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Abstract— Analog network coding (ANC) has been widely
used in wireless uplink to improve throughput and provide
spatial diversity. However, the receiver has to estimate the
channel coefficients of all users to perform coherent detection,
thus the signaling overhead is sometimes formidable and may
even outweigh the performance gain. To reduce the channel
estimation overhead, we study non-coherent modulations in this
work with emphasis on receiver design and performance analysis.
Depending on channel state information, we first develop the
coherent, partial coherent and non-coherent receivers based on
maximum likelihood (ML) principle. As the ML non-coherent
receiver has a non-tractable integral form, we further propose
two suboptimum receivers depending on the relative quality of
source-relay channel and relay-destination channel. We also study
the pairwise error probability, and show that full diversity is
still achievable at high signal-to-noise ratios using non-coherent
modulations; however, the error rate decreases much slower than
that of coherent systems due to the incapability to efficiently
suppress multi-user interferences. Extensive simulations are also
given to verify our analytical results.

I. INTRODUCTION

User cooperation is a new communications paradigm in

which some relay nodes are selected to help forward the

source messages in order to provide spatial diversity, extend

transmission coverage and save transmitted power [1]. Some

early work in this area [2] has studied several repetition-coding

based cooperation protocols, which are not bandwidth efficient

in practice due to the half-duplex constraint of user devices.

To be specific, the relay nodes have to serve each source

individually using two orthogonal channels, thus lowering the

bandwidth efficiency roughly by one half.

In a multi-user system, the relay nodes can actually serve

multiple sources at the same time by use of wireless net-

work coding [3][4]. The resulting throughput can be greatly

enhanced at a cost of more complicated receiver design and

increased signaling overhead. For example, special detection

schemes have to be leveraged to address the error propagation

issue associated with digital network coding [5][6], and multi-

user interferences have to be suppressed if analog network

coding (ANC) is used instead [7][8]. For both strategies,

knowing global channel state information (CSI) is necessary

for coherent detection, thus the channel estimation overhead

increases linearly with the product of the number of users

and the number of relays. Such signaling overhead is some-

times formidable and may even outweigh the performance

gain. Besides, it is generally hard to track all the channels

simultaneously in a fast-fading environment.

To mitigate the stringent needs of perfect CSI, non-coherent

schemes such as differential modulations [9] and orthogonal

signaling (e.g., ON-OFF keying (OOK) and frequency shift

keying (FSK)) have been widely discussed. In [10], the max-

imum likelihood (ML) demodulator for amplify-and-forward

system using FSK modulations is developed. Although the ML

receiver generally has no closed form, the upper and lower

bounds on the average bit error rate (BER) are obtained in

[11], and it is observed that full diversity can only be achieved

for FSK modulations but not for OOK scheme. In [12], a near-

ML receiver is developed and simulation results show that this

scheme can also achieve full diversity. Besides, it is demon-

strated that the non-coherent AF subject to short-term power

constraint performs the same as direct transmission. Two blind

detection schemes are proposed in [13] and [14] based on

maximum energy selection and generalized likelihood ratio

test, respectively. The advantage of these blind detectors is

that the receiver needs not to know the statistical information

of the channels, which further reduces the signaling overhead.

Non-coherent modulations have also been studied in the

context of two-way relay channel using network coding. In

[15], a set of differential demodulators are developed, and the

BER performance is studied in [16][17]. A relay selection

strategy without requiring CSI is developed in [18]. For

OOK modulations, a simple threshold-based energy detection

scheme is developed in [19], and the optimum threshold

is also obtained in closed form. In [20], the non-coherent

relay detector is obtained for binary FSK modulations. The

optimum/suboptimum receivers are developed in [21] and the

bounds on BER are also obtained.

As mentioned earlier, reducing the channel estimation over-

head is a critical issue for multi-user network-coded system.

However, most of the literatures [9]-[14] focus only on single-

user scenario. For [15]-[21], the considered two-way relay

channel is basically a single-user system on each way, as each

end node can suppress or even eliminate its self-interference.

In the presence of multi-user interferences, how to design

the non-coherent modulation scheme is an interesting issue

that has not been properly discussed in the literatures, and

such concerns motivate the current work. To be specific, we

study the non-coherent receiver design problem for a two-

user uplink channel using ANC and seek to quantify the error

performances. As the ML receiver has an integral form, we
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develop two suboptimum receivers depending on the relative

quality of source-relay channel and relay-destination channel.

The pair-wise error probability (PEP) is then studied, and the

scaling laws of different PEPs are derived at high signal-to-

noise ratios (SNR). It is demonstrated that full diversity is still

achievable; however, the error rate does not decrease as fast

as that of coherent system.

Notations: |·|, (·)T
and (·)H

stands for absolute value, trans-

pose and conjugate transpose, respectively. The boldface low-

ercase letter a and the boldface uppercase letter A represents

vector in column form and matrix, respectively. ‖a‖ and detA
denotes the Euclidean norm of a vector a and the determinant

of a square matrix A, respectively. We shall use abbreviation

i.i.d. for independent and identically distributed. We denote

Z ∼ CN (u,Σ) as a circularly symmetric complex Gaussian

random variable vector with mean u and covariance matrix

Σ, and denote Z ∼ χ2
k as a chi-square random variable with

the degree of freedom being k. The probability of an event

A is denoted as Pr(A). The cumulative distribution function

(CDF) and the probability density function (PDF) of a random

variable Z is denoted as FZ(z) and fZ(z), respectively.

Finally, we say h (x) = O (g (x)) if lim supx→∞
h(x)
g(x) < ∞.

II. SYSTEM MODEL

Consider a symmetric uplink channel with two source nodes

sending data to a common destination with the help of a single

relay node. Let fk ∼ CN (0, 1) and hk ∼ CN (0, 1) be the

channel coefficients from the kth source for k = 1, 2 to the

relay and to the destination, respectively, and g ∼ CN (0, 1)
be the channel coefficient from the relay to the destination.

All the channel coefficients are independent, and the additive

noises on different channels are also i.i.d. CN (0, 1). The

path-loss coefficients are denoted by λsr, λsd and λrd for

source-relay channel, source-destination channel and relay-

destination channel, respectively. As these path-loss coeffi-

cients are second-order statistics which remain unchanged over

a long time, we assume these coefficients are known to all the

nodes in the network.

To reduce the channel estimation overhead, we focus on

non-coherent M-ary FSK modulations in this work. Thus the

source symbols are chosen from the set Ω = {e1, e2, · · · , eM},

where el is the unit vector with the lth element being 1 and

the other elements being 0. The whole data transmission is

completed in three phases. In the kth phase for k = 1, 2, the

kth source node broadcasts its own messages to both the relay

node and destination, and the received signal is

ykr =
√

Pλsrfkxk + nkr, (1)

ykd =
√

Pλsdhkxk + nkd, (2)

respectively. Here P is transmitted power, xk is the kth source

symbol with xk ∈ Ω, nkr and nkd are the corresponding

additive noises. Suppose ANC is used at the relay, the two

received signals ykr for k = 1, 2 are combined directly in the

complex field with equal weights. Thus the relay symbol can

be represented as xr =
√

α (y1r + y2r), where

α =
1

2 (Pλsr + M)
(3)

is the amplification factor to normalize the relay power, i.e.,

E‖xr‖2 = 1. Note that this factor is a constant that is

independent of the instantaneous channel variations. Finally

in the third phase, the relay node forwards its symbol to the

destination while the two source nodes remain silent. The

received signal is given by

yrd =
√

αPλrdg

2∑
k=1

(√
Pλsrfkxk + nkr

)
+ nrd

=
√

αP 2λrdλsrg

2∑
k=1

fkxk + ñrd, (4)

where ñrd =
√

αPλrdg
2∑

k=1

nkr + nrd is the equivalent noise

vector.

Upon observing the signals ykd for k = 1, 2 and yrd, the

destination can perform ML detection to jointly decode the

two source symbols as

(xd,1,xd,2) = arg max
x̂1,x̂2∈Ω

L (yrd| x̂1, x̂2)×
2∏

k=1

L (ykr| x̂1, x̂2),

(5)

where L(·) is the corresponding likelihood function. Clearly,

the form of likelihood function depends on how much CSI

(denoted by Ψ) is known at the receiver. If full CSI is available,

we have ΨC = {f1, f2, h1, h2, g}, in which case the detection

is coherent and we can obtain

LC (ykd| x̂1, x̂2) = p
(
ykd −

√
Pλsdhkx̂k, I

)
, (6)

LC (yrd| x̂1, x̂2) = p (yrd − uC ,ΣC) , (7)

where

uC =
√

αP 2λrdλsrg
2∑

k=1

fkx̂k, (8)

ΣC =
(
2αPλrd|g|2 + 1

)
I, (9)

p (y,Σ) =
1

πM |Σ| exp
(−yHΣ−1y

)
. (10)

If only limited CSI is known at the receiver, i.e., ΨP = {g},

then the detection is partial coherent and we have

LP (ykd| x̂1, x̂2) = p (ykd,ΣP,k) , (11)

LP (yrd| x̂1, x̂2) = p (yrd,ΣP ) , (12)

where

ΣP,k = Pλsdx̂kx̂H
k + I, (13)

ΣP = αP 2λrdλsr|g|2
2∑

k=1

x̂kx̂H
k + ΣC . (14)
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If no instantaneous CSI is known at the receiver (i.e., ΨN =
φ), then the detection is non-coherent with the likelihood

function being LN (ykd| x̂1, x̂2) = LP (ykd| x̂1, x̂2) and

LN (yrd| x̂1, x̂2) = Eg (p (yrd,ΣP )) . (15)

From (15), we observe that the likelihood function includes

the average over the distribution of relay-destination channel

g, which has an integral form without any closed-form solution

and thus complicates the practical implementation. To simplify

the receiver design, we first revisit the signal model (4).

The aggregate scaling factor effective on the relaying signal

component is given by

√
αPλrdg =

√
Pλrd

2 (Pλsr + M)
g

P�1≈
√

λrd

2λsr
g. (16)

When the source-relay channel is much better than the relay-

destination channel (i.e., λrd � λsr), the above scaling coef-

ficient remains small with large probability, whereas the noise

power of nrd is a constant. As a result, we can approximate

g by its mean and obtain

LN (yrd| x̂1, x̂2) ≈ LP (yrd| x̂1, x̂2, g = 1) , (17)

which is called fading elimination receiver (FER). The error

performance is expected to remain similar because the channel

fading only brings very limited effects when the scaling factor

is small on average. On the other hand, if the source-relay

channel is much worse than the relay-destination channel (i.e.,

λrd 	 λsr), then the noise power of nrd is generally much

smaller than that of nkr after being amplified by the relay

node, and we can approximately neglect nrd and obtain yrd ≈
ỹrd with

ỹrd =
√

αPλrdg
2∑

k=1

(√
Pλsrfkxk + nkr

)
. (18)

To obtain the likelihood function of ỹrd, we first prove the

following lemma.

Lemma 1: Suppose v ∼ CN
(
0, diag

{
σ2

vi

}M

i=1

)
and u ∼

CN (
0, σ2

u

)
are independent random variables, then the PDF

of z = uv is

f (z) =

(
M∏
i=1

2
πσ2

uσ2
vi

)
q

(
4
σ2

u

M∑
i=1

|zi|2
σ2

vi

)
, (19)

where q (x) = x−M−1
2 KM−1 (

√
x) and KM (x) is the M th-

order modified Bessel function of the second kind [22, 9.6.1].

Proof: Denote zi = rie
jθi for i = 1, 2, · · · , M , then it

is easy to show that the phases {θi} are independent of the

amplitudes {ri}, and {θi} are i.i.d. and uniformly distributed

on [0, 2π). Therefore,

f (z) =
1
|J |f (r, θ) =

M∏
i=1

(2πri)
−1

f (r) , (20)

TABLE I

FOUR TYPES OF PEPS

Notations True Symbols Trial Symbols Error Rates

P1 (e1, e1) (e2, e2) O
“

log P
P3

”

P2 (e1, e2) (e2, e1) O
“

1
P2

”

P3 (e1, e1) (e1, e2) O
“

log2 P
P2

”

P4 (e1, e2) (e1, e1) O
“

log3 P
P2

”

where |J | =
M∏
i=1

ri is the Jacobian determinant. The CDF of

r is given by

F (r) =
∫ ∞

0

1
σ2

u

exp
(
− x

σ2
u

) M∏
i=1

(
1 − exp

(
− r2

i

σ2
vi

x

))
dx.

(21)

After taking derivatives, we can obtain

f (r) =
1
σ2

u

M∏
i=1

2ri

σ2
vi

∫ ∞

0

x−M exp

(
− x

σ2
u

− 1
x

M∑
i=1

r2
i

σ2
vi

)
dx

=

(
M∏
i=1

4ri

σ2
uσ2

vi

)
q

(
4
σ2

u

M∑
i=1

r2
i

σ2
vi

)
, (22)

where we use [23, 3.478.4] in the last equality. Plugging (22)

back into (20) completes the proof.

According to Lemma 1, the likelihood function of ỹrd

can be obtained after redefining the parameters in (19). To

be specific, for x̂1 = x̂2 = el we have σ2
u = αPλrd,

σ2
vl

= 2 (Pλsr + 1) and σ2
vi

= 2 for i 
= l, whereas for

x̂1 = ek, x̂2 = el with k 
= l we have σ2
u = αPλrd,

σ2
vk

= σ2
vl

= Pλsr + 2 and σ2
vi

= 2 for i 
= l, k. In

later sections, this suboptimum receiver is referred to as noise
elimination receiver (NER).

III. ERROR PERFORMANCE ANALYSIS

The objective of this section is to study the error per-

formance of the considered multi-user uplink using non-

coherent modulations. Since the non-coherent ML receiver has

an integral form which is analytically intractable, we shall

investigate the partial coherent receiver instead, the error rate

of which serves as a tight lower bound on the error rate of

non-coherent receiver. To simplify the notations, we focus only

on the binary FSK modulations (i.e., Ω = {e1, e2}). Our

analytical framework can be easily extended to any higher-

order modulations.

As an analytical tool, PEP is defined as the probability of

mistaking the true symbols (x1,x2) by another trial symbols

(x̂1, x̂2). It is well known that the real error rate is approx-

imately characterized by the dominant PEPs [1]. As for the

binary modulations, there is a total of four types of PEPs

as listed in Table I, where we also briefly summarize the

asymptotic error rates at high SNRs (i.e., P 	 1) to be derived

below.
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A. Type I PEP

When both of the two source symbols are flipped at the

receiver, all the three likelihood functions in (5) are different

under the two hypotheses and we have

P1 = Pr
{

λsdP

1 + λsdP

(
U I

2 + V I
2

)
+

λsrPQ

1 + λsrPQ
W I

2

≥ λsdP
(
U I

1 + V I
1

)
+ λsrPQW I

1

}
≤ Pr

{
U I

2 + V I
2 + W I

2 ≥ PY
}

, (23)

where W I
1 = |yrd,1|2

1+2αPλrd|g|2+2αP 2λrdλsr|g|2 , U I
1 = |y1d,1|2

1+λsdP ,

V I
1 = |y2d,1|2

1+λsdP , W I
2 = |yrd,2|2

1+2αPλrd|g|2 , U I
2 = |y1d,2|2, V I

2 =

|y2d,2|2 are i.i.d. exponential random variables with unit mean,

and

Q =
2αPλrd|g|2

1 + 2αPλrd|g|2
. (24)

Since U I
2 +V I

2 + W I
2 ∼ 1

2χ2
6, the conditional PEP given Y

Δ=
λsd

(
U I

1 + V I
1

)
+ λsrQW I

1 = y is

P1|Y =y ≤
(

1 + Py +
1
2
P 2y2

)
exp (−Py) . (25)

Note that when P 	 1, the above error rate decreases really

fast with y. Therefore, the unconditional probability is roughly

determined by the behavior of the distribution of Y � 1.

Denoting T
Δ= QW I

1 , we can obtain

FY (y)
y�1≈

∫ y
λsr

0

fT (t)
(y − λsrt)

2

λ2
sd

dt, (26)

Taking derivative with respect to y leads to

fY (y)
y�1≈ 2λsr

λ2
sd

∫ y
λsr

0

FT (t) dt

= − y2

2αPλsrλrdλ2
sd

(
log

y

λsr
− 1

2

)
, (27)

where we use FT (t)
t�1≈ − 1

2αPλrd
t log t [7][8] in the second

equality. Using the above PDF to average the conditional PEP

in (25), we obtain

P1

P→∞≤ 20 log P − 39 + 20γ + 20 log (
√

eλsr)
2αP 4λsrλrdλ2

sd

P→∞≈ 10
αPλsrλrdλ2

sd

log P

P 3
, (28)

where γ is Euler constant [23, 4.352.2].

B. Type II PEP

For Type II PEP, the likelihood function of yrd remains

the same under both hypotheses, which greatly simplifies the

computation. After some manipulations, the PEP is given by

P2 = Pr
{
|y1d,2|2 + |y2d,1|2 ≥ |y1d,1|2 + |y2d,2|2

}
=

4 + 3λsdP

(2 + λsdP )3
P→∞≈ 3

λ2
sdP

2
. (29)

C. Type III PEP
For Type III PEP, the likelihood function of y1d remains

the same under both hypotheses, and the PEP is given by

P3 = Pr
{

λsdP

1 + λsdP
V III

2 +
λsrPQ

2 + λsrPQ
W III

2

≥ λsdPV III
1 +

λsrPQ

2 + λsrPQ
W III

1 + log
(2 + λsrPQ)2

4 (1 + λsrPQ)

}
≤ Pr

{
W III

2 + V III
2 ≥ λsdPV III

1 + log Z
}

, (30)

where W III
1 = |yrd,1|2

1+2αPλrd|g|2+2αP 2λrdλsr|g|2 , V III
1 =

|y2d,1|2
1+λsdP , W III

2 = |yrd,2|2
1+2αPλrd|g|2 , and V III

2 = |y2d,2|2 are i.i.d.

exponential random variables with unit mean, and

2 + λsrPQ

4
Δ= Z ≤ 1

2
+

Pλsr

4
P→∞≈ Pλsr

4
. (31)

After some manipulations, the conditional PEP given Z = z
can be obtained as

P3|Z=z ≤ (1 + 2λsdP ) + (1 + λsdP ) log
(

1
2 + Pλsr

4

)
(1 + λsdP )2z

P→∞≈ 1
λsdz

log P

P
. (32)

By defining η = αPλrd (2 + λsrP ), we can further obtain

E

(
1
Z

)
≤ 1

η

(
4αPλrd +

2λsrP

2 + λsrP
log (1 + η)

)
P→∞≈ 2

αPλsrλrd

log P

P
. (33)

Plugging the above result back into the conditional PEP (32),

we can obtain

P3 ≤ 2
αPλsdλsrλrd

log2P

P 2
, P → ∞. (34)

D. Type IV PEP
Similar to Type III PEP, the likelihood function of y1d

remains the same under both hypotheses, and the PEP is given

by

P4 = Pr
{

λsdP

1 + λsdP
V IV

1 +
λsrPQ

2 (1 + λsrPQ)
W IV

1

≥λsdPV IV
2 +

1
2
λsrPQW IV

2 − log
(2 + λsrPQ)2

4 (1 + λsrPQ)

}
,(35)

where W IV
1 = |yrd,1|2

1+2αPλrd|g|2+αP 2λrdλsr|g|2 , V IV
1 = |y2d,1|2,

W IV
2 = |yrd,2|2

1+2αPλrd|g|2+αP 2λrdλsr|g|2 , V IV
2 = |y2d,2|2

1+λsdP are

i.i.d. exponential random variables with unit mean. As the

logarithmic term is asymptotically upper bounded by log λsrP
4

when P → ∞, we can upper bound the PEP by

P4 ≤ Pr
{

W IV
1 + V IV

1 ≥ max
(

1
2
λsdPV IV

2 , log
λsrP

4

)}
︸ ︷︷ ︸

Δ
=P

U1
4

+ Pr
{

2 log
λsrP

4
≥ λsdPV IV

2 +
1
2
λsrPQW IV

2

}
︸ ︷︷ ︸

Δ
=P

U2
4

. (36)
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PU1
4 =

4
(
1 + log λsrP

4

)
λsrP

−
(

λsdP

2 + λsdP

)2 (
1 +

2 + λsdP

λsdP
log

λsrP

4

)
exp

(
−2 + λsdP

λsdP
log

λsrP

4

)
P→∞≈ 8

λsrλsd

log2P

P 2
.

(37)

PU2
4

P→∞≈ − λsr

8αPλsdλrd

(
4

λsrP
log

λsrP

4

)2 (
log

(
4

λsrP
log

λsrP

4

)
− 1

2

)
P→∞≈ 2

αPλsrλsdλrd

log3P

P 2
. (38)

PL
4

∣∣
Q=q

= 1− 2λsd

2λsd − qλsr
exp

(
− 1

λsdP
log

1
2

(
1 +

qλsrP

2

))
+

qλsr

2λsd − qλsr
exp

(
− 2

qλsrP
log

1
2

(
1 +

qλsrP

2

))
(40)

The two terms can be obtained after some lengthy algebra and

are shown in (37) and (38) on the top of this page. Therefore,

Type IV PEP is upper bounded by O
(

log3P
P 2

)
, which appears

to dominate all types of PEP. To make the argument rigorous,

yet we still need to show that this is the exact scaling law of

Type IV PEP by finding a proper lower bound PL
4 of P4. This

can be done by neglecting the first two terms on the left-hand

side of the inequality in (35), which leads to

PL
4 = Pr

{
log

2 + λsrPQ

4
≥ λsdPV IV

2 +
λsrPQW IV

2

2

}
.

(39)

After some manipulations, the conditional probability of PL
4

given Q = q is shown in (40) on the top of this page.

When q ≥ P−β for any constant β ∈ (0, 1), we have

qP ≥ P 1−β P→∞→ ∞ and thus

PL
4

∣∣
Q=q

P→∞≈ 1
qλsrλsdP 2

(
log

1
2

(
1 +

qλsrP

2

))2

. (41)

The final step is to average the above expression over the

distribution of Q, which is given by

fQ (q) =
1

2αPλrd(1 − q)2
exp

(
− q

2αPλrd (1 − q)

)
(42)

for 0 ≤ q ≤ 1. It is easy to see that fQ (q) is a continuous

function with fQ (0) = 1
2αPλrd

and fQ (1) = 0, therefore it

is lower bounded by some constant C on the region q ∈ [0, b]
with b < 1 being some fixed number. Using the above facts,

we can obtain

PL
4 ≥ Clog

(
bP β

)
λsrλsdP 2

(
log

1
2

(
1 +

λsrP
1−β

2

))2

P→∞≈ Cβ(1 − β)2

λsrλsd

log3P

P 2
. (43)

As a result, the upper bound and lower bound on P4 have

exactly the same scaling law of O
(

log3P
P 2

)
when P → ∞.

E. Discussions

So far, we have shown that Type IV PEP dominates the

error rate of partial coherent detection and has a scaling law of

O
(

log3P
P 2

)
. By comparison, the error rate of coherent detection

has a scaling law of O
(

log P
P 2

)
[7][8]. Therefore, although
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Fig. 1. Error performances of a symmetric network.

partial coherent detection can still achieve full diversity when

system SNR is extremely high, the lack of perfect CSI intro-

duces additional logarithmic terms in the error rate expression,

which makes the error rate decay really slow compared to

coherent detection. Note that in the single-user system, the

non-coherent detection only brings 3dB SNR loss, and the

scaling law remains the same as that of coherent detection.

The additional loss in the multi-user scenario is mainly due to

the incapability to efficiently suppress multi-user interferences

when perfect CSI is unavailable.

IV. SIMULATIONS

In this section, we present simulation results to validate our

analysis. Throughout simulations, we use the path loss model

λ = D−3, where λ is the channel gain and D is the distance

between two terminals. Pair error probability is used as the

performance metric, i.e., the probability that at least one of the

source symbols is decoded incorrectly at the destination. To

simplify the simulation settings, only binary FSK modulation

is considered and Dsd is always normalized to 1.

In Fig. 1, we compare the error rates of different detection

schemes in a symmetric network where all the inter-node

distances are normalized to 1. It is observed that the partial

coherent detection performs almost the same as non-coherent
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Fig. 2. Error performances with different relay positions.

detection. Besides, the two suboptimum non-coherent re-

ceivers also perform reasonably well with about 1dB SNR loss.

Compared to direct transmission without user cooperation,

both coherent and non-coherent network-coded cooperation

can provide a diversity order of 2. However, the error curves of

partial/non-coherent schemes decay much slower than the error

curve of coherent scheme due to the additional logarithmic

term loss. For example, non-coherent detection incurs about

6dB SNR loss when the error rate is 10−4. Note that such

performance gap is much larger than that in the single-user

systems. This is because the two source signals are randomly

combined in the air and the receiver is unable to efficiently

suppress the multi-user interferences.

Then we investigate the error performances with different

relay positions in Fig. 2. For the network topology, we place

the destination at (0, 0), and locate the two source nodes at

(
√

3
2 ,± 1

2 ), respectively. The relay node shall move along the

x-axis from (0.1, 0) to (1, 0). Simulation results confirm that

NER is nearly optimum when the relay node is close to the

destination. The performance of FER gets closer to that of

non-coherent ML receiver as the relay node moves away from

the destination and to the two source nodes. Although the error

performance analysis in Section III is focused only on partial

coherent detection, we conjecture that the error rate of non-

coherent detection should have the same scaling law, since

these two schemes seem to perform very close to each other

in all simulations. A rigorous proof shall be deferred to future

work.

V. CONCLUSIONS AND FUTURE WORK

We have studied the two-user uplink using analog network

coding when the receiver has non-perfect CSI. Both the

optimum and suboptimum detection schemes are developed

under different CSI assumptions. We also obtained the scaling

law of the error rate of partial coherent detection and quantified

the performance loss compared to coherent detection. Future

work may focus on the same applications using digital network

coding.

REFERENCES

[1] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative
Communications and Networking, Cambridge University Press, 2008.

[2] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative Diversity
in Wireless Networks: Efficient Protocols and Outage Behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.

[3] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference:
Analog network coding,” in ACM SIGCOMM 2007, Aug. 2007.

[4] S. Zhang, S. C. Liew, and P. P. Lam, “Physical-Layer Network Coding,”
in ACM MOBICOM 2006, Los Angeles, Sept. 2006.

[5] W. Guan and K. J. R. Liu, “On The Design of Relaying and Detection
Schemes to Mitigate Error Propagation with Wireless Network Coding,”
submitted to IEEE Trans. Wireless Commun., Nov. 2011.

[6] W. Guan and K. J. R. Liu, “Anti Error Propagation Methods for
Wireless Uplink Using Network Coding,” to appear in Proc. IEEE
Global Telecommun. Conf., Dec. 2012.

[7] W. Guan and K. J. R. Liu, “On Diversity Analysis of Analog Network
Coding with Multi-User Interferences,” submitted to IEEE Trans. Wire-
less Commun., Dec. 2011.

[8] W. Guan and K. J. R. Liu, “Error Performances of Multiple Access
System Using Analog Network Coding,” in Proc. IEEE Inter. Conf.
Commun. (ICC), June 2012.

[9] T. Himsoon, W. Su, and K. J. R. Liu, “Differential Transmission
for Ampliy-and-Forward Cooperative Communications,” IEEE Signal
Process. Lett., vol. 12, no. 9, pp. 597-600, Sep. 2005.

[10] D. Chen and J. N. Laneman, “Cooperative Diversity for Wireless Fading
Channels without Channel State Information,” in Proc. Asilomar Conf.
Signals, Syst. Comput., Monterey, pp. 1307-1312, Nov. 2004.

[11] R. Annavajjala, P. C. Cosman, and L. B. Milstein, “On the Performance
of Optimum Noncoherent Amplify-and-Forward Reception for Cooper-
ative Diversity,” in Proc. IEEE Military Commun. Conf., pp. 3280-3288,
Oct. 2005.

[12] Y. Zhu, P. Y. Kam, and Y. Xin, “Non-Coherent Detection for Amplify-
and-Forward Relay Systems in a Rayleigh Fading Environment,” in Proc.
IEEE Global Telecommun. Conf., pp. 1658-1662, Nov. 2007.

[13] G. Farhadi and N. C. Beaulieu, “A Low Complexity Receiver for
Noncoherent Amplify-and-Forward Cooperative Systems,” IEEE Trans.
Wireless Commun., vol. 58, no. 9, pp. 2499-2504, Sep. 2010.

[14] M. R. Souryal, “Non-Coherent Amplify-and-Forward Generalized Like-
lihood Ratio Test Receiver,” IEEE Trans. Wireless Commun., vol. 9, no.
7, pp. 2320-2327, July 2010.

[15] T. Cui, F. F. Gao, and C. Tellambura, “Differential Modulation for Two-
Way Wireless Communications: A Perspective of Differential Network
Coding at the Physical Layer,” IEEE Trans. Commun., vol. 57, no. 10,
pp. 2977-2987, Oct. 2009.

[16] W. Guan and K. J. R. Liu, “Performance Analysis of Two-Way Relaying
with Non-Coherent Differential Modulation,” IEEE Trans. Wireless
Commun., vol. 10, no. 6, pp. 2004-2014, June 2011.

[17] W. Guan and K. J. R. Liu, “Two-Way Denoise-And-Forward Relaying
With Non-Coherent Differential Modulation,” in Proc. IEEE Global
Telecommun. Conf., Dec. 2011.

[18] L. Y. Song, G. Hong, B. L. Jiao, and M. Debbah, “Joint Relay Selection
and Analog Network Coding Using Differential Modulation in Two-Way
Relay Channels,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2932-
2939, July 2010.

[19] I. Krikidis, Z. G. Ding, and C. D. Charalambous, “Noncoherent Energy
Detection With Orthogonal Signaling for an Uncoded Two-Way Relay
Channel,” IEEE Trans. Veh. Technol., vol. 61, no. 1, pp. 404-409, Jan.
2012.

[20] M. C. Valenti, D. Torrieri, and T. Ferrett, “Noncoherent Physical-Layer
Network Coding with FSK Modulation: Relay Receiver Design Issues,”
IEEE Trans. Commun., vol. 59, no. 9, pp. 2595-2604, Sep. 2011.

[21] J. Tian, Q. Zhang, and F. Q. Yu, “Non-Coherent Detection for Two-Way
AF Cooperative Communications in Fast Rayleigh Fading Channels,”
IEEE Trans. Commun., vol. 59, no. 10, pp. 2753-2762, Oct. 2011.

[22] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, 9th ed. New York:
Dover, 1972.

[23] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 7th ed. New York: Academic, 2007.

2267


