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Robust Detection of Image Operator Chain With
Two-Stream Convolutional Neural Network

Xin Liao Y, Member, IEEE, Kaide Li, Xinshan Zhu

Abstract—Many forensic techniques have recently been devel-
oped to determine whether an image has undergone a specific
manipulation operation. When multiple consecutive operations are
applied to images, forensic analysts not only need to identify the
existence of each manipulation operation, but also to distinguish the
order of the involved operations. However, image operator chain
detection is still a challenging problem. In this paper, an order
forensics framework for detecting image operator chain based
on convolutional neural network (CNN) is presented. Two-stream
CNN architecture is designed to capture both tampering artifact
evidence and local noise residual evidence. Specifically, the new
CNN-based method is proposed for forensically detecting a chain
made of two image operators, which could automatically learn
manipulation detection features directly from image data. Further,
we empirically investigate the robustness of our proposed method in
two practical scenarios: forensic investigators have no access to the
operating parameters, and manipulations are applied to a JPEG
compressed image. Experimental results show that the proposed
framework not only obtains significant detection performance but
also can distinguish the order in some cases that previous works
were unable to identify.

Index Terms—Image forensics, image operator chain, order
detection, convolutional neural network.

1. INTRODUCTION

UE to the powerful and user-friendly image editing soft-
ware, digital images can be easily altered without leaving
perceptible artifacts. Nowadays, image forensics has been used
for determining the authenticity, processing history, and the
origin of digital images content [1]. It aims at reconstructing
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what has happened to digital content in order to answer who has
done what, when, where, and how. A larger number of forensic
methods have been proposed for detecting a specific image
manipulation, such as resizing [2]-[4], median filtering [5], [6],
contrast enhancement [7], [8], copy-move forgery [9], [10], etc.

In a realistic scenario, multiple processing operations are
inevitably utilized to forge an image, which would weaken
or even erase the traces left by the previous operations. Thus,
researchers have focused on analyzing the manipulation chains
of multiple operators. Multiple JPEG compressions are discrim-
inated based on the statistical analysis of Benford-Fourier coeffi-
cients [11], [12]. Some forensic detectors have been reported to
detect a heterogeneous processing chain composed of double
JPEG compression interleaved by a specific operation (e.g.,
resizing [13], contrast enhancement [14], linear filtered [15]).
Instead of targeted detecting methods, there has been signif-
icant interest in the development of universal image manip-
ulation identification, designed to classify different types of
image processing operations by a universal feature set [16]—[19].
However, these forensic methods are designed to identify the
existence of a single operation in the presence of manipulation
chains.

In fact, apart from identifying the operation applied to the
images, investigators expect to detect the order of the involved
operations, so as to obtain the complete processing history and
determine who manipulated the images. Few positive efforts [20]
have been made to study the fundamental question of when
we can or cannot detect the order of image operations. The
works in [21], [22] formulated the order detection into gen-
eral multiple hypotheses testing problems, and then proposed
an information-theoretical order forensics framework based on
mutual information. Conditional fingerprints are defined in the
framework to understand why the order of operations is not
always detectable. However, since the proposed characteristic
footprints would be weakened by a further post-processing
operation, the order of image operations cannot be identified in
some cases. In addition, the existing approaches still fail to detect
the order of the operations in the previously JPEG compressed
images, and their performance usually degrades significantly.
It is necessary to further consider the practical scenario where
manipulations are applied to a JPEG compressed image.

Recently, as a common deep learning network, convolutional
neural network (CNN) [23] has attracted increasing attention
due to the excellent performance, especially in image classi-
fication, document analysis, and natural language processing.
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Researchers have begun to investigate the potential of CNN in
image forensics, such as image median filtering forensics [24],
resampling detection [25], camera model identification [26],
[27], recapture forensics [28], copy-move forgery forensics [29],
universal image manipulation identification [30], [31], and mul-
tiple JPEG compression detection [32]. Few attempts to in-
vestigate CNN in forensically determining the order of image
processing operations. Recently, anovel CNN with a constrained
convolutional layer is employed to detect the image operator
chain [33], [34]. It could directly extract low-level pixel rela-
tionships that capture the unique forensic fingerprints induced
by an ordered chain consisting of two image operations. Note
that these previous existing CNN-based image forensic works
basically assume that the operating parameters of training im-
ages and testing images are the same, i.e., forensic analysts
have access to the operating parameters of suspected images.
However, it is not reasonable in practical applications to assume
that the operating parameter settings are available.

In this paper, we propose a CNN-based forensic framework
for detecting the image operations. While traditional image
forensic algorithms mainly extract features manually, the new
data-driven framework could automatically learn and obtain
manipulation features. A two-stream operator chain forensics
CNN network is presented, where one stream explicitly detects
tampering artifacts and another stream specially extracts local
residual features. To evaluate our approach, some typical image
operations are used to collectively constitute ordered chains.
Experimental results demonstrate that the proposed framework
not only can detect the image operator chain with high accuracy
but also is able to identify the order of the operations that the
existing works cannot. Considering the practical scenarios in
which a forensic investigator has no access to the prior informa-
tion about the operating parameters, we empirically investigate
the robustness of the proposed method when the operating
parameters are unknown but within certain ranges. Furthermore,
our proposed method is also effective in realistic scenarios where
the processed image is JPEG compressed.

The rest of the paper is organized as follows. In Section II,
we formulate the problem of image operator chain forensics,
and then study the robustness issues in two practical scenarios:
detection without prior information and identification for JPEG
compressed images. Section III first proposes the two-stream
CNN-based image operator chain detection framework. The
corresponding well-designed preprocessing operations are pre-
sented, and the transfer learning strategy for image forensics
performance enhancement is also given. Extensive experimental
comparisons and analysis are shown in the next section, demon-
strating the effectiveness of our proposed framework. Section V
provides the corresponding discussions. Finally, the conclusion
is made in Section VL.

II. DETECTING AN ORDERED CHAIN
OF IMAGE PROCESSING OPERATIONS

In this section, we first formulate the target problem of de-
tecting the image operator chain. Then, we consider the practical
scenarios where a forensic investigator has no access to the prior

information about the operating parameters, and investigate how
to identify the image operator chain without prior information.
Finally, we discuss the forensic detector used to identify the
processing history of JPEG images.

A. Problem Formulation

Assuming an image operator chain might contain two image
operations A and B, the detection of image operator chain could
be formulated as the following multiple classification problem.
The possible processing history of a given image would fall into
one of the five classes.

Hy : The image is unaltered.

H; : The image is altered by A only.

H, : The image is altered by B only. (1)
Hs : The image is altered by B then altered by A.

H, : The image is altered by A then altered by B.

The image operator chain is not always detectable due to the
interplay between image processing operations. Later applied
operations would affect and disguise the fingerprints left by ear-
lier applied operations. Recently, researchers designed the hand-
crafted features to detect the chain consist of image resizing and
Gaussian blurring [22]. By observing the different fingerprints in
the discrete Fourier transform (DFT) of an image’s p-map [2], the
above five classes could be distinguished. However, the detection
results are unfavorable. In some cases, they can hardly tell the
difference between Hs and Hy, and thus the order of image
resizing and Gaussian blurring cannot be determined. In fact,
the forensic detectors are heuristically designed, and only two
hand-crafted features about the suspected images are adopted.
The feature selection depends heavily on the domain knowledge,
and the classification performance is mainly determined by the
threshold values. Further, the classification is independent of the
feature extraction, and thus the prior feature extraction could not
be optimized together with the classification.

In this paper, rather than traditional image forensic paradigm,
our work focuses on extracting features and learning the hi-
erarchical representations through multiple layers of nonlin-
ear processing. In this way, a CNN-based forensic detector
could combine feature extraction and classification steps in the
unique framework. The manipulation detection features could
be learned directly from the image data set. Forensic analysts
do not need to think about the complicated feature selection and
feature design.

B. Identification Without Prior Information

The knowledge of operation parameters for a forensic investi-
gator plays an important role in determining the order of image
processing operations. Note that most of the existing CNN-based
image forensic approaches rely on the assumption that training
and testing data are generated by image manipulations with the
same parameter settings. However in a practical application,
the operating parameters of suspected images are unknown,
and the mismatch of the parameters should be considered [35].
Thus, the forensic investigator has to identify the ordered chain
of image processing operations without prior information. If
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HO H1 H2 H3 H4

HO iXexv 0.0436
H1- 0.0004 0.5931

0.0232 0.0002 0.0003

0.0101 0.3887 0.0077 -
H2\- 0.0002 0.001 0.0729
H3 - 0 0.0019 0.0014
H4 - 0.0001 0.0015 0.0155

Fig. 1. Example of identification without prior information. Confusion matrix
is obtained by directly applying the constrained CNN model in [33], [34]
(training images are created by s1 = 1.2, 1 = 0.7) to test the suspected images
(created by so = 1.5, v2 = 1.0). (A: Upsampling B: Gaussian blurring).

the mismatching trained CNN model is selected, the detection
accuracy would decrease drastically. For example, assuming the
constrained CNN model in [33], [34] is trained by the image
data set created by image upsampling (scaling factor s; = 1.2)
and Gaussian blurring (Gaussian blurring variance vy = 0.7), we
directly apply it to test the suspected images generated by image
upsampling (s = 1.5) and Gaussian blurring (v, = 1.0). Fig. 1
reports the confusion matrix for image operator chain detection.
It can be observed that the five classes are not distinguished.
Thus, the image operator chain cannot be detected in this case.

In fact, identification without prior information is a more real-
istic and significant scenario, which would require the forensic
detector to be more robust and general. In this paper, for a
forensic investigator, we reasonably assume that the operating
parameters are unknown but within certain ranges. For instance,
an experienced analyst can have an estimation of the Gaussian
blurring variance, but he/she is unlikely to know the exact value.
Therefore, we will investigate the robustness of the proposed
CNN in practical scenarios in which forensic analysts have no
access to the parameter settings, but they only know a possible
range of the parameter. In order to obtain a robust CNN model,
we collect the image data in a much more extensive and system-
atic manner.

Specifically, in the deep learning procedure, we would train
the CNN model by using a variety of images altered with a
mixture of operating parameters, i.e., train the network using
a limited set of possible parameter values as anchor points.
Assume the operating parameter p4 of the image operation A
is set as pa € {pYy,p%, -, p'y} and the operating parameter
pp of the image operation B is set as pp € {pk,p%,..., P’}
For Hj class, we collect N unaltered images. The altered images
for H; class are respectively manipulated by using the operation
A with the parameter p4, and then a total of N x m, images
are created. Similarly, we obtain N x my, altered images for H»
class by applying operation B with the parameter pp. For Hj
and H, classes, there are m, X m; combinations of operation
parameters, and thus each class has N x m, X m; images.
Finally, a total of N x (2mgmp + mg + my, + 1) images will
be fed into the CNN model.

For some image operations with continuously varied parame-
ters, our proposed solution does not require a prohibitively high

number of points. The traces left by a specific manipulation
with different values of operation parameters are similar. As
long as the possible range of operation parameters are given,
our solution could select limited parameter values as anchor
points, train CNN model by using these anchor points, and finally
achieve good performance for detecting image operator chain.
The intervals of the selected anchor points should be as small as
possible. In our paper, a simple equal step is used as the interval.
In the future, we plan to investigate the relationship between
the quantization of tampering traces and the interval selection.
Furthermore, our proposed solution is simple yet efficient, and
is also applicable to other CNN-based image forensics methods,
which is validated by the experimental results in Section I'V-F.

C. Robustness of JPEG Compressed Images

Nowadays, the JPEG standard is the most widely used com-
pression technique of digital images. A vast amount of digital im-
ages taken by digital cameras are saved in the JPEG compressed
format. Most forensics tools work well only for uncompressed
images and their accuracies might drop significantly with JPEG
compression. In order to create a forged JPEG image, the image
is usually loaded into a photo editing software, manipulated by
multiple heterogeneous processing operations and then re-saved
in JPEG format again. Therefore, given a suspicious JPEG
image, it is important to further identify the processing history.

In this paper, we will study the most common scenario in
practice when the processed image is JPEG compressed. Specifi-
cally, we investigate double JPEG compressed images when two
image operations A and B are applied between the two compres-
sions. The following five classes should be distinguished when
forensic analysts acquire a JPEG compressed image.

Hy @ The image is single compressed with quality
factor QF1.
H; : The image is double compressed with quality
factors QF1 then QF2 interleaved by A.
Hs : The image is double compressed with quality
factors QF1 then QF2 interleaved by B. 2)
Hs : The image is double compressed with quality
factors QF1 then QF2 interleaved by B then A.
H, : The image is double compressed with quality
factors QF1 then QF2 interleaved by A then B.

Note that in [22], when two image manipulations resizing
and Gaussian blurring are applied to a JPEG compressed image,
the fingerprints would be weakened by the last applied JPEG
compression. Thus, five classes are easily confused with each
other, and thus the image operator chain could not be detected.
In fact, in the presence of post-processing operation, the char-
acteristic artifacts exploited to detect a specific operator would
be severely suppressed. The post-processing operation would
not only weaken or even erase the specific footprints left by
previous processing operations, but also perturb the characteris-
tic patterns presented in the DCT distribution of JPEG images.
Therefore, we could exploit the peculiar traces left in the DCT
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domain. In this paper, we try to capture the evidence by analyz-
ing the anomalous statistical properties characteristic of DCT
coefficients.

III. THE CNN-BASED IMAGE OPERATOR
CHAIN DETECTION FRAMEWORK

In this section, we first illustrate the detailed architecture of
the proposed two-stream CNN network. Then, considering four
typical image processing manipulations, we investigate various
preprocessing operations for different image operator chains.
Furthermore, a preprocessing operation for JPEG image opera-
tor chains is presented. Finally, the transfer learning strategy for
image forensics performance enhancement is given.

A. The Architecture of Two-Stream CNN Network

CNN tries to study the relationship between the input and the
output and store the learned experience in their filter weights.
These networks are composed of multiple layers, each of which
computes convolutional transforms, followed by nonlinearities
and pooling operators. Assuming that /' is nonlinearity acti-
vation function (e.g., Sigmoid, Tanh, ReLU), and “pooling”
broadly refers to some forms of combining “nearby” signal
values (e.g., averaging) or picking one representative value (e.g,
maximization), we have

xé = pooling | F Zxéfl X wfj + bé» 3)
i=1

where 2 is j-th feature map output in the hidden layer [, w,
is the weight of trainable convolutional kernel connecting the
i-th input feature map in the hidden layer [ — 1 and the j-th
output feature map in the hidden layer /, and bé- is the training
bias term for j-th output feature map in the hidden layer [. The
weights and biases would be learned and renewed during the
backpropagation.

Ilustration of our proposed two-stream CNN network for image operator chain detection.

The architecture of our proposed CNN network is illustrated
in Fig. 2, where the size of filters in each layer and the dimensions
of their corresponding feature maps are depicted. In our work,
considering the computing capacity, the input layer is the color
image patches with the size of 64 x 64 x 3. We propose a novel
two-stream CNN network to capture both tampering artifact
evidence and local noise residual evidence. One of our proposed
streams is named spatial convolution stream and the other one
is called transform-feature extraction stream. The fusion of
two streams could reveal both evidence of high-level visual
tampering artifacts and low-level noise residual features.

The proposed spatial convolution stream consists of three
convolutional layers and two pooling layers, which could learn
visual tampering artifacts and generate more informative fea-
tures. The first convolutional layer filters the input data with 40
kernels of size 5 x 5, and then the rectified linear units (ReLLU)
and max-pooling layer are applied. ReLU uses the nonlinearity
activation function F'(x) = max(z,0), thus clipping negative
values to zero. In the pooling layer, the filters of size 2 x 2 and
stride of 2 could retain the maximum value and discard 75%
of the activations, so as to decrease the spatial resolution and
improve the convergence performance. Then 40 corresponding
feature maps with the size of 30 x 30 are generated. The second
convolutional layer takes the output of the first convolutional
layer as the input and convolves them with 200 kernels of size
5 x 5. The nonlinearity activation function is ReLU, and the
pooling layer is the max pooling, which would yield 200 feature
maps with the size of 13 x 13. The third convolutional layer is
100 kernels of size 3 x 3. The ReLU function is also used to
activate the outputs. Finally, we have 100 feature maps with the
size of 11 x 11.

In order to reveal co-occurrence based local features and
capture the hidden residual information, the proposed transform-
feature extraction stream consists of one well-designed pre-
processing layer, five convolutional layers, and two pooling
layers. We specially design the preprocessing layer based on
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the characteristics of two involved manipulations in the image
operator chain, which would be presented in detail in the next
subsections. The first convolutional layer filters the input data
with 20 kernels of size 3 x 3, and the ReLLU function is used.
Then 20 feature maps with the size of 62 x 62 are obtained.
The second convolutional layer takes the output of the first
convolutional layer as the input and convolves them with 40
kernels of size 3 x 3. We utilize the ReLU function to activate the
outputs. The max pooling would yield 40 feature maps with the
size of 30 x 30. The third, fourth, and fifth convolutional layers
are 100 kernels of size 3 x 3, 200 kernels of size 3 x 3, and 100
kernels of size 3 x 3, respectively. The ReL U function is also
applied to activate the outputs. After the fourth convolutional
layer, the max pooling layer is utilized. Finally, we obtain 100
feature maps with the size of 11 x 11.

The features of two streams are fused to detect the image
operator chain and obtain better performance. We fuse two
proposed streams by using concatenation and 400 convolutional
filter kernels of size 1 x 1. Note that 1 x 1 convolutional filters
are used to effectively learn new relationships among different
feature maps by doing dot product in three dimensions, which
was first investigated and named “Network in network™ [36].
The 1 x 1 convolutional filters are added to the proposed CNN
network, and they are used mainly as dimension reduction
modules to reduce the size of the network. Compared with a
standard CNN architecture, the 1 x 1 convolutional filters could
increase the number of feature maps with fewer parameters,
and realize complex and learnable interactions of cross-channel
information. The ReLLU function is used to activate the outputs.
Then, we have 400 neurons in the first fully-connected layers
(FC1), which converts previous outputs into a vector. The second
fully-connected layers (FC2) has 5 neurons corresponding to
five classes in Egs. (1), (2), and its output is fed into a softmax
classifier. Finally, we determine whether the image operator
chain could be detected.

In our proposed CNN network, no padding layer is included
in the convolutional layers. A padding layer could prevent fur-
ther dimensionality reduction and image border distortion. It is
always useful for the tasks of object detection and localization.
Generally, when the object is undetermined, image border dis-
tortion will result in poor performance. However, for our task of
image operator chain detection, the traces left by the tampering
manipulations are usually fragile. Zero elements introduced by
padding layers would weaken the traces, which might have a
negative effect on tampering detection. In addition, our paper fo-
cuses on global tampering (i.e., multiple consecutive operations
are applied to the whole image), so we do not need to consider the
object detection and localization. Experimental results in Sec-
tion I'V have also shown that our proposed CNN network without
padding layer could achieve significant detection performance.
Note that detection and localization of splicing, copy-move,
removal are popular problems in multimedia forensics today.
In future work, we plan to extend our approach to a data-driven
order forensic framework for detecting image operator chains
consisting of splicing, copy-move, removal operations (e.g.,
NIST image datasets [37]), and then the padding layer will
become an indispensable component in the CNN network.

TABLE I
PREPROCESSING OPERATIONS FOR DIFFERENT IMAGE OPERATOR CHAINS

Image operator chains Preprocessing operations
I' =|DFT(I)|
A filter kernel K'g in image steganalysis
I' = Gaussian(I) — 1
I = \DFT(Gaussian(I) - I)\

A Laplacian filter kernel Ky,

Upsampling + Gaussian blurring

Upsampling + Median filtering

Gaussian blurring + Median filtering

Upsampling + USM sharpening

Gaussian blurring + USM sharpening
Median filtering + USM sharpening

LBP (local binary pattern)

B. Well-Designed Preprocessing Operations for
Non-JPEG Images

In order to accurately capture local noise residual evidence
and detect the image operator chain, the specific preprocess-
ing operations are designed in the transform-feature extraction
stream. In this subsection, we propose various preprocessing
operations for different image operator chains, which are illus-
trated in Table I. Four typical image processing manipulations
are considered, image upsampling with bilinear interpolation,
Gaussian blurring, median filtering and unsharp masking (USM)
sharpening. Thus, we have six different chains made of two
image operations.

For the image operator chain of image upsampling and Gaus-
sian blurring, the linear interpolation process in image upsam-
pling will introduce periodic artifacts into an image, and thus
lead to distinct peaks of DFT of the image’s p-map. Note that
there is no distinct periodic artifact in an unaltered image, and
thus it can be considered as a periodic noise resulted from up-
sampling operation. Furthermore, in the Gaussian blurring oper-
ation, the convolution process would increase the co-correlations
between neighboring pixels, so Gaussian blurring operation
would leave high-frequency noise in the DFT of the image.
Therefore, we could adopt DFT as the preprocessing operation
described as follows. We believe that it would be easier to extract
the noise residual when transforming an image from spatial
domain to frequency domain.

I' = |DFT(D)| )

where I is the original image, DFT(I) means applying DFT
transform on the image I, | - | is the modulus operation and I’ is
the output of preprocessing.

For the image operator chain of image upsampling and median
filtering, the image upsampling operation will result in the
image’s periodic artifact. The median filtering is a nonlinear
digital filtering technique, which could preserve edges while
removing noise. When the median filtering operation is applied
to an image, we will replace each pixel with the median of
neighboring pixels. Note that the following filter kernel Kg,
first introduced in the weighted stego image steganalysis [38],
can be used for exposing both image’s periodicity and image
pixels changes. Therefore, we could apply the filter operation
based on the kernel Kg as the preprocessing operation.

-0.25 0.5 —-0.25
Kg=1] 05 0 0.5 (5)
—-0.25 0.5 —0.25
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For the image operator chain of Gaussian blurring and median
filtering, both of the two manipulations will slightly modify
the image texture and reduce image noise. Thus, the difference
preprocessing operation based on the Gaussian filter could be
utilized. Through this preprocess, the Gaussian filter residual of
an image is obtained, which can suppress the interference caused
by the presence of image content. By eliminating the interfer-
ence of irrelevant information, the traces left by the tampering
manipulations would be revealed. The difference preprocess is
operated by using the following equation.

I' = Gaussian(I) — I (6)

where I is the original image, Gaussian(I) is the result of
Gaussian blurring, the Gaussian blurring variance v = 5 and
the window size of Gaussian blurring is chosen to be 5 x 5. I’
represents the Gaussian filter residual, which is the difference
between Gaussian(l) and I.

For the image operator chain of image upsampling and USM
sharpening, the upsampling manipulation would bring about the
image’s periodic artifact, and the USM sharpening operation is
a typical filter that amplifies the high-frequency components
of an image. The differential operation can extract the image’s
high-frequency texture features, and the DFT operation is useful
in exposing the image’s periodic artifact. Thus, we jointly utilize
both to capture evidence from the manipulated images. The
preprocessing procedure is presented as below.

I' = |DFT (Gaussian(I) — I) | 7

where the Gaussian blurring variance v = 0.5 and the window
size of Gaussian blurring is chosen to be 3 x 3. We specially
adopt the Gaussian blurring with the small variance and small
window size, in order to efficiently reveal the subtle residuals
and yield better performance for tampering detecting.

For the image operator chain of Gaussian blurring and USM
sharpening, the convolution process in the Gaussian blurring
operation would increase the co-correlations between neigh-
boring pixels. It will lead to the result that the manipulation
features have a relatively high similarity with its reference one.
Moreover, for a given image, the USM sharpening operation
would amplify the high-frequency parts. By using the Laplacian
operator, we can obtain the second derivative of an image, which
could expose the image’s high-frequency texture features and
reveal the local structural relationships among the pixels of
manipulated images. Thus, we apply the filter operation based
on the following Laplacian filter kernel K, as the preprocessing
operation in the transform-feature extraction stream.

1 1
Kr=1|1 -8 1 ®)
1 1

For the image operator chain of median filtering and USM
sharpening, the USM sharpening operation would expand the
high-frequency portions. The process of calculating the median
value in the median filtering operation would erase the image
details. Note that LBP (local binary pattern) [39] is a powerful
descriptor for the image texture, which could characterize the

magnitude relationship between the central element and its
neighbors. Thus, we utilize LBP as the preprocessing operation
to expose the changes of the image texture. Given a center pixel
I, and its neighbor pixels I, (p € {0,..., P —1}) on a circle
of radius Rz, the LBP operator is defined as below.

P-1
LBP =Y s(I, ~I.) x 2" )
p=0

where s(x) is an indicator function defined as

d@={L$ZO

0, <0 19

In our work, the number of selected neighboring pixels P = 4,
and the radius R = 1.

For non-JPEG images, our paper designs the well-directed
preprocessing operations for detecting different image operator
chains. In order to capture local noise residual evidence, these
specific preprocessing operations are used to suppress the in-
terference from image content, and reveal the local structural
relationships among the pixels of manipulated images. We be-
lieve that the choice of preprocessing operations could be helpful
in extracting the image’s pixels changes, periodicity artifact,
and high-frequency texture features. Furthermore, not all the
image manipulations would leave distinct tampering artifacts in
agiven feature space. Evenif a universal preprocessing operation
could be used for detecting different image operator chains, the
targeting of the forensic detector should be considered, and the
detection performance might be improved by designing the well-
directed preprocessing operation. Thus, different preprocessing
operations are tailored to the specific image operator chains.

C. A Preprocessing Operation for JPEG Images

For detecting different JPEG image operator chains, we de-
sign DCTR with 5 x 5 DCT basis patterns, as a preprocessing
operation in the transform-feature extraction stream. Note that
DCTR and its variation [40] are the efficient features set for
JPEG images steganalysis, which could be viewed in the JPEG
domain as a projection-type model with orthogonal projection
vectors. They have exhibited excellent performance in detecting
steganography in JPEG images. We believe that the DCTR
features contain much more information that would be quite
useful for JPEG image forensics, and a substantial component
of the fine-grain structure could be exploited. Therefore, in
order to determine the processing history of a JPEG image, we
select twenty-five 5 x 5 DCT basis patterns B! = (B,(,’fnl )) as
the specific kernels in the convolutional phase of the proposed
CNN network, i.e., a well-designed preprocessing operation
used in the transform-feature extraction stream for all possible
processing operator chains. It would be considered as a general
detector of different processing operations applied to an image
prior to JPEG compression.

DCTR with 5 x 5 DCT basis patterns is a hand-crafted convo-
lutional phase, which takes decompressed JPEG images as input
and twenty-five residual maps as output. Twenty-five 5 x 5 DCT
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basis patterns B%) = (B%D) are defined as

k(2 1 (2 1
B,(ff,f) w;;wl cos ~ ( ;T(L)+ )cosﬂ( 71104_ ) (11)
where 0 < k,1 < 4,0 < m,n < 4, w; is defined as follows.
1, i=0
wi_{\/i,lsiszl (12)

Given a M x N JPEG input image, it is firstly decompressed
to the corresponding spatial-domain version I. I is convolved
with B(%1) to twenty-five residual maps R (%)) with the size of
M x N as below.

R®D =14 Bk (13)
D. Transfer Learning Strategy for Image Forensics
Performance Enhancement

Though the exiting CNN-based image forensic approaches
are effective for image tampering detection, the detection per-
formance is not always satisfying when the images are altered
by lower values of operation parameters. This is mainly due
to the fact that manipulations with lower values of operation
parameters might leave less forensic traces, which makes the
tampered image much harder to detect. Note that there are some
common forensic patterns shared between image operations with
different values of operation parameters. Transfer learning [41]
is usually used to explore the shared domain-specific knowledge
contained in the related tasks and improve the performance
of the target task, so it is a good way to address the above
issue. We believe that feature representations learned with a
pre-trained CNN for detecting manipulations with higher values
of operation parameters can be efficiently transferred to improve
the learning of features for detecting the same manipulations
with lower values of operation parameters.

In CNN-based image operation chain detection framework,
those manipulations fingerprints that are left by image operator
chain with higher values of operation parameters (i.e., high-
intensity manipulations) could be considered as the auxiliary
information, which can be efficiently utilized to help the task
of detection performance for image operator chain with lower
values of operation parameters (i.e., low-intensity manipula-
tions). The transfer learning strategy in CNN-based detecting
image operator chain framework is illustrated in Fig. 3. We
will introduce how the feature representations could be learned
from the source task (order detection for high-intensity manip-
ulations) and transferred to the target task (order detection for
low-intensity manipulations). We first pre-train a CNN model
on the images altered by high-intensity operations A with the
parameter pfl and B with the parameter p! (source task) by
using the backpropagation. Then we transfer the weights of all
the layers in the pre-trained model to the target task. That is to
say, the CNN model in the target task would be initialized with
the feature representations learned from the pre-trained model,
instead of random initialization. Finally, we fine-tune it on the
images altered by low-intensity operations A with the parameter
pk and B with the parameter p’ (target task) by continuing the
backpropagation.

| Step 1: Pre-training on source task

I Input layer Output layer

The hidden layers

|
| Training images:
High-intensity operation A parameter: pA ::> === =) —)
| High-intensity operation B parameter: p;’
|
|

Source task

L ___ ,
__________________ Transfer weights
| Step 2: Fine-tuning on target task

|
Training images:
4 \_‘/ ;‘> q

Low-intensity operation A parameter: P
Low-intensity operation B parameter: p’:

| Target task Input layer The hidden layers Output layer

Fig. 3. Illustration of transform learning strategy in CNN-based detecting
image operator chain framework.

IV. EXPERIMENTAL RESULTS

In this section, we conduct several experiments to demonstrate
the effectiveness and robustness of the proposed CNN-based
framework. Following the experimental setup, we first detect the
image operator chain by using the proposed CNN with known
parameter settings. To verify the robustness of our proposed
framework, the order detection results of the proposed CNN
without prior information are given. Then, the operator chain
detection is examined when the processed image is stored in the
JPEG format. Next, the impact of two-stream fusion will be il-
lustrated in an ablation study. Finally, the detection performance
comparisons of the proposed CNN method with state-of-the-art
methods are provided.

A. Experimental Setup

We select 1,000 color images from UCID database [42] to
generate training and validation databases. We crop them into
image blocks with the size of 256 x 256, subdivide each image
block into 16 non-overlapping 64 x 64 image blocks, and have
16,000 unaltered image blocks. A set of altered images is created
by applying the corresponding operations to these selected im-
ages according to Eq. (1). Finally, a total of 80,000 image blocks
are fed into the proposed CNN. 80% of these image blocks are
used for training, while the remaining are utilized for validation.
BOSSbase image set [43] consisting of 10,000 color images is
used to acquire the testing image database. The corresponding
operations are applied to generate the manipulated images, and
then a total of 50,000 color images are obtained. We only crop
each image in the center into 64 x 64 block and then obtain a
total of 50,000 testing image blocks.

All the experiments are conducted by using a modified ver-
sion of the Caffe Toolbox [44]. We run our experiments using
NVIDIA TITAN XP GPU with 12 GB RAM. To facilitate
this, we convert our datasets to the LMDB format. Mini-batch
stochastic gradient descent is utilized to solve all the CNN in
the experiments. The cross-entropy loss function is adopted to
minimize the distance between the true label and the predicted
label. In the training and validation phase, the batch size is set
to 64 images, the momentum value is fixed to 0.9, the weight
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TABLE II

SUMMARY OF AVERAGE DETECTION ACCURACIES OF DIFFERENT IMAGE OPERATOR CHAINS AND OPERATION PARAMETERS SETTINGS

Parameter Settings in Image Operator Chain

Average Detection Accuracies

Image Operator Chain
Detection with Known
Parameter Settings

Upsampling factor s = 1.5, 1.2, Gaussian blurring variance v = 1.0, 0.7

96.23%, 94.05%, 91.21%, 93.77%

Median filtering window size w = 5 x 5,3 x 3, USM sharpening radius r = 3,2

84.51%, 81.98%, 86.19%, 85.76%

Gaussian blurring variance v = 1.0, 0.7, USM sharpening radius r» = 3,2

88.51%, 86.75%, 87.30%, 86.69%

Upsampling factor s = 1.5, 1.2, Median filtering window size w =5 x 5,3 x 3

91.66%, 92.51%, 86.63%, 89.17%

Gaussian blurring variance v = 1.0, 0.7, Median filtering window size w =5 X 5,3 X 3

94.02%, 92.61%, 91.99%, 91.74%

Upsampling factor s = 1.5, 1.2, USM sharpening radius r» = 3,2

89.16%, 88.33%, 86.46%, 85.06%

Upsampling factor s = 1.5, 1.2, Gaussian blurring variance v = 1.0, 0.7, cubic interpolation kernel
(different interpolation kernel)

94.36%

Source task: Upsampling factor s = 1.3, USM sharpening radius » = 3

Transfer Learni
Target task: Upsampling factor s = 1.2, USM sharpening radius » = 1 (Transfer Learning)

80.49% — 82.07%

Source task: Gaussian blurring variance v = 0.7, USM sharpening radius r = 3

Transfer Learnin
Target task: Gaussian blurring variance v = 0.6,, USM sharpening radius r = 2 ¢ e

81.90% — 83.40%

Image Operator Chain
Detection without
Prior Information

Upsampling factor s € (1.5, 1.8), Gaussian blurring variance v € (0.7,1.0)
(The parameters are inside the range)

95.13%

Gaussian blurring variance v € (0.7, 1.0), Median filtering window size w = 5 x 5 or 3 x 3
(The parameters are inside the range)

92.42%

Upsampling factor s = 1.4, 1.9, Gaussian blurring variance v = 1.1
(The parameters are outside the range)

85.96%, 86.12%

Upsampling factor s = 1.5, Gaussian blurring variance v = 1.0, QF1=75, QF2=85 90.20%

Upsampling factor s = 1.5, Gaussian blurring variance v = 1.0, QF1=85, QF2=85 85.32%

Upsampling factor s = 1.2, Gaussian blurring variance v = 0.9, QF1=70, QF2=90 85.88%

Image Operator Chain Gaussian blurring variance v = 1.0, Median filtering window size w = 5 x 5, QF1=75, QF2=85 88.18%

Detection for JPEG Gaussian blurring variance v = 1.0, Median filtering window size w = 5 x 5, QF1=85, QF2=75 84.07%

Compressed Images Qalussmn blurrmg variance v = 1.0, Med1ar? filtering \-deow size w =5 x5 (non-matching QF1) 83.24%
training JPEG images: QF1=85, QF2=75, testing JPEG images: QF1=80, QF2=75

Upsampling factor s = 1.5, Median filtering window size w = 5 x 5, QF1=75, QF2=85 86.75%

Upsampling factor s = 1.5, Median filtering window size w = 5 x 5, QF1=85, QF2=75 78.25%

Gaussian blurring variance v = 0.8, Median filtering window size w = 3 x 3, QF1=70, QF2=90 87.30%

Gaussian blurring variance v = 1.0, Median filtering window size w = 5 x 5, QF1=90, QF2=70 83.65%

Upsampling factor s = 1.5, USM sharpening radius » = 3, QF1=80, QF2=90 85.35%

Upsampling factor s = 1.5, USM sharpening radius » = 3, QF1=75, QF2=85 86.45%

Upsampling factor s € (1.5,1.8), Gaussian blurring variance v € (0.7,1.0), QF1=80, QF2=90 85.35%

(The parameters are inside the range)

decay is 0.0005, the maximal iteration epoch is 180, and the
learning rate is initialized to 0.001. The step size is 60 and the
gamma is 0.2, which indicates that the learning rate is scheduled
to decrease to 20% every 60 epochs. For the transfer learning,
during the fine-tuning stage, we first initialize a CNN with the
pre-trained model, and divide the initial learning rate by 10 and
then train the CNN. The maximal iteration epoch and the stepsize
would be reduced by half.

B. Image Operator Chain Detection Results of the
Proposed CNN With Known Parameter Settings

In this subsection, we evaluate the effectiveness and feasibility
of our proposed CNN to detect the image operator chain with two
different manipulations and various operation factors. Following
the existing CNN-based image forensic approaches, we will
utilize the corresponding trained CNN model to test the images
altered by using the same parameter settings. Table II provides
the summary of average detection accuracies of different image
operator chains and operation parameters settings. Some typical
confusion matrices are shown in Fig. 4 and others are given in
Figs. A1-A4 in the Appendix due to space limitations. It can
be observed that the proposed CNN could distinguish the image
operator chains with high accuracy.

Fig. 4(a) reports the confusion matrix obtained by apply-
ing our proposed CNN to detect the image operator chain of

upsampling and Gaussian blurring, when the upsampling factor
s = 1.5 and Gaussian blurring variance v = 0.7. The maximum
element in each row locates at the diagonal line of the confusion
matrices. In fact, the diagonal elements denote the classification
accuracy of each class and the remaining are the error rates. The
average classification accuracies are 94.05%, and the proposed
CNN is able to distinguish each class in the image processing
history with high accuracy. It is worth pointing out that [22]
failed to determine the order of the operations in this case. We
believe that the proposed CNN could learn subtle fingerprints
left by the image operator chain of upsampling and Gaussian
blurring.

Fig. 4(b) reports the confusion matrix obtained by using our
proposed CNN, when median filtering window size w = 5 X 5
and USM sharpening radius value = 3. H3 represents that the
image is altered by USM sharpening then altered by median
filtering, and H, represents that the image is altered by median
filtering then altered by USM sharpening. In this sense, /{3 and
H, can be considered as “inverted” operator chains. Hj is really
harder to predict than H,. As far as we are concerned, there
are two reasons: 1) As a powerful descriptor for image texture,
our proposed preprocessing operation LBP is more efficient for
detecting USM sharpening, and could capture the evidence left
by the latter operation in Hy (i.e., USM sharpening). 2) The
process of calculating median values in the median filtering
operation would modify image texture and erase image details,
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HO HI H2 H3 H4 HO HI H2 H3 H4

0.0788 0.0007 0.0001 - HO 0.0868 0.0194 0.0245 -

0.0877 0.0009 H

0.0002

0.9358 0.0612 H.

=}

0.0992

0.0249 H

o5}

0.0002
H4\- 0.0014
(a) Upsampling factor s = 1.5, (b) Median filtering window size
Gaussian blurring variance v = 0.7. w = 5 X 5, USM sharpening radius
(A: Upsampling B: Gaussian blur- value r = 3. (A: Median filtering B:
ring) USM sharpening)

HO HI H2 H3 H4 . HO HI H2 H3 H4

0.0064 0.0803 0.0088 0.0169 - HO 0.0051 0.0957 0.0055 0.0092 -

0.1518 0 H1 0.1182 0.0006

H2 0.0001 0.0011 0.0543 H2|- 01093 0.0001 0.0003

H3 0 0.1427 H3- 0.0021 0.1522

H4

0.0003 0.0009 0.0003 H4|- 0.008 0.0049

0.0022 0.0008

(c) Gaussian blurring variances v = (d) Upsampling factor s = 1.5, USM
1.0, USM sharpening radius value sharpening radius value r = 3. (A:
r = 3. (A: Gaussian blurring B: Upsampling B: USM sharpening)
USM sharpening)

Fig. 4. Confusion matrices for order forensics of image operator chain by
using the proposed CNN with known parameter settings.

so the trace left by USM sharpening will be extremely weakened
by median filtering. In fact, the detection performance not only
depends on our purposed CNN-based method, but also lies in
the kinds of manipulations and the order between them.

We detect the image operator chains of Gaussian blurring and
USM sharpening, upsampling and USM sharpening. Gaussian
blurring variance v = 1.0, upsampling factor s = 1.5, USM
sharpening radius value 7 = 3. The confusion matrices are
shown in Fig. 4(c, d). It is shown that the proposed CNN
could respectively achieve the average classification accuracies
of 88.51% and 89.16%, and the maximum value in each row
locates at the diagonal line of the confusion matrices. Since the
last processing operation always leaves some traces, so [{; and
Hj are usually difficult to tell apart, as well as Ho and Hy.
It is worth noting that H (altered by USM sharpening only) is
sometimes confused with H (unaltered). The substantial reason
is USM sharpening with a smaller radius has little influence on
the original image. USM sharpening is a well-known technique
used in photography to enhance the visual quality of an image
by sharpening edges of the elements without increasing noise or
blemish. Radius affects the size of the edges to be enhanced or
how wide the edge rims become. Since higher radius values
would cause halos at the edges (a detectable faint light rim
around objects), our experiments utilize a smaller radius. The
modification of the original image is small, and the traces left
by USM sharpening will be relatively weak. Thus, Hy and Ha
are also difficult to distinguish.

We also consider the image upsampling operation by using
cubic interpolation, and detect the image operator chain of image

HO H1 H2 H3 H4 HO H1 H2 H3 H4

0.8533 0.1081 0.005 0.0049 - ;] 0.8763 0.0045 -

0 0.0078 H

0.0063

H2f 0. 0.0223 H2H 0.0339

H3 0.6696 H.

)

0.7206

H4 H4 - 0.0284 0.0486 0.0023 0.8854

(a) Upsampling factor s = 1.2, USM (b) Upsampling factors s = 1.2,
sharpening radius value » = 1, with- USM sharpening radius value r = 1,
out transfer learning strategy with transfer learning strategy

Fig. 5. Comparisons of confusion matrices for order forensics of image oper-
ator chain without and with transfer learning strategy. Source task: Upsampling
factor s = 1.3, USM sharpening radius value r» = 3. Target task: Upsampling
factors s = 1.2, USM sharpening radius value = 1. (A: Upsampling B: USM
sharpening).

upsampling (factor s = 1.5) and Gaussian blurring (variance
v = 1.0). The average classification accuracy is 94.36%. The
corresponding confusion matrices are given in Fig. A5 in the
Appendix. It can be observed that the choice of interpolation
kernel of image upsampling has little effect on the detection
performance.

Fig. 5 shows the comparisons of confusion matrices for
detecting image operator chain without and with the transfer
learning strategy. In order to obtain the forensic detector for
image operator chain of the image upsampling factor s = 1.2
and USM sharpening radius value r = 1, according to the
descriptions in Section III-D, we first pre-train a CNN model
on images created by image upsampling (p%/ = 1.3) and USM
sharpening (pX = 3), then fine-tune the CNN model on images
created by image upsampling (pﬁ = 1.2) and USM sharpening
(pk = 1). It is shown that the classification accuracies are im-
proved, especially for Hjs class, the classification accuracy is
increased by 5.1%. We also observe some slight performance
loss on other classes. In CNN-based image operation chain
detection framework, the loss function quantifies the amount
by which the prediction deviates from the actual values for five
classes. CNN attempts to find a global optimum by continuing
the backpropagation, which could improve the overall detection
performance. The CNN model in the target task is initialized
with the feature representations learned from the pre-trained
model, instead of random initialization. Since we transfer the
weights of all the layers in the pre-trained model to the target
task, the CNN model probably falls into another solution space,
and decreases the detection accuracy of one or two classes.
However, the average detection accuracy of five classes would
be increased by using the transfer learning strategy. Moreover,
we consider the image operator chain consisting of Gaussian
blurring (pf; = 0.6) and USM sharpening (p5 = 2). The feature
representations learned from Gaussian blurring (p{ = 0.7) and
USM sharpening (p2 = 3) could be transferred to improve the
average classification accuracy. The corresponding confusion
matrices are given in Fig. A6 in the Appendix. Therefore, by
using the transfer learning strategy, the proposed CNN-based
framework could obtain improvements in detecting image oper-
ator chain.
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HO H1 H2 H3 H4 HO H1 H2 H3 H4

HO 0.0094 0.0242 0.0009 0.0002 Bl 0.9199 0.0154 0.0602 0.0006 0.0039

H1 0.0411 0.0226 0.0013 HI1 0 0.8985 0.0005 0.093 0.008

H2 0.9606

0.0025 0.002 0.0347 - H2- 0.0006 0.0003 0.0014

H3 0 0.0004 0.003 0.0013 H3 0 0.0156

H4 0.0114 H4 0 0.0013

0 0.0001 0.0871 0.0149 0.024 0.9598

(a) Upsampling factor s € (1.5,1.8), (b) Gaussian blurring variance v €
Gaussian blurring variance v € (0.7,1.0), Median filtering window
(0.7,1.0). (A: Upsampling B: Gaus- size w = 5X 5 or 3 x 3. (A: Gaussian
sian blurring) blurring B: Median filtering)

Fig. 6. Confusion matrix for order forensics of image operator chain, by
using the proposed CNN without prior information. The exact parameters are
unknown, but inside a certain range.

C. Image Operator Chain Detection Results of the
Proposed CNN Without Prior Information

In this subsection, further robustness tests will be made for
a complete assessment of the proposed CNN in case of lack of
prior information.

Following the analyses in Section II-B, it is reasonable to
assume that the forensic investigators have no access to the
parameter settings, but they only know a possible range of
the parameter. The CNN model is trained by using a variety
of images created by a mixture of operating parameters. Take
the image operation chain of image upsampling and Gaussian
blurring for example. Suppose that the image upsampling fac-
tors are set as s € (1.5,1.8) and Gaussian blurring variances
are set as v € (0.7,1.0). We have 16,000 image blocks for
Hj class. For H; class, the altered images are respectively
manipulated by applying upsampling operation with different
factors s = 1.5,1.6,1.7,1.8 and then a total of 64,000 image
blocks are created. Similarly, we obtain 64,000 altered image
blocks for Hs class by applying Gaussian blurring operation
with different variances v = 0.7,0.8,0.9,1.0. For H3 and Hy4
classes, there are sixteen combinations of parameters, and thus
each class has 256,000 manipulated image blocks. Finally, a
total of 656,000 image blocks are fed into the proposed CNN
model. The testing images are manipulated with the randomly
generated parameters in the previous ranges, i.e., the exact
parameters are unknown, but inside a certain (known) range.
Specifically, for the testing images, the upsampling factor s
varies from 1.5 to 1.8, the step size is 0.001, and then we
randomly choose s € {1.500,1.501,1.502,...,1.799,1.800}.
Moreover, the Gaussian blurring variance v varies from 0.7 to
1.0, the step size is also 0.001, and then we randomly choose
v € {0.700,0.701,0.702,...,0.999, 1.000}. Our experimental
results are summarized in Fig. 6 (a). Itis shown that five classes in
the image processing history are completely distinguished, and
the proposed CNN achieves an overall classification accuracy of
95.13%. Therefore, it can be observed that, without modifying
the architecture, the proposed CNN could be trained to detect the
image operator chain of upsampling and Gaussian blurring when
the operating parameters are unknown but within certain ranges.
We also execute the experiments for the image operator chain

consisting of Gaussian blurring and median filtering. Assume
Gaussian blurring variances are set as v € (0.7,1.0), and the
window sizes of the median filtering are setasw = 5 x 5,3 x 3.
For the testing images, we randomly choose the Gaussian blur-
ring variance v € {0.700,0.701,0.702, ...,0.999,1.000}, and
the window sizes of the median filtering w is 5 X 5 or 3 x 3.
The confusion matrix of the image operator chain is given in
Fig. 6(b). It can be observed that the maximum element in each
row locates at the diagonal line of the confusion matrices, and
the average classification accuracy is 92.42%.

We also consider the mismatching condition where the exact
parameters are outside the range used for training. For example,
the image upsampling factor s is 1.4 or 1.9, and Gaussian
blurring variance v is 1.1. The corresponding confusion matrices
are shown in Fig. A7 in the Appendix. The average classification
accuracies are 85.96%, 86.12%, and the image operator chains
could be determined.

D. Image Operator Chain Detection Results of the
Proposed CNN for JPEG Compressed Images

In this subsection, we investigate the case when the processed
image is stored in the JPEG format as it is by far the most
common scenario in practice. In our experiments, we apply the
floating-point DCT implementation and standard quantization
tables to obtain the JPEG image database. According Eq. (2),
the manipulations are utilized to generate the tampered images,
and the corresponding single and double JPEG compression are
used to obtain the JPEG image blocks. We generate different
sets of JPEG images with different compression quality factors.
Table II gives the average detection accuracies of different JPEG
image operator chains and quality factors. The corresponding
confusion matrices are shown in Fig. B1 in the Appendix. The
JPEG image operator chains could be determined with high
accuracy.

It is worth mention that [22] failed to detect the JPEG image
operator chain, when image upsampling factor s = 1.5, Gaus-
sian blurring variance v = 1.0, and QF1 = 75, QF2 = 85. The
five classes could not be distinguished based on p-map related
features. On the contrary, Fig. 7(a) shows that our proposed CNN
can successfully distinguish five classes, and thus the image
operator chain can be detected in this case.

Fig. 7(b) shows the classification result for detecting JPEG
image operator chain with upsampling factor s = 1.5 and Gaus-
sian blurring variance v = 1.0, when two JPEG compressed
quality factors are the same QF1 = QF2 = 85. The average
accuracy is 85.32%, and it implicitly indicates that the proposed
method could achieve good performance for detecting JPEG
image operator chain, no matter whether two quality factors are
different.

Fig. 7(c) shows the experimental results when the network is
not trained for a specific QF1. The Gaussian blurring variance
v = 1.0 and median filtering window size w = 5 x 5. For the
training JPEG images, two JPEG compressed quality factors
QF1 = 85 and QF2 = 75. The testing images are double
compressed by QF1 = 80 and QF2 = 75. The maximum element
in each row locates at the diagonal line of the confusion matrices,
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(a) QF1=75, QF2=85, Upsampling (b) QF1=85, QF2=85, Upsampling
factor s = 1.5, Gaussian blurring factor s = 1.5, Gaussian blurring
variance ¥ = 1.0. (A: Upsam- variance v = 1.0. (A: Upsam-
pling B: Gaussian blurring) pling B: Gaussian blurring)
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(c) Gaussian blurring variance v = (d) The exact parameters are un-
1.0, Median filtering window size known, but inside a certain range.
w = 5 X 5, training JPEG images: Upsampling factor s € (1.5,1.8),
QF1=85, QF2=75, testing JPEG im- Gaussian blurring variance v €
ages: QF1=80, QF2=75. (A: Gaus- (0.7,1.0), QF1=80, QF2=90. (A:
sian blurring B: Median filtering) Upsampling B: Gaussian blurring)

Fig. 7. Confusion matrices for order forensics of JPEG image operator chain
with different compression quality factors.

and the average classification accuracy is 83.24%. Although
the detection performance compared with the matching cases
is decreased, the proposed CNN is also able to distinguish the
JPEG image operator chain, when the network is tested with
non-matching QF1.

We also consider the condition where the setting parameters
of operations are not exactly known and the images are JPEG
compressed. It can be observed in Fig. 7(d) the average detection
accuracy is 85.35% and the maximum element in each row
locates at the diagonal line of the confusion matrix. Thus, the
proposed CNN could achieve good performance for detecting
JPEG image operator chain without prior information.

It should be pointed out that the reported results for detecting
JPEG image operator chain is based on a “best case” assumption
in which the detector is trained the images with the correct QF1.
The comparison results in Section IV-F are also based on the
same assumption, and the competing methods are trained on
images with the same QF1 as the testing images. In practice,
this would require estimating the QF1, and estimation errors
will result in a lower performance with respect to the reported
“best case” performance.

E. Ablation Study — Influence of Two-Stream Fusion

To evaluate the importance of two-stream components in our
proposed network, we perform a full ablation study. We re-
spectively remove the spatial convolution stream and transform-
feature extraction stream, and see how that affects performance.

Table III shows the comparison results among only spatial
convolution stream, only transform-feature extraction stream,
and two-stream network. The average classification accuracies
obtained by the only spatial convolutional stream and only
transform-feature extraction stream are lower, and there is an
advantage to use a two-stream rather than single-stream CNN ar-
chitecture. Specifically, for the image operator chain of Gaussian
blurring (variance v = 1.0) and median filtering (window size
w = 5 x H), compared with each individual stream, the average
classification accuracy could be improved by 15.19% and 1.96%
by using the proposed two-stream CNN network. Thus, both
the spatial convolution stream and transform-feature extraction
stream play a crucial role in our proposed network. By fusing the
features of two streams, it could improve the detection accuracy.

Note that the network construction of the transform-feature
extraction stream without preprocessing layer would become
similar to the spatial convolution stream. If we remove the
pre-processing from the transform-feature extraction stream,
the average classification accuracies obtained by two-stream
would be close to that obtained by the only spatial convolu-
tional stream. In fact, as the most important component of the
transform-feature extraction stream, the preprocessing opera-
tions are used to reveal co-occurrence based local features and
capture the hidden residual information. We specially design
the preprocessing operations based on the characteristics of
two involved manipulations in the image operator chain, so
as to extract low-level noise residual features. In this way, the
fusion of two streams could reveal both evidence of high-level
visual tampering artifacts and low-level noise residual features,
contributing to better performance than a single-stream network.

Compared with spatial features, transform features are more
discriminative, which are designed ad-hoc for each pair of possi-
ble processing operators. We have to confess that the flexibility
and generality of the proposed method are not satisfying. For
non-JPEG images, our paper designs specific preprocessing
operations for detecting different image operator chains, and
plans to investigate a universal preprocessing operation in the
future.

E. Comparisons With State-of-the-Art Methods

In this subsection, we compare our proposed two-stream CNN
method with two state-of-the-art order detection methods for
image operator chains, i.e., Chu et al.’s method [22] and Bayar
et al.’s constrained CNN method [33], [34].

Table IV shows all the average classification accuracies ob-
tained by the proposed CNN method are higher. It is because
Chu et al.’s method is based on a theoretical parametric model
of image data, and may not be accurate enough to detect ma-
nipulation fingerprints left by an image operator chain. As a
data-driven approach, the proposed CNN model tries to directly
learn forensic traces induced by a chain of processing operations
from image data.

Bayar et al. proposed a constrained CNN model with a
constrained convolutional layer to perform order detection, and
further combined the extremely randomized trees (ERT) clas-
sifier. Table V shows the detection performance comparisons
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TABLE III

ABLATION STUDY — INFLUENCE OF TWO-STREAM FUSION

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 5, AUGUST 2020

Parameter Settings in Image Operator Chain Spatial Convolution Stream | Transform-feature Extraction Stream | Our Proposed Two-stream CNN
Gaussian blurring variance v = 1.0, median filter window size w =5 x 5 79.90% 93.13% 95.09%
Upsampling factor s = 1.5, median filter window size w =5 x 5 88.28% 91.02% 92.86%
Upsampling factor s = 1.5, Gaussian blurring variance v = 1.0 92.71% 95.23% 96.70%
TABLE IV

COMPARISONS WITH CHU ET AL.’S METHOD [22]

Parameter Settings in Image Operator Chain Chu et al’s Method | Our Proposed Two-stream CNN
Upsampling factor s = 1.5, Gaussian blurring variance v = 1.0 64.39% 96.23%
Upsampling factor s = 1.2, Gaussian blurring variance v = 1.0 63.41% 91.21%
Upsampling factor s = 1.5, Gaussian blurring variance v = 0.7 64.42% 94.05%
Upsampling factor s = 1.2, Gaussian blurring variance v = 0.7 57.00% 93.77%

TABLE V
COMPARISONS WITH BAYAR ET AL.’S CONSTRAINED CNN METHOD [33], [34]

Parameter Settings in Image Operator Chain Constrained CNN | ERT-based Constrained CNN | Our Proposed Two-stream CNN
Upsampling factor s = 1.5, Gaussian blurring variance v = 1.0 93.00% 94.17% 96.23%
Upsampling factor s = 1.2, Gaussian blurring variance v = 0.7 85.50% 90.90% 93.77%
Gaussian blurring variance v = 1.0, USM sharpening radius r = 3 81.18% 81.21% 88.51%
Gaussian blurring variance v = 0.7, USM sharpening radius r = 2 82.02% 84.40% 86.69%
Median filtering window size w = 5 x 5, USM sharpening radius r = 3 76.05% 76.33% 84.51%
Median filtering window size w = 3 x 3, USM sharpening radius r = 2 70.23% 70.93% 85.76%
Upsampling factor s = 1.5, USM sharpening radius r = 3 76.44% 77.55% 89.16%
Upsampling factor s = 1.2, USM sharpening radius r = 2 77.42% 77.96% 85.06%
Upsampling factor s € (1.5, 1.8), Gaussian blurring variance v € (0.7, 1.0), without knowledge 91.74% 94.52% 95.13%
QF1=75, QF2=85, Upsampling factor s = 1.5, Gaussian blurring variance v = 1.0 78.85% 81.87% 90.20%
QF1=85, QF2=75, Upsampling factor s = 1.5, Median filtering window size w =5 X 5 69.45% 72.78% 78.25%
QF1=90, QF2=70, Gaussian blurring variance v = 1.0, Median filtering window size w =5 x 5 72.10% 78.91% 83.65%

among the constrained CNN, ERT-based constrained CNN, and
our proposed two-stream CNN. Some corresponding confusion
matrices are provided in Figs. C1-C6 in the Appendix. It is
shown that the proposed two-stream CNN could obtain improve-
ments in the detection performance. Furthermore, considering
the scenario with no knowledge of processing parameters, we
combine Bayar et al.’s constrained CNN method with our so-
lution, i.e., training with multiple parameter values as anchor
points and testing on a range of parameters. The experimental
results show that the image operator chain could be detected,
and our solution is applicable to the constrained CNN method.

We have to admit that we compare the performance of the
proposed framework and other competing methods under the
same assumption that two image operators A and B (as well as
QF1 and QF2 in case of JPEG compression) are known to the
analyst. In practice, an analyst would have to estimate these
parameters, and since those estimations are prone to errors,
it would not be possible to replicate the same performance.
Generally, estimation errors would result in a lower performance
with respect to the reported “best case” performance. In the
future, we plan to conduct the evaluation experiments combining
with parameters estimation.

V. DISCUSSIONS

In our proposed network, a forensic investigator is always
required to train a specific network for each specific chain.
Our detection framework is based on some assumptions: 1)
Each operation is not applied more than once. 2) The kinds of
manipulations in an image operator chain are assumed known

to a forensic detector. In a realist scenario, we could first apply
universal image forensic strategies to identify the existence of
manipulation in the presence of image operator chains. Accord-
ing to these potential manipulations, our proposed CNN network
equipped with corresponding preprocessing operations could be
used for detecting image operator chains. We have to admit that
our proposed method is still rather far away from the ultimate
goal of fully automatizing the process of detecting image oper-
ator chains. Note that in [33], [34], a forensic investigator can
apply a network trained to directly distinguish among multiple
possible chains. The proposed CNN-based image operator chain
detection framework is flexible and general-purpose, which pro-
vides promising views for constructing the practical CNN-based
order forensics detectors. That is an important part of our future
work.

We provide the computation complexity analysis of the pro-
posed CNN model. The mult-adds of the preprocessing opera-
tions and convolutional layers in the proposed CNN model are
given in Tables D1-D2 in the Appendix, respectively. The max-
imum computation of preprocessing operations for non-JPEG
images is 0.91 million mult-adds, and the computation of the
twenty-five DCT basis patterns for JPEG images is 22.73 million
mult-adds. The whole computations of the proposed CNN model
for detecting non-JPEG image operator chain and JPEG image
operator chain are 754.28 and 853.92 million mult-adds. We can
observe that the conv1/transform layers including preprocessing
operations would not significantly increase the computational
load.

In an image operator chain, the interaction among these
manipulations would be more complicated and difficult to
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learn. The latter operations would weaken the traces left by the
previous one, and the tampering evidence would be extremely
weak. It is a challenging problem for a forensic investigator
to determine the processing history, though there is actually
inevitable in the process of creating a fake photograph in the
real-world. Hence, we start our research on this problem from
manipulation pairs. We believe that if we fully understand this
scenario first, we can then investigate how to detect a chain
composed of more than two image manipulations. In the future,
we will try to extend two-stream idea to design a new CNN
model for detecting an image operator chain consisting of
more than two manipulations. Further, it would also be of very
relevant investigation the limit of how many operations that
forensic investigators can detect at most.

VI. CONCLUSION

Up to now, little attention has been paid to the forensic analysis
of multiple heterogeneous manipulations chains, which are ac-
tually inevitable in the process of creating a fake photograph. In
this paper, we focus on the more difficult and less addressed issue
when the image operator chain is utilized. Our contributions can
be summarized in the following three aspects.

1) A data-driven order forensic framework for detecting
operator chain consisting of two heterogeneous image
operations is presented, which can automatically learn
and obtain manipulation fingerprints. The proposed two-
stream CNN network could explicitly detect both tamper-
ing artifact evidence and local noise residual evidence.

2) Various well-designed preprocessing operations are skill-
fully proposed for different image operator chains, and the
transfer learning strategy for image forensics performance
enhancement is presented. Experimental results show that
our proposed CNN-based method not only achieves sig-
nificant detection performance but also can determine the
order in some cases that previous works were unable to
distinguish.

3) The robustness of the proposed image operator chain
detection framework is further evaluated and validated
in two practical scenarios in which forensic investigators
have no access to the operating parameter settings, and the
processed image is JPEG compressed.
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