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ABSTRACT 

A low-power parallel VLSI structure for DCT/IDCT is pro- 
posed. By treating the transformations as the evaluation of 
the Chebyshev series, and exploiting the Backward Cheby- 
shew Recursion (BCR), we can reduce the total number of 
multipliers (N + 1 for IDCT, 2N - 2 for DCT). The property 
of BCR is also used to compute the DCT/IDCT through 
the down-sampled even and odd sequences. Since the oper- 
ation frequency for the down-sampled sequences is two times 
slower, the speed penalty caused by the low-voltage design 
can be compensated at the architectural level. The total 
multiplers required for the low-power design is only 2N + 1 
for IDCT and 3N - 3 for DCT. Extension to downsampling- 
by-4 is also achievable at a reasonable increase in hardware 
complexity. 

1. Introduction 

With recent developments in personal communications ser- 
vices (PCS), it is possible now to integrate voice, image, and 
cellular phone networks in a personal communicator. Due 
to the limited power-supply capability of current technology, 
the power constraint is particularly important to the design 
of PCS devices. Several techniques to achieve low-power 
CMOS design were investigated by Chandrakasan et al. [l]. 
A simple model is used to estimate the power dissipation 

where teff is the effective loading capacity, Vdd is the supply 
voltage, and f& is the operating frequency. The simulation 
results show that a reduction of the supply voltage is the 
leveraged decision to lower the power consumption. How- 
ever, a speed penalty is suffered as Vdd goes down. Among 
many approaches to “compensate” the increased delay, the 
architecture approach is the most promising one [l]. By im- 
posing “parallelism” and “pipelinability” on the algorithm, 
the power consumption can be drastically reduced by a fac- 
tor of 3-5. 

In this paper we propose a parallel DCT/IDCT algo- 
rithm and architecture based on the Chebyshev polynomial. 
The Chebyshev polynomial derivation of DCT/IDCT algo- 
rithm was first proposed in [2]. However, the architecture 
in [2] needs global communication and requires O(N1og N) 
multipliers. In our work, we treat the transformations as the 
evaluation of a Chebyshev series. Then by exploiting the 

*The work is supported in part by the ONRgrant N00014-93-10566 
and the NSF grant MIP93-09506. 

Figure 1: Low-power circuit design using the downsampling 
scheme. 

three-term recurrence property of the Chebyshev orthogo- 
nal polynomial, we can significantly reduce the number of 
multipliers (N + 1 for IDCT, 2N - 2 for DCT). Also, the re- 
sulting architecture is modular and regular. Thus the basic 
requirements for low-power DCT/IDCT design are met [3]. 

In order to compensate the speed penalty, we employ 
downsampling to reduce the operating speed. For most of 
the existing DCT algorithms [4][5][6], the processing rate 
must be as fast as the input data rate, say 100 MHz. In our 
low-power design, a downsampling-by-2 scheme is employed 
(Fig.1). The input sequence z ( t )  is first split into two half- 
rate sequences, and a new sequence 5 ( t )  is formed in the 
combination circuit. If the DCT of e( t )  is the same as the 
DCT of z ( t ) ,  it is clear that now the data can be processed 
at half of the original data rate, say 50 MHz. Since the 
operating speed is reduced while the throughput rate is still 
maintained, the speed penalty is compensated. For example, 
suppose that the cost of the combination circuit in Fig.1 is 
about the same as DCT ( O ( N ) ) ,  the Cen is approximately 
doubled due to the hardware overhead. However, since all 
the operations are at half of the original speed, the lowest 
possible voltage can be reduced from 5 V to 2.9 V [l]. From 
the simple model in (l), the overall power consumption is 
OnlV 

Therefore, downsampling provides a direct and efficient way 
for the low-power design at the architectural level. 

2. The Chebyshev Polynomial 

Given the frequency mapping 

t = cos w ,  (3) 
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the nth order Chebyshev polynomial is defined as 

Tn(t) = cos(nw) = cos(n cos-1 t). (4) 

Tn+~(t) = 2tTn(t) -Tn-~(t), ( 5 )  

It satisfies the “three-term recurrence” formula [7, chap 11 

with the initial condition TOG) = 1 ,  TI (t) = t. Now consider 
the following Chebyshev series 

b, 

1 1 N - l  Figure 2: Systolic architecture to evaluate Y,‘(t). 
2 

N - l  

yc(t) = -a0 + a k  COS(kW) = -a0 + a k T k ( t ) .  ( 6 )  
k = l  

2 
k = l  

One efficient way to evaluate Yc(t) for a given value t is the 
Clenshaw’s algorithm [7, chap 31 [8, chap 41. By defining the 
“backward recurrence sequence” N - I  

‘ 9  be a DCT-domain sequence’ The IDCT to compute 
the time-domain sequence Z(n)’ It = O 1  ’’ ’ ’ ’ ’ - ’ ,  is 

(2n + 1)x  
b k ( t ) = 2 t b k + l ( t ) - b k + i ( t ) + U k ,  fork = N - 1 ,  . . . ,  1 , o  (7) 

k=O 

with the initial condition b N ( t )  = b N + ]  (t) = 0, and substi- 
tuting (7) in ( 6 ) ,  we have 

N - I  

Yc(~) = c [ b k ( t )  - 2 t b k + i ( t )  -I- b k + 2 ( t ) ] T k ( t ) .  (8) 
k=O 

Using the recurrence formula in ( 5 ) ,  (8) becomes 

(9) 

For our purpose, we need the evaluation of 

N - 1  N - 1  

k=O k=O 

It can be shown that by scaling a0 by 2 beforehand, we can 
evaluate Y:(t) through the same steps in (7)-(9). Therefore, 
once we scale a0 by 2 and calculate b o ( t )  and b i ( t )  using 
(7), the evaluation of Yi(t)  can be readily obtained from (9) 
with one addition and one shift operation. The correspond- 
ing architecture to evaluate Y:(t) is shown in Fig.2. Since 
(7) is a “backward” recurrence formula, the input sequence 
must be reversed. The second-order recurrence structure 
computes the b:s in (7), and (9) is performed through the 
adder followed by a right shift. The evaluation of Y:(t) can 
be obtained after the last input is fed into the system. 

Another two interesting properties of the Chebyshev 
polynomial are [7, chap 31 

where { i f ] i = o  c ( k )  = , otherwise. 

Let 

and use the definition of the Chebyshev polynomial in ( 4 ) ,  
(13) can be written as 

N - I  N - I  

k=O k=O 

Comparing ( 1 6 )  with ( l o ) ,  we see that the IDCT at index 
n can be treated as the evaluation of Chebyshev series at 
tn = COSW, with coefficient set [X’(O), X ’ ( l ) ,  . . . , X ’ ( N - l ) ] .  
As a consequence, if we replace the t in Fig.2 with t, ,  the 
recurrence structure can perform the IDCT at the center 
frequency w,. Since n = 0 , 1 ,  . . . , N - 1 ,  we need N second- 
order recurrence structures to compute IDCT in parallel. 

Fig.3 shows the overall IDCT structure based on the 
Chebyshev recursion. It has two parts: the Reverse Array 
(RA) and the IDCT array. The RA consists of one serial- 
input-parallel-output (SIPO) register and one parallel-input- 
serial-output (PISO) register. It provides the capability of 
reversing the input sequence and scaling X ( 0 )  in a fully 
pipelined way. The IDCT array performs IDCT at differ- 
ent w,. The whole system works in a serial-input-parallel- 
output way and requires only N + 1 multipliers and 3N 
adders including the scaling multiplier in RA. Compared 
with other schemes, our IDCT architecture uses the least ( 1 1 )  Ts(Tr(t)) = Tr(Ts(t)) = Trs(t), 

1 Ts(t)Tr(t) = T ( ~ s + r ( t )  + ~ , - , ( t ) )  (12) multipliers to date. 

which will also be used in later derivations. 4. Parallel DCT Architecture 

3. Parallel IDCT Architecture As with the derivation of the IDCT algorithm, the DCT can 
be written as 

In order to illustrate the relationship between the Cheby- 
shev polynomial and the transforms, we will begin with the 

N - I  

x(k) = a Z(n)COS((2n + 1 ) W k )  

n = O  derivation of IDCT algorithm. Let X ( k ) ,  k = 0, 1 ,  .. . , N - N 
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Figure 3: Systolic architecture for IDCT. 

n = O  

A A With W k  = and t k  = C 0 s - l  W k .  Multiplying Tl(tk) on 
both sides of f i 7 )  and using the Chebyshev property in (12) ,  
we obtain 

n = O  

n = O  

where 

9 (19)  
A Z ( n  - 1 )  + Z(n) 

2 
z’(n)  = 

and the assumption that z ( -1)  = z ( N )  = 0 in block pro- 
cessing is used. Note that Tl(tk) = C O S W ~  = t k ,  and 
TZn(tk) = Tn(TZ(tk))  (from (11)). If we define 

1; T Z ( l k )  = coS(2Wk) = 2 t i  - 1,  (20)  

we can compute X ( k )  from (18)  by 

Therefore, the DCT at the center frequency W k  can be com- 
puted by first evaluating the Chebyshev series with coeffi- 
cient z’(n), n = 0,1 , .  . . , N a t  the value t: ,  and then scaling 

( - 1 ) k S  

U a 
U b2 

Figure 4: Systolic architecture for DCT. 

Because the DCT of a reversed sequence f = [ z ( N  - 
l ) ,  z ( N  - 2) ,  . . . , z(O)] can be computed ag 

we can relate %(k) to X ( k )  by 

(23)  
A(k) = ~ ( k ) ,  if L is even { z ( k )  = - X ( k ) ,  if k is odd 

Thus the Reverse Army, which reverses the input sequence, 
can be eliminated by complementing X(k)’s  with odd in- 
dex while keeping X(k)’s  with even index unchanged. Fig.4 
shows the architecture to implement (21)  and (23)  for our 
DCT algorithm. The overall architecture to implement the 
DCT needs a total of 2 N  - 2 multipliers and 3 N  - 1 adders. 

5. Low-Power Design for DCT/IDCT 

Consider the Chebyshev series in (10) again and split it into 
the even and odd series: 

N12--1 NIZ-1 

y:(t) = aziTzi( t )  + azi+lTzi+l(t) 
i=O i=O 

= Y,(t)+Yo(t) (24) 

By the use of (10) and (20) ,  the even series Y,(t) can be 
written as 

N/2-1 NJ2-1 

K(t) = aziTi(Tz( t ) )  = aZiTi(t’) (25)  
i c 0  i=O 

where t’ = 2t2 - 1. On the other hand, the odd series 
Y,(t) can be translated into an even series by the similar 
derivations in (17)-(21) 

NI2  

yo(t) = x i a 2 i - 1  z+tazi+l ]Ti (t  ‘) (26)  
i=O 

where t’ has the same definition as in (25). Now combining 
(25)  and (26)  together, we have 

NI2  
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Normal Down- Down- 
Operation sampling = 2 sampling = 4 

N + l  [ 3N 2 N + 1  I 4 N + 1  4 N + 1  6 N + 4  
A 

ZN-’2 I 3 N - 1  3 N - 3  I 4N 5 N - 5  [ 6 N + 3  

M I A  M A M 

Table 1: Comparison of hardware cost for normal 
DCT/IDCT and the low-power design (M=Multiplier, 
A=Adder). 

6. Conclusion 

In this paper a low-complexity parallel DCT/IDCT algo- 
rithm based on the backward Chebyshev recursion is de- 
rived. A low-power design of our algorithm using the down- 
sampling scheme is also investigated. The resulting system 
is modular and regular. Extension of our I-D DCT/IDCT 
algorithm to 2-D operation can be easily achieved by em- 
ploying the time-recursive 2-D DCT architecture proposed 
by Chiu and Liu [9]. Therefore, the proposed scheme will 
be effective for low-power signal processing systems. 
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