fol-
lowing to get the recursive form of the best response function.
We first derive the recursive form of the distribution of m;; ;, i.e.,
Pr(m; ; = X|n, hy, s;, 2;, 0) can be expressed as a function of
Pr(miy1; = X1 hipa, sip1, 200 = 5,0 = 1),V € O,
0 < 4 < J,asin (26) (see equation at bottom of next page)
where h; 1 and n;;1 can be obtained using

hi+1 = {hi,si} and njq1 = (77,i+171, . .,77@_;,_17!]), (29)

with
ife; =k,

otherwise. (30)

n; g+ 1,
itk = 9 . A
i,k

Based on (26), Pr(m; ; = X|n;, hy, s;,2;,68 =) can be re-
cursively calculated. Therefore, we can calculate the expected
utility E[U(R;(#),n;)|n;, hi, s;] by (27). Finally, the best re-
sponse function of customer 7 can be derived by (28).

With the recursive form, the best response function of all cus-
tomers can be obtained using backward induction. The best re-
sponse function of the last customer N can be found as

BENN, hy, sy)=argmax E gnau B0, nn i+ . (31)
i
le®

Note that Pr(mx ; = X|nn, hn, swv, 2, 8) can be easily de-
rived as follows:

1, ifoy = Js
0, otherwise.

P'r(mN,j = 1|IIN7 hN, SN,IN, 9) = { (32)

As of the convergence of the recursive best response, which
is based on the traditional backward induction technique, it defi-
nitely converges since this game has finite players. As a Chinese
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restaurant game with N players, only N recursive calls are re-
quired to derive all the best responses.

VI. SIMULATION RESULTS

In this section, we verify the proposed recursive best response
and corresponding equilibrium. We simulate a Chinese restau-
rant with two tables {1, 2} and two possible states ¢ € {1,2}.
When 6 = 1, the size of table 1 is R1(1) = 100 and the size of
table 2 is I22(1) = 1007, where r is the ratio of table sizes. When
8 =2, R1(2) = 100r and R5(2) = 100. The state is randomly
chosen with Pr(# = 1) = Pr(f# = 2) = 0.5. The number of
customers is fixed. Each customer receives a randomly gener-
ated signal s; at the beginning of the simulation. The signal dis-
tribution f(s|6) is given by Pr(s = 1| = 1) = Pr(s = 2|0 =
2)=p,Pr(s=2/=1)= Pr(s=1/0 =2) =1 — p, where
p > 0.5 can be regarded as the quality of signals. When the
signal quality p is closer to 1, the signal is more likely to reflect
the true state §. With the signals, customers make their decisions
sequentially. After the i-th customer makes his choice, he re-
veals his decision and signal to other customers. The game ends
after the last customer made his decision. Then, the utility of the
customer ¢ choosing table j is given by U(R,(8),n;) = %,
where n; is the number of customers choosing table j in the
end.

A. Advantage of Playing Positions vs. Signal Quality

We first investigate how the decision order and quality of sig-
nals affect the utility of customers. We fix the size of one table as
100. The size of the other table is r x 100, where 7 is the ratio of
the table sizes. In the simulations, we assume the ratio+ € [0, 1].
When the ratio » = 1, two tables are identical, but the utility of
choosing each table may be different since we may have odd
customers. When r = 0, one table has a size of 0, which means
a customer has a positive utility only when he chooses the cor-
rect table.

Due to the complicated game structure in Chinese restaurant
game, the effect of signal quality and table size ratio is gener-
ally non-linear. As shown in Fig. 1(a), when the number of cus-

tomers is 5, customer 5 has the largest utility when the signal
quality is high and the table size ratio is low, while customer 1
has the largest utility when the signal quality is low and the table
size ratio is high. This phenomenon can be explained as follows.
When the table size ratio is lower, all customers desire the larger
table since even all of them select the larger one, each of them
still have a utility larger than choosing the smaller one. In such
a case, customers who choose late would have advantages since
they have collected more signals and have a higher probability
to identify the large table. Nevertheless, when the signal quality
is low, even the last customer cannot form a strong belief on
the true state. In such a case, the expected size of each table
becomes less significantly, and customers’ decisions rely more
on the negative network externality effect, i.e., how crowded of
each table. In such a case, the first customer has the advantage
to choose the table with fewer customers in expectation.

However, we observe that in some cases, customer 3 becomes
the one with largest utility. The reasons behind this phenomenon
is as follows. In these cases, the expected number of customers
in the larger table is 3, and this table provides the customers
a larger utility at the equilibrium. Therefore, customers would
try to identify this table and choose it according to their own
believes. Since customer 3 collects more signals than customers
1 and 2, he is more likely to identify the correct table. Moreover,
since he is the third customer, this table is always available to
him. Therefore, customer 3 has the largest expected utility in
these cases.

Note that the expected table size is determined by both the
signal quality and the table size ratio. Generally, when the signal
quality is low, a customer is less likely to construct a strong be-
lief on the true state, i.e., the expected table sizes of both tables
are similar. This suggests that a lower signal quality has a similar
effect on the expected table size as a higher table size ratio. Our
arguments are supported by the concentric-like structure shown
in Fig. 1(a). The same arguments can be applied to the 10-cus-
tomer scheme, which is shown in Fig. 1(b). We can observe the
similar concentric-like structure. Additionally, we observe that
when the table size ratio increases, the order of customer who
has the largest utility in the peaks decreases from 10 to 5. This is

Pr(m; ; = X|ng, by, s, 05,0 =1)
Pr (mi+1,j =X - 1|Ili, hi, 8iy Ty, 0= l) s
Pr (mi+1,j IX|1’1i? hi, Sis Ty H:Z) s

Ti =7,

TiF# 7,

——

_ Xuen fses,l+1,u(ni+1,hi+1) Pr(miy1;=X-1nit1, hipr, i =s. 21 =u,0 = 1) [(s|0 = Dds, =z; =, 26)
ZuE{Lm,J} -/sesm,“ (mif1.hip1) Pr(miy1;=Xnj11, iy, sip1 =8, w1 =u,0=1) f(s]0=1)ds, T
E[U (R;(8),n;) |nj, by, s;]
Noit1
=3 > guPr(miy =l by sias = .00 = DU (B0, ni; + ). @7)
lce@ x»=0
BEi(ni7hiasi)
N —it1
= arg IlngZ Z g Prim;; = zng, by, s, = 5,60 = DU (R;(1), nij + ). (28)

7

le® x=0
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Fig. 1. The effect of different table size ratio and signal quality. (a) 5 customers;
(b) 10 customers.

consistent with our arguments since when the table size ratio in-
creases, the equilibrium number of customers in the large table
decreases from 10 to 5. This also explains why customer 1 does
not have the largest utility when the table size ratio is high. In
this case, the equilibrium number of customers in the large table
is 5, and the large table provides higher utilities to customers in
the equilibrium. Since customer 5 can collect more signals than
previous customers, he has better knowledge on the table size
than customer 1 to 4. Moreover, since customer 5 is the fifth one
to choose the table, he always has the opportunity to choose the
large table. In such a case, customer 5 has the largest expected
utility when the table size ratio is high.

B. Price of Anarchy

We then investigate the efficiency of the equilibrium grouping
in Chinese restaurant game using price of anarchy, which is a
popular measurement in game theory on the degradation of the
system efficiency due to rational behaviors of players. Basically,
the price of anarchy in a game-theoretic system is defined as
the ratio of the social welfare under worst equilibrium in the
system to the one under the centralized-optimal solution. There-
fore, when the price of anarchy is close or equal to 1, the rational
behaviors generally do not incur efficiency loss to the system.
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Fig. 2. Price of anarchy with different utility functions. (a) U(R, n) = %; (b)
U(R,n) = log (%(J)

.

We first define the social welfare function W (B) in Chinese
restaurant game as the sum of customers expected utilities, that
is, W(B) = [E[Ei\:1 U(R.,(8),ny,)B], where B denotes the
strategies of customers applied in Chinese restaurant game. Let
BY be the universal set of all possible strategies and B¢ be the
set of all equilibria in Chinese restaurant game, then the price
of anarchy is defined as follows:

maxgepu W(B)
ming e W(B’)

PoA = (33)

We simulate a 5-customer restaurant with two tables and two
states. All other settings are the same as the ones in Section IV-A
except the utility function. In this simulation, we a;&ply two util-

ities functions: U(R.n) = £ and U(R, n) = log H%) . The
former represents the case that the resource is equally shared,
while the latter roughly represents the SINR-throughput in
wireless networks. The centralized-optimal solution is found
through exhaustive search. The prices of anarchy under all
combinations of signal quality and table size ratio are shown in
Fig. 2.

As shown in Fig. 2(a), when the utility function is set as %,
the price of anarchy is equal to one under most combinations
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Fig. 3. Average utility of customers in resource pool scenario when r» = (0.4. (a) 5 customers; (b) 3 customers; (c) best response when N = 3.

except when the table size ratio is close to 0. The reason that
the price of anarchy is larger than 1 at these points is that the
smaller table is so small that all customers have a higher utility
even sharing the larger one. In such cases, the small table will
not be chosen, and the resource provided by this table is lost due
to the rational behaviors of customers. For the sgenario that the
utility function is set as U(R,n) = log ( 7355 ), the price of
anarchy never exceeds 1.06 (Fig. 2(b)). This is because in such
a scenario, a proper balance in loadings on tables will greatly
increase the social welfare, which is automatically achieved by
the rational choices of customers due to their concerns on neg-
ative network externality. Therefore, the rational behaviors in
Chinese restaurant game generally does not harm much on the
system efficiency, and the equilibrium we found is efficient even
compared with the centralized-optimal solution.

C. Case Study.: Resource Pool and Availability Scenarios

Finally we discuss two specific scenarios: the resource pool
scenario with ~ = 0.4 and available/unavailable scenarios with
r = 0. In resource pool scenario, the table size of the second
table is 40. In available/unavailable scenario, the second table
size is 0, which means that a customer has positive utility only
when he chooses the right table. For both scenarios, we examine
the schemes with N = 3 and N = 5.

From Fig. 3, we can see that in the resource pool scenario
with » = 0.4, customer 1 on average has significant higher
utility, which is consistent with the result in Fig. 1(a). Using
5-customer scheme shown in Fig. 3(a) as an example, the ad-
vantage of playing first becomes significant when signal quality
is very low (p < 0.6), or the signal quality is high (p > 0.7).
We also find that customer 5 has the lowest average utility for
most signal quality p. We may have a clearer view on this in
the 3-customer scheme. We list the best response of customers
given the received signals in Fig. 3(c). We observe that when
signal quality p is large, both customer 1 and 2 follow the sig-
nals they received to choose the tables. However, customer 3
does not follows his signal if the first two customers choose the
same table. Instead, customer 3 will choose the table that is still
empty. In this case, although customer 3 may know which table
is larger, he does not choose that table if it has been occupied
by the first two customers. The network externality effect dom-
inates the learning advantage in this case.

However, when p is low, the best response of customer 1 is
opposite, i.e., he will choose the table that is indicated as the
smaller one by the signal he received. At the first glance, the

best response of customer 1 seems to be unreasonable. However,
such a strategy is indeed customer 1’s best response considering
the expected equilibrium in this case. According to Theorem
4, if perfect signals (p = 1) are given, the large table should
be chosen by customer 1 and 2 since the utility of large table,
which is 2% = 50, is larger than the that of the small table,
which is 4T = 40, in the equilibrium. However, when the im-
perfect signals are given, customers choose the tables based on
the expected table sizes. When signal quality is low, the uncer-
tainty on the table size is large, which leads to similar expected
table sizes for both tables. In such a case, customer 1 favors the
smaller table because it can provide a higher expected utility,
compared with sharing with another customer in the larger table.

In the available/unavailable scenario, as shown in Fig. 4, the
advantage of customer 1 in playing first becomes less signif-
icant. Using 5-customer scheme shown in Fig. 4(a) as an ex-
ample, when signal quality p is larger than 0.6, customer 5
has the largest average utility and customer 1 has smallest av-
erage utility. Such a phenomenon is because customers should
try their best on identifying the available table when » = 0.
Learning from previous signals gives the later customers a sig-
nificant advantage in this case.

Nevertheless, we observe that the best responses of later cus-
tomers are not necessary always choosing the table that is more
likely to be available. We use the 3-customer as an illustrative
example. We list the best response of all customers given the
received signals in Fig. 4(c). When the signal quality is pretty
low (p = 0.55), we have the same best response as the one
in resource pool scenario, where the network externality effect
still plays a significant role. Using (s1, sz, s3) = (2,2,1) as an
example, even customer 3 finds that table 2 is more likely to be
available, his best response is still choosing table 1 since table
2 is already chosen by both customer 1 and 2, and the expected
utility of choosing table 1 with only himselfis higher than that of
choosing table 2 with other two customers. As the signal quality
p becomes high, e.g., p = 0.9, customer 3 will choose the table
according to all signals s1, $2, 83 he collected since the belief
constructed by the signals is now strong enough to overcome
the loss in the network externality effect.

VII. APPLICATION: COOPERATIVE SPECTRUM ACCESS IN
COGNITIVE RADIO NETWORKS

We would like to illustrate an important application of Chi-
nese restaurant game: cooperative spectrum access in cognitive
radio networks. Traditional dynamic spectrum access methods
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Fig. 5. Sequential cooperative spectrum sensing and accessing. (a) Channel sensing; (b) channel selection and signal broadcast; (c) data transmission.

focus on identifying available spectrum through spectrum
sensing. Cooperative spectrum sensing is a potential scheme to
enhance the accuracy and efficiency of detecting available spec-
trum [29]-[31]. In cooperative spectrum sensing, the sensing
results from the secondary users are shared by all members
within the same or neighboring networks. These secondary
users then use the collected results to make spectrum access
decisions collaboratively or individually. If the sensing results
are independent from each other, the cooperative spectrum
sensing can significantly increase the accuracy of detecting
the primary user’s activity. Secondary users can learn from
others’ sensing results to improve their knowledge on the pri-
mary user’s activity. After the available spectrum is detected,
secondary users need to share the spectrum following some
predetermined access policy. In general, the more secondary
users access the same channel, the less available access time
for each of them, i.e., a negative network externality exists in
this problem. Therefore, before making decision on spectrum
access, a secondary user should estimate both the primary
user’s activity and the possible number of secondary users
accessing the same spectrum.

A. System Model

We consider a cognitive radio system with .J channels, N
secondary transmitter-receiver pairs, and one primary user. We
assume that the spectrum access behavior of secondary users
is organized by an access point through a control channel.
Through the organization, the secondary users can synchronize
their channel sensing and selection time. Suppose that the
primary user is always active and transmitting some data on
one of the channels. In addition, the primary user’s access time
is slotted. At each time slot, each channel has equal probability
of % to be selected by the primary user for transmission. The
secondary users’ activities are shown in Fig. 5. At the beginning
of each time slot, secondary users (transmitters) individually

perform sensing on all channels 1 ~ J. Then, they follow a
predefined order to sequentially determine which channel they
are going to access in this time slot. Without loss of generality,
we assume they follow the same order as their indices. When
making a decision, a secondary user ¢ reports his decision and
the sensing result to the access point through a pre-allocated
control channel. At the same time, all secondary users also
receive this report by overhearing. After all secondary users
have made their decisions, the access point announces the
access policy of each channel through the control channel:
secondary users choosing the same channel equally share the
slot time. However, if the channel is occupied by the primary
user, their transmission will fail due to the interference from
primary user’s transmission.

Such a cognitive radio system can be modeled as a sequential
Chinese restaurant game. Let H; be the hypothesis that channel
7 is occupied by the primary user. Then, let the sensing results of
secondary user¢ € {1,2,..., N} onchannel § € {1,2,...,J}
be s, ;. We use a simple binary model on the sensing result in
this example, where s, ; = 1 if the secondary user detected
some activities on channel 7 and s; ; = 0 if no activity is de-
tected on channel j. For secondary user 7, his own sensing re-
sults are denoted as s; = (s;.1,8i2,...,5;.). In addition, the
results he collected from the reports of previous users are de-
noted as hy = {s1,82,...8i_1}.

We define the belief of a secondary user ¢ on the occupa-
tion of channels as gi = {gi1,9i2,...,9: 7}, wWhere g; ; =
Pr(H,|h;,s;). Let the probability of false alarm and miss de-
tection of the sensing technique on a single channel be p; and
Pm,, respectively. The probability of s; conditioning on H; is
given by

Pr(silH,)

:p};SLj(l_pm)Sl'j )1781.’}“-

II

ke{l,...JN\{s}

Py (L=ps (34)
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Thus, we have the following belief updating rule

gii = gi—1,;Pr(si|H;)
i = .
i1 g1k PrisilHy)

With this rule, the belief of secondary user 7 is updated when a
new sensing result is reported to the access point. The available
access time of a channel j within a slot is its slot time, which
is denoted as 7. However, if the channel occupied by primary
user, its access time becomes 0. Thus, we define the access time
of channel j as

(35)

0, j=k.

R (Hr) = {T, otherwise. (36)

Then, let z; be secondary user ¢’s choice on the channels, and
n; be the number of secondary users choosing channel j. We
define the utility of a secondary user ¢ as

Qe B (6)

Ny,

21

u; = U(x;) = (37)

where § € {H;} is the hypothesis to be true and @, is
the channel quality of channel z;. Here we assume that the
secondary users are close to each other and share the similar
channel conditions that are mainly determined by the external
interference and background noise. The differences in channel
gains are mainly influenced by the frequency or time-depen-
dent external interference. If the channel has higher quality, the
secondary users choosing the channel have higher data rates,
and thus higher utility. Then, the best response of secondary
user ¢ is as follows,

BE.,;(I’li, hi, Si)
Q.T

v

|ni7hi75i7Hk: (38)

>

gi,k:E|:
kef1,2,...,. T\ {«}

=arg max
T

This best response function can be solved recursively through
the recursive equations in (26) and (28).

B. Simulation Results

We simulate a cognitive radio network with 3 channels, 1
primary user, and 7 secondary transmitter-receiver pairs. When
the channel is not occupied by the primary user, the available
access time for secondary users in one time slot is 100 ms.
Secondary users (transmitters) sense the primary user’s activity
in all three channels at the beginning of the time slot. We as-
sume that the primary user has equal probability to occupy one
of three channels. Conditioning on the primary user’s occupa-
tion of the channel, the probabilities of miss detection and false
alarm in sensing one channel are 0.1. The channel quality factor
of channel 1 is ;1 = 1, while channel 2 and 3 are 1 — d and
1 —2d. The d is the degraded factor, which is within [5%, 50%]
in the simulations.

We compare our best response strategy in (28) with the fol-
lowing four strategies: random, signal, learning, and myopic
strategies. In the random strategy, customers choose their strate-
gies randomly and uniformly, i.e., all .J tables have equal proba-
bility of % to be chosen under the random strategy. In the signal
strategy, customers make their decisions purely based on their

own signal. Information from other customers, including the re-
vealed signals and their choices on tables, is ignored. The ob-
jective of signal strategy is to choose the largest expected table
size conditioning on his signal given by

2597 = arg maxz Pr(0 = lsi, g0)Q.R.(1).
v icoe

(39)

The learning strategy is an extension of the signal strategy.
Under this strategy, the customer learns the system state not
only by his own signal but also by the signals revealed by the
previous customers. Therefore, the learning strategy can be ob-
tained as

:Ir,lie"a""L = arg max Z 9i1QuRe(l), (40)
T

where g;; = Pr(f = lhy,s;, go) is the belief of the customer
on the state.

Finally, the myopic strategy simulates the behavior of a my-
opic player. The objective of a customer under myopic strategy
is maximizing his current utility, i.e., the customer makes the
decision according to his own signal, all revealed signals, and
the current grouping n; as follows,

Qu (1)

. 41
Nig+1 “0

myopic __ y
T, = arg nli}x gil
e

From (41), we can see that the myopic strategy is similar to
the proposed best response strategy except the Bayesian predic-
tion of the subsequent customers’ decisions. The performance
of all these four strategies will be evaluated in all simulations
in this application . They will be treated as the baseline of the
system performance without fully rational behaviors of cus-
tomers.

The simulation results are shown in Fig. 6. From
Fig. 6(a), 6(b), and 6(d), we can see that secondary users
have different utilities under different orders and schemes.
For both the myopic and the proposed best response schemes,
secondary user 3 has a larger utility than secondary user 1 when
the degraded factor is low. This is because secondary user 3 has
the advantages in collecting more signals than secondary 1 to
identify the channel occupied by the primary user. Moreover,
the loadings of the other two channels are still far from their
expected equilibrium loadings since only two secondary users
have made choices. Therefore, secondary user 3 has a larger
utility than secondary user 1. Nevertheless, when the degraded
factor is high, we can see that secondary user 1’s utility is larger
than that of secondary user 3. This is because when the de-
graded factor increases, the quality difference among channels
increases. In such a case, even secondary user 3 successfully
identify the occupied channel, and the channel that offers a
higher utility in the equilibrium is usually the one with fewer
number of secondary users. The expected number of secondary
users accessing such a channel is generally 2 or even 1, and
secondary user 3 can no longer freely choose those channels.
For secondary user 7, he usually has no choice since there are
six secondary users making decisions before him. Therefore,
he has the smallest utility.

Generally, the myopic scheme provides an equal or lower
utility than the best response scheme for secondary users
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Fig. 6. Spectrum accessing in cognitive radio network under different schemes. (a) Secondary user 1; (b) secondary user 3; (c) secondary user 4; (d) secondary

user 7; (e) average utility; (f) SUs interfering PU.

making decisions early, such as secondary user 1, since sec-
ondary users in the myopic scheme do not predict the decisions
of subsequent users. However, some secondary users eventu-
ally benefit from the mistakes made by early secondary users.
We can see from Fig. 6(b) and Fig. 6(c) that for some cases,
customer 3 and 4 has a higher utility under the myopic scheme
than under the best response scheme due to the mistakes made
by customer 1 and 2. We can also see from Fig. 6(e) that both
best response and myopic schemes provides the same average
utilities of all secondary users. In such a case, the utility loss
of some secondary users in the myopic scheme will lead to
the utility increase of some other secondary users. For random
and signal schemes, there is no difference among the average
utilities of secondary user 1, 3, and 7 since secondary users do
not learn from other agents’ actions and signals under these two
schemes. For the learning scheme, we can see that secondary
user 1 has a significantly larger utility than secondary user 3
and 7. This is because in the learning scheme, secondary users
do not take the negative network externality into account when
making decisions on the channel selection. Since secondary
users who made decisions later are more likely to identify the
primary user’s activity, they are more likely to choose the same
channels, and their utilities are degraded due to the negative
network externality.

Letus take a deeper look at the average utility of all secondary
users shown in Fig. 6(e). On one hand, we can see that both best
response and myopic schemes achieve highest average utilities
of all secondary users. The network externality effects in spec-
trum access force strategic secondary users to access different
channels instead of accessing the same high quality channels.
On the other hand, learning and signal schemes lead to poor av-
erage utilities since they do not consider the network externality
in their decision processes. All secondary users tend to access

the same available high quality channel, and therefore the spec-
trum resource in other available channels is wasted. This also
explains the phenomenon that learning scheme leads to poorer
performance than signal scheme. Under the learning scheme,
secondary users are more likely to reach a consensus on the pri-
mary user’s activity and make the same choice on the channels,
which degrades the overall system performance.

Finally, we show the number of secondary users causing in-
terference to the primary user in Fig. 6(f). We can see that those
schemes involving learning, which are best response, myopic,
and learning schemes, have low interference to the primary user.
Secondary users who learn from others’ signals efficiently avoid
the channel occupied by the primary user.

VIII. CONCLUSION

In this paper, we proposed a new game, called sequential
Chinese restaurant game, by combining the strategic game-the-
oretic analysis and non-strategic machine learning technique.
The proposed Chinese restaurant game can provide a new gen-
eral framework for analyzing the strategic learning and pre-
dicting behaviors of rational agents in a social network with
negative network externality. By conducting the analysis on the
proposed game, we derived the optimal strategy for each agent
and provided a recursive method to achieve the equilibrium.
The tradeoff between two contradictory advantages, which are
making decisions earlier for choosing better tables and making
decisions later for learning more accurate believes, is discussed
through simulations. We found that both the signal quality of
the unknown system state and the table size ratio affect the ex-
pected utilities of customers with different decision orders. Gen-
erally, when the signal quality is low and the table size ratio is
high, the advantage of playing first dominates the benefit from
learning. On the contrary, when the signal quality is high and
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the table size ratio is low, the advantage of playing later for
better knowledge on the true state increases the expected utility
of later agents. Our simulations also showed that the price of an-
archy under Chinese restaurant game is close to one, which sug-
gests that the efficient loss due to the rational behaviors of cus-
tomers is close to zero. The small price of anarchy is achieved
by the loading balance among tables, which is automatically
achieved in Chinese restaurant game. Finally, we illustrated a
specific application of Chinese restaurant game in wireless net-
working: the cooperative spectrum access problem in cognitive
radio networks. We showed that the overall channel utilization
can be improved by taking the negative network externality into
account in secondary users’ decision process. The interference
from secondary users to the primary user can also be reduced
through learning from the sensing results of others.

REFERENCES

[1] V.Balaand S. Goyal, “Learning from neighbours,” Rev. Econ. Studies,
vol. 65, no. 3, p. 595, 1998.

[2] B. Golub and M. O. Jackson, “Naive learning in social networks and
the wisdom of crowds,” Amer. Econom. J.: Microeconomics, vol. 2,
no. 1, pp. 112-149, 2010.

[3] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” Rev. Econom. Studies, vol. 78, no. 4, pp.
1201-1236, 2011.

[4] D. Acemoglu and A. Ozdaglar, “Opinion dynamics and learning in so-
cial networks,” Dyn. Games Appl., vol. 1, pp. 3-49, 2011.

[5] R. W. Cooper, Coordination Games: Complementarities and Macro-
economics. Cambridge, U.K.: Cambridge Univ. Press, 1999.

[6] J. Wit, “Social learning in a common interest voting game,” Games
Econ. Behav., vol. 26, no. 1, pp. 131-156, 1999.

[7] M. Battaglini, “Sequential voting with abstention,” Games Econ.
Behav., vol. 51, no. 2, pp. 445463, 2005.

[8] S. Nageeb Ali and N. Kartik, Observational Learning With Collective
Preferences. Manuscript. New York: Columbia Univ., 2010.

[9] D. Gale, “Dynamic coordination games,” Econ. Theory, vol. 5, pp.
1-18, 1995.

[10] A. Dasgupta, “Social learning with payoff complementari-
ties,” Working Paper, 2000 [Online]. Available: http:/per-
sonal.lse.ac.uk/DASGUPT2/research.html

[11] A. Dasgupta, “Coordination and delay in global games,” J. Econ.
Theory, vol. 134, no. 1, pp. 195-225, 2007.

[12] S. Choi, D. Gale, S. Kariv, and T. Palfrey, “Network architecture,
salience and coordination,” Games Econ. Behav., vol. 73, no. 1, pp.
76-90, 2011.

[13] M. L. Katz and C. Shapiro, “Technology adoption in the presence of
network externalities,” J. Politic. Econ., pp. 822—841, 1986.

[14] W.H. Sandholm, “Negative externalities and evolutionary implemen-
tation,” Rev. Econ. Studies, vol. 72, no. 3, pp. 885-915, 2005.

[15] G. Fagiolo, “Endogenous neighborhood formation in a local coordina-
tion model with negative network externalities,” J. Econ. Dyn. Control,
vol. 29, no. 1-2, pp. 297-319, 2005.

[16] S.-J.Kim and G. B. Giannakis, “Optimal resource allocation for MIMO
ad hoc cognitive radio networks,” IEEE Trans. Inf. Theory, vol. 57, no.
S, pp- 3117-3131, May 2011.

[17] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997,
ISBN 0070428077

[18] D. Aldous, I. Ibragimov, J. Jacod, and D. Aldous, “Exchangeability and
related topics,” in Lecture Notes in Mathematics. Berlin, Germany:
Springer, 1985, vol. 1117, pp. 1-198.

[19] J. Pitman, “Exchangeable and partially exchangeable random parti-
tions,” Probab. Theory Related Fields, vol. 102, no. 2, pp. 145-158,
1995.

[20] C.-Y. Wang, Y. Chen, and K. J. R. Liu, “Chinese restaurant game,”
IEEE Signal Process. Lett., vol. 19, no. 12, pp. 898-901, 2012.

[21] H. Carlsson and E. Van Damme, “Global games and equilibrium selec-
tion,” Econometrica: J. Econometric Soc., pp. 989—1018, 1993.

[22] S. Morris and H. Shin, “Global games: Theory and applications,” pre-
sented at the Cowles Foundation Discussion, 2001, Paper No. 1275R.

[23] G. M. Angeletos and I. Werning, “Crises and prices: Information aggre-
gation, multiplicity, and volatility,” Amer. Econ. Rev., pp. 1720-1736,
2006.

[24] V. Krishnamurthy, “Decentralized activation in sensor net-
works—Global games and adaptive filtering games,” Digit. Signal
Process., vol. 21, no. 5, pp. 638-647, 2011.

[25] V. Krishnamurthy, “Decentralized spectrum access amongst cognitive
radios: An interacting multivariate global game-theoretic approach,”
IEEE Trans. Signal Process., vol. 57,no. 10, pp. 3999-4013, Oct. 2009.

[26] G. M. Angeletos, C. Hellwig, and A. Pavan, “Signaling in a global
game: Coordination and policy traps,” J. Pol. Econ., vol. 114, no. 3,
pp. 452-484, 2006.

[27] G. M. Angeletos, C. Hellwig, and A. Pavan, “Dynamic global games
of regime change: Learning, multiplicity, and the timing of attacks,”
Econometrica, vol. 75, no. 3, pp. 711-756, 2007.

[28] J.S. Costain, “A herding perspective on global games and multiplicity,”
BE J. Theoretic. Econ., vol. 7, no. 1, p. 22, 2007.

[29] S. M. Mishra, A. Sahai, and R. W. Brodersen, “Cooperative sensing
among cognitive radios,” in Proc. IEEE Int. Conf. Commun., 2006, vol.
4, pp. 1658-1663.

[30] B. Wang, K. J. R. Liu, and T. C. Clancy, “Evolutionary cooperative
spectrum sensing game: How to collaborate?,” IEEE Trans. Commun.,
vol. 58, no. 3, pp. 890-900, 2010.

[31] K. J. R. Liu and B. Wang, Cognitive Radio Networking and Security:
A Game-theoretic View. Cambridge, U.K.: Cambridge Univ. Press,
2010.

Chih-Yu Wang (S’97) received the B.S. degree in
electrical engineering from the National Taiwan Uni-
versity, Taipei, Taiwan. in 2007.

He has been a visiting student in the University
of Maryland, College Park, in 2011. He is currently
working toward the Ph.D. degree in the Graduate
Institute of Communication Engineering, National
Taiwan University. His research interests mainly are
applications of game theory in wireless networking
and social networking.

Yan Chen (S’06-M’11) received the Bachelor’s
degree from the University of Science and Tech-
nology of China in 2004, the M.Phil. degree from the
Hong Kong University of Science and Technology
(HKUST) in 2007, and the Ph.D. degree from the
University of Maryland, College Park, in 2011.

He is currently a Research Associate in the Depart-
ment of Electrical and Computer Engineering at the
University of Maryland, College Park. His current re-
search interests are in social learning and networking,
smart grid, cloud computing, crowd sourcing, net-
work economics, multimedia signal processing, and communication.

Dr. Chen received the University of Maryland Future Faculty Fellowship in
2010, the Chinese Government Award for outstanding students abroad in 2011,
and the University of Maryland ECE Distinguished Dissertation Fellowship
Honorable Mention in 2011, and was the Finalist of the A. James Clark School
of Engineering Dean’s Doctoral Research Award in 2011.

K. J. Ray Liu (F’03) received the B.S. degree
from the National Taiwan University in 1983 and
the Ph.D. degree from the University of California,
Los Angeles (UCLA), in 1990, both in electrical
engineering.

He was named a Distinguished Scholar-Teacher
of University of Maryland, College Park, in 2007,
where he is the Christine Kim Eminent Professor
of Information Technology. He leads the Maryland
Signals and Information Group, conducting research
encompassing broad areas of signal processing and
communications with recent focus on cooperative communications, cognitive
networking, social learning and networks, and information forensics and
security.

Dr. Liu is the recipient of numerous honors and awards, including the IEEE
Signal Processing Society Technical Achievement Award and Distinguished
Lecturer. He also received various teaching and research recognitions from the
University of Maryland, including the university-level Invention of the Year
Award; and the Poole and Kent Senior Faculty Teaching Award and Outstanding
Faculty Research Award, both from the A. James Clark School of Engineering.
An ISI Highly Cited Author, he is a Fellow of AAAS. He is President of the
IEEE Signal Processing Society, where he has served as Vice-President Publi-
cations and Board of Governor. He was the Editor-in-Chief of the /EEE Signal
Processing Magazine and the founding Editor-in-Chief of the EURASIP Journal
on Advances in Signal Processing.



