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ABSTRACT 
Sensor pattern noise (SPN) is a noise-like spread-spectrum 
signal inherently cast onto every digital image by each 
imaging device and has been recognised as a reliable device 
fingerprint for camera source identification (CSI) and image 
origin verification. It can be estimated as the noise residual 
between the image content and its denoised version. 
However, the SPN extracted from a single image can be 
contaminated largely by image scene because image edge 
noise is usually much stronger than the SPN. So the 
identification performance is heavily dependent upon the 
purity of the estimated SPN, especially for small size images 
because they have less and weaker SPN. Although there are 
some existing works dedicated to improving the performance 
of source camera identification, an effective method to 
eliminate the contamination of image scene and extract an 
accurate SPN is currently lacking. In this paper, we will 
propose an edge adaptive SPN predictor based on context 
adaptive interpolation (PCAI) to exclude the contamination 
of image scene. Different from most of the existing methods 
extracting SPN from wavelet high frequency coefficients, we 
extract SPN directly from the spatial domain with a pixel-
wise adaptive Wiener filter, based on the assumption that the 
SPN is a white signal. Extensive experiments show that our 
proposed PCAI method achieves the best receiver operating 
characteristic (ROC) performance among all of the state-of-
the-art CSI schemes on different sizes of images, and has the 
best performance in resisting JPEG compression (e.g. with a 
quality factor  of 90%) simultaneously. 

Index Terms����  Sensor pattern noise, source camera 
identification, edge adaptive predictor, context adaptive 
interpolation. 

 

1. INTRODUCTION 

Digital images are easy to modify and edit via image editing 
software. Image content becomes unreliable. Using this kind 
of forged image should be avoided as evidence in a court of 
law, as news items, as part of a medical record or as financial 
documents. There are some works focused on image 
component forensics in recent years [1] ~ [13]. Lukas et al. 
[3] first proposed using the imaging sensor pattern noise 
(SPN) for solving the camera source identification (CSI) 
problem. They extract SPN from wavelet high frequency 
coefficients with a wavelet-based denoising filter [4]. A 
camera reference SPN is built by averaging residual noises 
from multiple images taken by a camera. We call it the basic 

SPN CSI method in the rest of this paper. Cortiana et al. [5] 
[12] applied an innovative and recently introduced denoising 
filter, namely a sparse 3D transform-domain collaborative 
filtering (BM3D in short) proposed by Dabov et al. in [6], to 
extract the SPN. This filter is based on an enhanced sparse 
representation in a transform domain. Chen et al. [7] 
proposed a maximum likelihood method to estimate the 
camera reference SPN. We call it the MLE SPN CSI method 
in this paper. Goljan et al. [8] proposed using peak to 
correlation energy (PCE) to suppress periodic noise 
contamination and enhance the CSI performance. Fridrich et 
al. [9] proposed a forgery detection method using sensor 
noise as a kind of watermark for image. The experimental 
results show that this method can recognise a forgery 
operation. Li [10] demonstrates that the SPN extracted from 
a single image can be contaminated by image scene details 
and proposes that the strong signal component in an SPN 
should be attenuated. However, attenuating the interference 
from scene details may also attenuate the useful SPN 
component [11]. Based on the assumption that the extracted 
SPN is a white noise [4] and the proposed white correlation 
theorem [11], Kang et al. [11] proposed a detection statistic 
CCN (correlation over circular correlation norm) to lower the 
false positive rate to be half of that with PCE [8] and a white 
camera reference SPN to enhance the ROC performance. 
The noise residues extracted from the original images are 
whitened first and averaged to generate the white camera 
phase reference SPN. We call this “phase SPN” CSI method.  

Although there have been prior studies dedicated to 
improving the performance of CSI based on SPN in recent 
years, an effective method to eliminate the contamination of 
the image scene details (e.g. texture, periodic structure) and 
extract an accurate SPN from images is currently lacking. 
For image forgery detection based on SPN, the final 
performance is largely dependent on the detection rate on 
small image block. Small images usually have less SPN 
information and are more vulnerable to the impact of image 
scene edge, so the identification performance for small 
images needs to be improved further. In this paper, an edge 
adaptive SPN predictor based on context adaptive 
interpolation (CAI) [14] and pixel-wise adaptive Wiener 
filter is proposed. Thanks to its adaptability to image edge 
and context, the predicted SPN has less scene noise from an 
image. Extensive experiments have shown that our proposed 
PCAI method achieves the best ROC performance among all 
of the state-of-the-art CSI schemes on different sizes of 
images, and has the best performance in resisting mild JPEG 
compression simultaneously. 

The rest of this paper is organised as follows. In section 2 
we will introduce CAI and propose a SPN predictor based on 
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CAI to improve the CSI performance. Section 3 will show 
the experimental results compared with some other camera 
identification methods to examine the ROC performance. 
The conclusion is set out in section 4. 

 
2. PROPOSED PCAI SPN EXTRACTION 

METHOD  

2.1 Context adaptive interpolator 

The context adaptive interpolator (CAI) [14] is an adaptive 
algorithm employing edge directed interpolation. The local 
region is classified into four types: smooth, horizontally-
edged, vertically-edged and other. In the smooth region, a 
mean filter is used to estimate the centre pixel value; in 
edged regions, the interpolation is undertaken along the edge; 
in other regions a median filter is applied. Taking p to be a 
centre pixel value to be interpolated, and [ , , , ]Tn s e w=t  to 
be a vector of its four-neighboring pixels as Fig. 1, the CAI 
predicted pixel value p̂  can be formulated as  
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In (1), a smooth region will never be estimated as the edged 
region and the interpolation prediction in edged regions are 
adapted from the gradient adaptive predictor (GAP) [15], 
with an ad hoc threshold. 
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Fig. 1 Neighborhood pixels in CAI 

2.2 SPN predictor based on CAI 

The SPN can be estimated as the noise residual between the 
image content and its denoised version. But besides SPN, the 
noise residual also includes image scene noise, especially in 
edge regions. The CAI can predict a centre pixel value more 
accurately than some other nonadaptive interpolation 
algorithms because it is adaptive to image local context. So 
the difference between the predicted value and actual value 
can suppress the impact of image edge noise while, at the 
same time, keeping the SPN component. We may take this 
difference D as an approximate SPN.  

CAI( )= −D I I                                   (2) 

where CAI(I) expresses a pixel-wise CAI prediction of an 
image I.  

In order to further eliminate the impact of the scene noise 
and extract a more accurate camera reference SPN, we then 
perform a pixel-wise adaptive Wiener filtering, based on 
statistics estimated from the neighborhood of each pixel, 

assuming the SPN is a white Gaussian signal corrupted by 
the image content. It is noted that, different from most of the 
existing methods extracting SPN from wavelet high 
frequency coefficients, we extract SPN from a spatial 
domain based on the assumption that the SPN is a white 
Gaussian signal [8]. For every pixel, the optimal predictor (in 
the mean square error sense) for the final residual noise (i.e. 
estimated SPN) is 

2
0

2 2
0

( , ) ( , )
ˆ ( , )

i j i j
i j

σ

σ σ
=

+
N D                   (3) 

where 2
σ̂  is the estimated local variance for the original 

noise-free image and 2

0
σ  is the overall variance of the 

AWGN signal, i.e. the SPN here. To a large extent, the 
performance of the predictor is dependent on the accuracy of 
the estimated local variance. We use the Maximum A-
Posteriori Probability (MAP) estimation to estimate the local 
variance as following 
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where m  is the size of a neighbourhood mN  for each pixel. 

Here we take 3m = . The overall variance of the SPN 2

0
σ  is 

also unknown, but our experiments show that the impact of 
2

0
σ  is relatively low for the predictor. Similar conclusion is 

also made in wavelet domain [3]. The dependence of the 
correlations between the reference pattern and the noise 
residual on the overall variance is relatively flat. So we use 

2

0
9σ =  in all experiments to make sure that the predictor 

extracts relatively consistent level of the SPN.                                          
Finally, the estimated camera reference SPN is obtained 

by averaging all the residual noise N  extracted from the 
same camera. 

 

 
Fig. 2 Noise residue extracted by different filters 
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Our proposed SPN predictor based on CAI (PCAI) is 
adaptive to image edge and local variance, so the predicted 
SPN N has less scene noise from the original image than 
other denoising filters. Fig. 2 shows the noise residual N 
using the proposed PCAI compared with Mihcak’s wavelet 
filter [4] and BM3D filter [6]. It is observed that the 
proposed method can suppress the effect of image scene 
content very well. 

 
3. THE EXPERIMENTAL RESULTS 

In this section, we will examine the CSI performance of the 
proposed PCAI method. For fair comparison, we choose the 
newly developed detection statistic CCN [11]  to measure the 
similarity between the image noise residue and a camera’s 
reference SPN for all methods. Table 1 shows the image 
format, native resolution and imaging sensor property of the 
cameras used in the experiments (PS is short for PowerShot). 
We have two sub-image datasets for each camera: the test 
image dataset and original image dataset. All images are in 
JPEG format with the highest JPEG quality factor provided 
by the cameras, except in raw data format for the Nikon D40 
and Minolta A2. A camera identification experiment is 
performed on the luminance component with different image 
block sizes. All image blocks are cropped from the centres of 
the full size images. 
 

Table 1. Cameras used in the experiments 
Camera Brand Sensor Resolution Format 

Canon PS A3000 IS 1/2.3’’ CCD 3648x2736 JPEG 

Canon PS A610 1/1.8’’ CCD 2592x1944 JPEG 

Canon PS A620 1/1.8’’ CCD 3072x2304 JPEG 

Panasonic Lumix 

DMC-FZ30 
1/1.8’’ CCD 3264x2448 JPEG 

Nikon D300 
23.6×15.8mm 

CMOS 
4288x2848 JPEG 

Nikon D40 
23.7×15.6 mm 

CCD 
3040x2012 NEF 

Minolta A2 2/3’’ CCD 3272x2454 MRW 

 
We know that the camera type and image database used 

for CSI experiments could more or less influence the 
experiment results. So we will draw together the ROC curve 
of all the cameras, called the overall ROC curve [2], instead 
of ROC curve for each camera. We first extract the camera 
reference SPN using all images from the original image 
dataset (at least 100 images and most of them are blue sky 
images) for each camera. Then we select 200 test images 
taken by each camera randomly as positive samples and 
1200 test images taken by the other six cameras (each 
camera is responsible for 200) as negative samples. So we 
will obtain 200 positive and 1200 negative sample 
correlation values for each camera in order to draw the 
overall ROC curve.  

Figs. 3–5 show the overall ROC curves performance of 
our proposed PCAI compared with other SPN CSI methods. 

All the test images are of three sizes(i.e. 128x128, 256x256 
and 512x512 pixels) cropped from the centres of the 1400 
photos in the test image dataset. In order to show the detail 
of the ROC curves with low FPR (false positive rate), the 
horizontal axis of the ROC curve is in logarithmic scale. For 
the method “PCAI Phase SPN”, the noise residuals extracted 
by PCAI are whitened first and then averaged to generate the 
final camera reference SPN. “BM3D SPN” denotes the SPN 
extraction method with a BM3D denoising filter. 

 

 

10-4 10-3 10-2 10-1 100
0.88

0.9

0.92

0.94

0.96

0.98

1
Overall CSI ROC curves, 256x256

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

Basic SPN
MLE SPN
BM3D SPN
Phase SPN
PCAI SPN
PCAI Phase SPN

 
Fig. 4 The overall ROC curves for image size 256x256 pixels 
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Fig. 5 The overall ROC curves for image size 512x512 pixels 

The experimental results show that the proposed PCAI 
method outperforms the others and enhances the ROC 
performance of CSI, especially for small size images, e.g. 
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Fig. 3 The overall ROC curves for image size 128x128 pixels 
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128x128 and 256x256 pixels. Both the “PCAI SPN” and 
“Phase SPN” methods can achieve a 100% TPR (true 
positive rate) at experimental zero FPR on an image block of 
512x512 pixels. As the SPN extracted by PCAI has less 
scene noise, the whiten process of “PCAI Phase SPN” 
method can not further enhance the ROC performance, so its 
performance is similar to “PCAI SPN” method. 

Table 2 shows the TPR of different CSI methods at 
experimental zero FPR. The TPR of the proposed PCAI 
method is always the largest regardless of the image size is. 
The experimental results show that the proposed method can 
increase the TPR prominently in the case of trustworthy 
identification which is with a low FPR. The “BM3D SPN” 
performance for images of small size is not as well as that for 
full size images mentioned in [5] mainly because the BM3D 
filter needs more pixels information to perform a sparse 3D 
transformation. 

Table 2. The TPR of six methods at experimental zero FPR 

Method 
Image size (pixels) 

128x128 256x256 512x512 

PCAI SPN 0.727 0.987 1 

PCAI Phase SPN 0.724 0.984 1 

Phase SPN 0.713 0.975 1 

Basic SPN 0.664 0.940 0.992 

MLE SPN 0.587 0.944 0.993 

BM3D SPN 0.451 0.894 0.987 

The SPN becomes weak if the image is JPEG compressed. 
Figure 6 shows the overall ROC curves performance on a 
JPEG compressed image of 512x512 pixels with quality 
factor (QF) being 90%. Results with other size are similar. 
Experimental results show that the proposed method also has 
the best performance in resisting mild JPEG compression. 
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Fig. 6 The overall ROC curves with JPEG QF being 90% 

4. CONCLUSION 

In this paper, we propose a context adaptive SPN predictor 
used for SPN extraction and apply it to enhance the ROC 
performance of CSI. The proposed PCAI SPN method can 
suppress the effect of image content better because it is 
adaptive to image edge and local variance. Different from 
most of the existing methods of extracting SPN from wavelet 
high frequency coefficients, we extract SPN directly from 

the spatial domain with a pixel-wise adaptive Wiener filter, 
based on the assumption that the SPN is a white signal. 
Extensive experiments show that the ROC performance of 
the proposed method outperforms the existing state-of-the-art 
methods on different sizes of images and has the best 
performance in resisting mild JPEG compression. 
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