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Abstract—With the growing popularity of data mining, privacy
has become an issue of growing importance. Privacy can be seen
as a special type of goods, in a sense that it can be traded by the
owner for incentives. In this paper, we consider a private data
collecting scenario where a data collector buys data from multiple
data owners and employs anonymization techniques to protect
data owners' privacy. Anonymization causes a decline of data
utility; therefore, the data owner can only sell his data at a lower
price if his privacy is better protected. Can one pursue higher
data utility while maintaining acceptable privacy? How to balance
the trade-off between privacy protection and data utility is an
important question for big data. Considering that different data
owners treat privacy differently, and their privacy preferences
are unknown to the collector, we propose a contract theoretic
approach for data collector to deal with the trade-off. By designing
an optimal contract, the collector can make rational decisions on
how to pay the data owners, and more importantly, how he should
protect the owners' privacy. We show that when the collector
requires a large amount of data, he should ask data owners who
care privacy less to provide as much as possible data. We also
find that whenever the collector requires higher utility of data or
the data becomes less profitable, the collector should provide a
stronger protection of the owners' privacy. Performance of the
proposed contract is evaluated by both numerical simulations and
real data experiments.
Index Terms—Privacy preserving, data collecting, data

anonymization, contract theory, optimal control.

I. INTRODUCTION

A. Data Mining and Privacy Concerns

I N the “big data” era, data mining has attracted much atten-
tion from both academia and industry. The key to devel-

oping a successful data mining-based application is to prepare
a sufficient amount of data, which may contain private infor-
mation about individuals. If such data is disclosed or used for
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purposes other than those initially intended, individual's privacy
will be compromised. Thus, there is now an increasing concern
about the privacy threats posed by data mining.
To deal with the privacy issues, substantial work has been

done in the field of privacy-preserving data publishing (PPDP)
[1] and privacy-preserving data mining (PPDM) [2]. Viewing
privacy issues from a data collector's perspective, PPDP mainly
studies how to anonymize data in such a way that after the data is
published, individual's identity and sensitive information cannot
be re-identified [3]–[5]. And PPDM studies how to prevent sen-
sitive data from being directly used in data mining as well as
how to exclude sensitive mining results [6], [7].

B. Privacy Auction

Aside from using PPDP and PPDM techniques, the conflict
between individual's demand for privacy safety and commer-
cial application's need for accessing personal data can be solved
in an economic manner [8]. By seeing privacy as a type of
goods, a data collector, who has a need for personal data, can
trade with individuals by paying them compensations. However,
since different individuals have different privacy preferences,
e.g., someone cares about privacy very much while someone
cares less, it is difficult for the data collector to decide how to
make proper compensations to different individuals.
A feasible approach to deal with the diversity of individual's

privacy preference is to set up an auction for privacy [9]. At
a privacy auction, each individual reports his valuation on pri-
vacy to the data collector. The collector applies some mecha-
nism to decide how many data he should buy from each in-
dividual and how much he should pay. Ghosh and Roth [10]
initiated the study of privacy auction. Based on their work, a
few improved mechanisms have been proposed [11]–[13]. Cur-
rent privacy auction mechanisms are mainly proposed for the
sensitive surveyor's problem [9], where a data collector collects
individuals' data to obtain an estimate of a simple population
statistic. The private data that an individual owns is represented
by a single bit indicating whether the individual
meets a specified condition, and the individual's privacy cost is
quantified by differential privacy [14]. The objective of the data
collector is to make an accurate estimation of the sum of bits
at a low cost of payments. However, in practice, individual's
data is usually represented by a relational record which consists
of multiple attributes. Such representation of data is the most
basic assumption of anonymization algorithms [1]. Therefore,
simply using one bit to represent private data will make the de-
rived auction mechanism less practical. It is necessary to model
the problem with more proper formalizations.
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C. Contract Theoretic Approach

In this paper, we study the private data collecting problem
in a setting where a data collector needs to collect a set of data
records from multiple data owners. Each data owner provides
a certain number of data records to the collector and gets
paid accordingly. To protect data owners' privacy, the data
collector applies anoymization algorithms to the collected data.
The anonymized data will then be used in some data mining
task. A high level of anonymization means the data owners'
privacy can be well protected, thus the owners are willing to
provide more data or require less compensation. In that sense,
anonymization is beneficial to the collector. However, a high
level of anonymization also causes a large decrease in data
utility, which means the collector will get less benefit from the
data. Therefore, the data collector needs to make a trade-off
between data utility and privacy protection level. Besides,
since different data owners have different privacy preferences,
they will react differently to the collector's decision on privacy
protection. Considering that the owners' privacy preferences
are unknown to the collector, or in other words, there is infor-
mation asymmetry between the owners and the collector, it is
quite difficult for the collector to make a good trade-off.
Information asymmetry is a common phenomenon in eco-

nomic life. For example, when hiring a new employee in the job
market, the employer is unable to know exactly the true ability
of the employee. As a result, the employer may hire someone
who pretends to be capable of the job. A useful tool to deal
with the problems caused by information asymmetry is contract
theory [15]. In the aforementioned example, the employer can
sign a contract with the employee to clearly define what kind of
work results he expects from the employee and how he will pay
the salary. In this paper, we propose a contract-based approach
to handle the trade-off between privacy and utility. Specifically,
in the context of private data collection, a contract is signed by
both the data owner and the data collector to define how many
data that the data owner should provide, how much compen-
sation the owner can receive, and to what extent the owner's
privacy should be protected. By designing an optimal contract,
the data collector can induce the data owners to act in a way
that benefits him most. The idea of applying contract theory has
adopted in Yang et al.'s work [16], [17], where a contract-based
mechanism is proposed for an aggregator to incentivize self-in-
terested electric vehicles to participate in ancillary services to
power grid. Despite the fact that their problem has little con-
nection with privacy protection, the contract formulation does
provide us some useful inspirations.
To solve the optimization problem embedded in the design

of optimal contract, we propose a two-step approach which first
determines the optimal transfer function for a given level of pri-
vacy protection and then optimizes the collector's payoff with
respect to the protection level. Due to the complexity of the re-
sulting payoff function, we are unable to explicitly solve the
second optimization problem. Instead, based on numerical sim-
ulation results, we qualitatively analyze how those external fac-
tors, e.g., the data's value to the collector, influence the design
of optimal contract. We show such analysis can provide mean-
ingful insight into the data collector's trade-off problem. In ad-
dition, by conducting experiments on real data, we have demon-

strated that the proposed contract is more beneficial to both the
data collector and data owners, when compared to a simple-
formed contract which requires the data utility contributed by
a data owner to be proportional to how the owner values his
privacy,.
The rest of the paper is organized as follows. In Section II, we

introduce the system model and the contract-theoretic formula-
tion. An elaborative description of the design of optimal contract
is presented in Section III. In Section IV, we conduct qualitative
analysis of the optimal contract, and evaluate the performance
of the two types of contracts through simulations. Finally, we
draw conclusions in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Private Data Collecting
Consider the data collecting scenario shown in Fig. 1. A data

collector, on the request of some data miner, collects data from
individuals. Each individual, referred to as the data owner,

owns a number of data records. The data owner is free to decide
how many and what kind of data he would like to provide to the
collector. Once handing over his data, the data owner may suffer
a loss in privacy. Different data owners may provide same data
to the collector. However, when privacy disclosure happens,
owners who treat privacy seriously will perceive more loss than
those who have little concern about privacy. We use a param-
eter to describe a data owner's privacy pref-
erence. A large means the owner cares much about privacy.
One thing we do not clarify here is that how the value of the pri-
vacy parameter is defined. Quantifying privacy is non-trivial,
since complicated sociological and psychological factors may
be involved. Here in this paper, following the conventions of
contract theory [15], we think each data owner's is decided by
the nature. The privacy parameter can also be interpreted as the
unit cost that the data owner pays for producing data. Let de-
note the quantity and quality, together referred to as utility, of
the data provided by the owner. Then the owner with parameter
will suffer a monetized loss if privacy disclosure happens.

Correspondingly, the owner receives a transfer, denoted by ,
from the collector as a compensation.
Once the collector has collected enough data, he applies some

anonymization technique to the data. After being anonymized,
the data becomes more secure, in a sense that the possibility
that a data owner is re-identified by an attacker decreases. While
in the meantime, the utility of data declines. We use to
denote the utility of anonymized data, where denotes
the level of privacy protection that is realized by anonymization.
Intuitively, a large causes a large decrease in data utility. To
embody this intuition, we define as

(1)

where , and are positive constants. This formulation
is actually obtained from anonymization experiments on real
data (see Section IV-B1 for more details). According to the ex-
periment results, there is and

. Here we define to capture the intu-
ition that if no privacy protection measure is taken, i.e., ,
there should be no utility loss.
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Fig. 1. The data collecting scenario.

After finishing the anonymization process, the collector re-
leases the data to a data miner and gets paid, or conducts some
analysis by himself. Either way, the collector obtains an income
from the data. Let denote the income, and we assume

, and , which means the marginal
value of data decreases as the collector has obtained more data.
Furthermore, to ease the analysis and without loss of generality,
we define as

(2)

where the positive constant indicates how valuable the data is
to the collector. The parameter is an exogenous parameter, in a
sense that its value is determined by some factors that are out of
the control of the data collector and data owners. For example,
conditions of the data market will have strong influence on .
Suppose that a data collector makes profit by selling the col-
lected data to a data miner. If the data miner can buy data from
other collectors, then the collector may have to sell the data at a
lower price, which implies the data become less valuable to the
collector.
Based on above discussions, the payoff to a data owner with

parameter can be defined as

(3)

where represents the expected value of privacy loss.
The payoff that the data collector obtains from the trade with
one data owner is

(4)

To maximize the payoff, the data collector needs to carefully
decide the transfer paid to the owner and the privacy protec-
tion level he should guarantee. However, when trading with a
data owner, the collector does not know for sure how the owner
values his privacy, since the owner's privacy parameter is only
known to himself. In other words, from the perspective of the
collector, the privacy parameter is a random variable. Here for
simplicity and without loss of generality, we make the following
assumption.
Assumption 1: The data owner's privacy parameter is un-

known to the data collector. Each owner's is drawn indepen-
dently and identically from , and the corresponding proba-
bility density function is known to the collector.

TABLE I
NOTATIONS

Realizing that both the data owners and the collector want
to get maximal payoff, and there is an information asymmetry
between the two parities, we resort to principle-agent theory
[15] to solve the collector's problem.More specifically, we study
how to design a contract for the collector, so that the collector
can induce data owners to act in a way that can bring him the
maximal payoff. Next we will present the formulation of the
contract design problem. For convenience, we summarize some
important notations used in the formulation in Table I.

B. Contract-Theoretic Formulation
Following the contract theory terminology, above data col-

lecting scenario can be described as follows. A data collector,
who plays the role of the principal, delegates a data producing
task to multiple agents, namely the data owners. Each owner's
type is unobservable to the collector. The collector offers a
menu of contracts to each owner. If the owner chooses
to accept the contract , then he will provide the collector
with data of utility , and in return, the collector should pay
transfer to the owner and make sure that the probability of
privacy disclosure is no higher than . We assume that the
data utility that one data owner can contribute is no more than

. To make the contract more interpretable, hereafter we use
as a replacement of the contract item .

According to the revelation principle [15], it is sufficient for
the collector to consider only the direct revelation mechanism

, where the contract is
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designated for data owner with type . Considering that most
anonymization algorithms do not support personalized privacy
protection [1], that is, they exert the same amount of privacy
preservation for all individuals, we define for all

with denoting the probability of privacy
disclosure. Upon choosing the contract , the
payoff to a data owner with type can be written as

(5)

In the study of contract theory, the agent's payoff is usually re-
ferred to as information rent, which emphasizes that it is be-
cause of the information asymmetry that the agent can get extra
benefit.
To ensure that the data owner will accept the contract desig-

nated for him rather than choosing other contracts or refusing
any contract, the menu of contracts must be incentive feasible.
That is, it should satisfy both the incentive compatibility con-
straints and the participation constraints defined below.
Definition 1: A menu of contracts is

incentive compatible if the best response for the data owner with
type is to choose the contract rather than
other contracts, i.e., ,

(6)

Definition 2: Amenu of contracts satis-
fies the participation constraints if it yields to each type of data
owner a non-negative payoff, i.e., ,

(7)

In addition, to make sure that meaningful results can be ob-
tained in subsequent datamining tasks, the data collector usually
has a minimum requirement on the total utility of the collected
data. Here we assume that a feasible menu of contracts should
satisfy the following isoperimetric constraint:

(8)

where denotes the data collector's requirement. Apparently,
the requirement is attainable only if it is no higher than .
Above equation also implies that the total utility of the col-
lected data is assumed to be the summation of the utility of each
owner's data. It should be noted that in practice, the relationship
between the total utility of data and the utility of each data record
is usually application-dependent. Here we define the total utility
as a summation, so that we can ease the analysis and meanwhile
reflect the general understanding of “total”.
Another implicit constraint on the contracts is that the data

utility contributed by one data owner is bounded, i.e.,

(9)

The data collector offers contracts to data owners before
knowing the owners' types, hence the payoff that a menu of
contracts brings to the collector is evaluated in expected terms.
The collector's objective is to find an optimal menu of contracts
which satisfies all the constraints listed above and maximizes

the expected payoff. The collector's problem can be formulated
as

The function in the integrand is defined as

(10)

Next we will discuss how to solve this optimization problem.

III. CONTRACT DESIGNS

A. Method Overview
As defined in the previous section, the contract offered by

the collector is formed as a tuple , where the
first item is independent of the owner's type. To find the op-
timal menu of contracts , we propose a
two-step approach. First, we find the optimal transfer function

and production function for a given privacy protec-
tion level. Specifically, given , we solve the following
problem

Both and can be seen as parametric functions with
being the parameter. By plugging these two functions into the

objective function of problem , we can rewrite the data col-
lector's payoff as a function of , denoted by . Thus the
second step of optimal contract design is to solve the following
optimization problem

The function in the integrand is defined as

(11)

Let denote the optimal solution to above problem,
then the optimal menu of contracts is given by

.

B. Simplifying Constraints
Solving problem is non-trivial, since it involves opti-

mizing a functional with respect to a pair of functions, also the
constraints are complicated. Before we explore solutions to the
functional optimization problem, we first need to find a con-
cise way to express the incentive constraints and participation
constraints.
Though described with one simple inequality, (6) actually im-

plies an infinity of constraints, each of which corresponds to a
certain pair of and . Similarly, (7) should be treated as an
infinity of participation constraints, each of which corresponds
to a certain . To identify the set of feasible solutions to
problem , first we need to simplify theses constrains as much
as possible.
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Following a similar approach proposed in [15], we reduce the
infinity of incentive constraints in (6) to a differential equation

(12)

and a monotonicity constraint

(13)

Details of the simplification process are presented in the
Appendix. Further, by using (5) we can express (12) in a
simpler way:

(14)

Due to the simplicity of above expression, hereafter we focus
on the design of instead of , after all the optimal
can be easily determined once the optimal and are
found.
Base on (9) and (14), participation constraints in (7) can be

simplified to . Further, we can predict that this con-
straint must be binding at the optimum, i.e.,

(15)

Suppose that , then the collector could reduce
by a small amount while keeping unchanged. As a result,
the collector's payoff is increased, which contradicts with the
optimality of .
Based on above simplifications, problem can be rewritten

as

The function in the integrand is now written as

(16)

C. Optimal Control-Based Approach
Problem fits the general formulation of the optimal con-

trol problem [18], hence methods developed for optimal control
can be applied. Let be the control variable and

be the state variable. To handle the isoperimetric
constraint (8), a new state variable is defined, and it sat-
isfies the following differential equation:

(17)

The boundary conditions of are . The
Hamiltonian is

(18)

where and are co-state variables. To sim-
plify notations, we define and

.
According toPontryaginminimum principle [18], the optimal

solution to problem should satisfy the fol-
lowing six conditions:

(19)

(20)

(21)

(22)

(23)
(24)

From (21) and (24) we can get

(25)

From (22) we know that for any , there is

(26)

where the will later be determined by using the boundary con-
dition .
Having determined and , now we need to opti-

mize the Hamiltonian with respect to . In order to derive
the analytic expression of , we assume that data owner's
type is uniformly distributed within . The probability den-
sity function is

(27)

and the cumulative density function is

(28)

Given above assumption, the optimal production function
can be derived via following two steps. First, we ignore

the boundary constraint (9) and solve the unbounded that
maximizes the Hamiltonian. By using the first order condition

we get

(29)

It can be easily verified that

(30)

hence does maximize the Hamiltonian. The -specific
constant in (29) can be determined by using the monotonicity
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Fig. 2. Optimal production functions under different settings of .

constraint (13) and the isoperimetric constraint (8). Take the
derivative of with respect to and use (13) we get .
Then, plug (29) into the right-hand side of (8) and solve the
equation for , we get

(31)

With determined, the next step to find is to check
whether the boundary constraint (9) can be satisfied.
Let us first consider a special case, that is, the data collector

can offer a perfect protection of privacy, namely . In such
a case, becomes a constant function, i.e.,

(32)

Then, according to (14) and (15), each data owner will receive
zero information rent. The intuition behind this result is that
when no privacy disclosure will happen, there is no privacy loss
to data owners. Thus the data collector is indifferent to how
each owner values his privacy, and the task of data producing
is equally assigned to different owners. As for the data owner,
since his type does not matter to the collector, namely his
information advantage over the collector no longer exists, he
will receive no information rent. The total payoff to the data
collector is

(33)

Given , the optimal contract has a
very simple form, which is . However, in practice,
perfect privacy protection can hardly be realized, thus such a
contract is impractical. It is more important to explore the cases
when privacy disclosure is inevitable.
Given can be depicted by the curve segment

shown in Fig. 2. As we can see, if the curve segment intersects
with the line at some point, then cannot be
taken as a feasible production function. Let denote the
intersection point (possibility exists), where is defined as

(34)

If lies outside the interval , then is the optimal
production function we are looking for. Through a simple anal-
ysis of (34) we learn that, as long as , there is

. However, it is uncertain whether there is
.

As defined in (34), given and other exogenously speci-
fied parameters , the value of
is fully determined by the collector's requirement . With
the increase of increases. At some point when is
higher than a threshold will exceed . The threshold

can determined by setting , and clearly it depends
on as follows

(35)

Considering that is specified before the con-
tract is formed, the following three situations need to be ana-
lyzed respectively.
1) If , then for all

lies within the boundaries. In such a case, the optimal produc-
tion function has exactly the formulation with as
defined in (29). Then, by using (14) and (15) we can determine
the optimal information rent function, that is

(36)

2) If , then for
lies outside the boundary. In such a case, we define as a
piecewise function, i.e.,

(37)

where is determined by using (8) and (13). Specifically, is
given by

(38)

where is defined as

(39)

Based on the formulation of can be determined by

(40)

A geometric interpretation of (37) is given below. As shown
in Fig. 2, the area under the black curve segment is proportional
to the collector's requirement . When lies on the right
side of , the curve segment can be divided into two subseg-
ments, namely the one lies on the left side of the point
and the one lies on the right side. For points on the left-hand seg-
ment, we has to “pull” them down until they reach the boundary.
By doing so, the area between the original segment and the
boundary is discarded. In order to keep the total area unchanged,
points on the right-hand segment must be “pushed up”, and
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those who lie close to may be pushed up to the boundary.
For a given , as decreases, the whole curve segmentmoves
towards the left, which means fewer points need to be pulled
down. By the time decreases to , the curve inter-
sects with the boundary at . In such a case, no point needs
to be pulled down, and this is when the piecewise degen-
erates to that defined in (29). On the contrary, as increases,
the whole curve segment moves towards the right, and more
points lie above the boundary. Consequently, the pulling-down
operation causes a larger loss in area, which means points on
the right-hand segment should be pushed higher. In an extreme
case, all the points on the left-hand segment are pushed to the
boundary. This is exactly the third case that wewill discuss later.
With defined in (37), we can derive the optimal infor-

mation rent function by using (14) and (15), that is

(41)

where is defined as

(42)

3) If , similar to above case, lies to the
right side of , hence the optimal production function has
the same form as that defined in (32). But in this case, there is

, and (37) becomes a constant function, i.e.,

(43)

Again, by using (14) and (15) we get the optimal information
rent function, which is defined as

(44)

Then the optimal transfer function can be written as

(45)

This result coincides with the intuition that when different data
owners provide the same amount of data, they will be paid
equally.
Above we have discussed how to design the optimal pro-

duction function and optimal information rent function
for a given privacy protection level. As we have clari-

fied, different forms of these two functions should be adopted
in accordance with different values of . It should be noted
that as approaches (or ), the piecewise
production function defined in (37) will degenerate to a smooth
form.

D. Determining the Optimal Privacy Protection Level

The production function and the information rent func-
tion derived in the above subsection are optimal for a
given privacy protection level. In other words, both the func-
tions are parameterized by . With these optimal functions, the
data collector can determine the optimal privacy protection level

by solving the ordinary optimization problem . Similar to
previous discussions, in this subsection we study the optimiza-
tion problem by considering two cases, namely

and .
1) : As discussed in Section III.C, for

each and , there exists a threshold
which determines the maximal data requirement

that can be realized by the production function defined in (29).
According to (35), monotonically decreases with
. Thus, given , there exists a threshold

, where denotes the inverse func-
tion of , such that when
takes the form defined in (29), and when

takes the form defined in (37). Notice that when
, there is . We will discuss

this special case later.
Given , the data collector's expected

payoff is defined as follows:
i) If , as we've discussed in Section III.C, there is

.
ii) If , substituting (29) and (36)

into the objective function of problem and calculating
the integral yields

(46)

where .
iii) If , substituting (37) and (41)

into the objective function of problem and calculating
the integral yields

(47)

where and are defined in (38) and (40) respectively.
It can be verified that as approaches 0, (46) approaches (33).

And as approaches from right-hand side, (47) ap-
proaches (46). Thus, though described in a piecewise form, the
collector's payoff changes continuously with . Let denote
the probability of privacy disclosure that maximizes the col-
lector's payoff. Since both and are bounded, the exis-
tence of is guaranteed. From a practical perspective, neither

nor is desirable. If does can be found in the
interior, the following two conditions must hold:

(48)

(49)
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Due to the complicated form of , it is hardly to de-
rive the analytic form of from (48). Instead, we propose a
simple yet useful method to approximately determine the op-
timal protection level. Suppose that the data collector employs
some -anonymity algorithm [3] to protect data owners' pri-
vacy. For a given , the probability of privacy disclosure can
be roughly defined as . Since the total number of col-
lected data records is limited, can only be chosen from a finite
set, e.g., . Given

, the optimal can be determined in a following way.
For each possible , the collector first checks whether the con-
dition holds. If it does, the collector com-
putes his expected payoff by using (46). Otherwise, the
payoff is computed according to (47). After obtaining all the
possible payoffs, the collector can decide which is optimal.
2) : As discussed in Section III-C, when the

collector requires the maximal data utility, i.e., ,
different data owners provide the same amount of data and re-
ceive the same transfer. In such a case, the collector's payoff is

(50)

Note that all the parameters, except , in the right-hand side of
above equation are generally fixed. Thus, whether there exists a

fully depends on . Later, by conducting numerical
simulations, we will discuss how influences the choice of .

E. Non-Optimal Contracts
The contract proposed above is the optimal solution to

problem , i.e., among all the feasible contracts, it should
bring the collector the maximal payoff. Despite the fact that
it is impossible to explicitly compare this contract to all the
other feasible contracts, here we propose a simple-formed
contract, which we refer to as linear-production contract, with
the purpose of obtaining more insight of the optimal contract.
The linear-production contract is designed as follows.
Given , the production function is defined as

(51)

where is defined as

(52)

This linear production function implies that a data owner who
does not care about privacy (i.e., ) should hand over all
his data, and for a data owner who cares about privacy, the data
utility he contributes should be proportional to his privacy pref-
erence. The information rent function is defined as

(53)

It can be verified that if the collector has a relatively high re-
quirement on data, i.e.,

(54)

then is a feasible solution to problem .
Substitute (51) and (53) into the objective function of

problem , then we get

(55)

Similar to the case of optimal contract, it is quite difficult to
derive the analytic form of that maximizes (55). Considering
that this contract is proposed for comparison purpose, we use
a experimental method to approximately determine the value
of for both the optimal contract and the linear-production
contract. More details will be presented in Section IV-A1.

IV. CONTRACT ANALYSIS AND SIMULATION

In the previous section we have presented an elaborate de-
scription of the design of optimal contract. Analytic forms of
the production function and information rent function

, which are optimal for a given , are proposed. The ex-
pected payoff to the data collector is explicitly formulated as a
function of . Though we do not provide an explicit formula-
tion of the optimal privacy protection level, we can utilize the
derived formulation of to provide a general insight into
the trade-off between privacy protection and utility preserving.
In this section, by conducting numerical simulations, we

qualitatively analyze how the optimal privacy protection level
relates to the collector's requirement on data utility and the
exogenously determined value of data. Moreover, in order
to evaluate whether the optimal contract can bring the col-
lector a good payoff, we conduct real data experiments and
make a comparison of the two types of contracts proposed in
Section III. In the following part, we first describe how we
determine the optimal privacy protection level via simulations.
Then based on simulation results, we present a qualitative
analysis of the optimal contract. After that, we introduce the
settings of real data experiments and present the results.

A. Contract Analysis

1) Determining the Optimal Privacy Protection Level
Experimentally: To observe how the two parameters
and influence the choice of privacy protection level in
the optimal contract, we conduct the following simula-
tions. First, we set those invariable parameters as follows:

, and . Then, for each
pair of and

, we compute a
group of , each of which corresponds to a

. For each , we first compare with
. Then based on the comparison result, is

computed according to (33), (46) or (47). After that, the max-
imal is picked from , and the corresponding
privacy protection level is recorded. As for
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Fig. 3. Relationship between the optimal privacy protection level and the re-
quirement on total data utility.

the linear-production contract proposed in Section III-E, the
optimal privacy protection level is determined in a similar way.
2) Data Requirement and Privacy Protection: As discussed

in Section III-C, how the optimal contract should be formed
largely depends on the collector's requirement on data. From
the results shown in Fig. 3 we can see that, for a given
increases with , as long as is neither too high nor too low.
This phenomenon implies that if the data collector wants to get
more data from data owners, he should offer better protection
for data owners' privacy. Or in other words, knowing that his
privacy can be better protected, the data owner will feel less
unsafe to hand over his private data, thus he is willing to provide
more data.
To better understand above implication, we rewrite the col-

lector's expected payoff as a sum of two terms, i.e.,

(56)

where denotes the expected income, i.e.,

(57)

and denotes the expected transfer, i.e.,

(58)

During the simulations, we compute and together
with . As shown in Fig. 4, with being fixed at a mod-
erate value (e.g., ), for any given , both the in-
come and the transfer increase with . This coincides with the
intuition that when privacy protection level decreases, the col-
lector can obtain more benefit from the less anonymized data,
meanwhile, data owners face a higher risk of privacy disclo-
sure, hence they require more transfer to compensate the privacy
loss. From Fig. 4 we can see that, compared to the income ,
the transfer is more sensitive to . And as becomes
higher, grows faster with , while grows at almost

the same rate. According to (2), the marginal value of data de-
crease with the utility of anonymitized data which, according to
(1), grows slower as the utility of collected data increases. This
may explain why is insensitive to . While as for , it
is roughly proportional to , which means even a small change
of can be captured by .
Suppose that currently the collector's data requirement is

, and the optimal privacy protection level he
adopts is about 0.57. When the collector has a higher require-
ment, say , he has to pay much more transfer
if he sticks with original privacy protection level. However, if
the collector chooses a higher protection level, despite that he'll
lose a small amount of income, the transfer he needs to pay can
be largely reduced. Therefore, when the collector desires data
of high utility, he should put more effort to protect data owners'
privacy.
Fig. 3 also shows that when is relatively small and is

large, the collector does not need to take care of data owners'
privacy. This is because that when data is very valuable, the
income from the data is far beyond sufficient to compensate
data owners' privacy loss, thus there is no need to take privacy
protection measures. However, as the collector has collected
more data to meet a higher , the marginal value of data de-
creases, and the income may be insufficient to compensate the
privacy loss. Therefore, the collector should take privacy pro-
tection measures, so that the transfer paid to data owners can be
reduced to an affordable level.
3) The Value of Data and Privacy Protection: The param-

eter in data collector's income function 2 indicates whether
the data is valuable to the collector. From the simulation results
shown in Fig. 5 we can see that, when is quite small ,
the optimal privacy protection level equals 1, which means the
data collector must offer a perfect protection of privacy. The
reason why this result appears is that we have defined the pri-
vacy parameter takes values from 0 to 1. Considering that
can be interpreted as the unit cost that a data owner spends on
producing the data, the transfer that the data collector pays to
the owner should be at an equivalent level. Then when
and , the benefit that the collector gets from the data may
be even less than the owner's cost, which means the collector
cannot afford any compensation for data owners' privacy loss.
As a result, providing perfect privacy protection may be the only
feasible choice for the collector.
As shown in Fig. 5, the optimal privacy protection level de-

creases as increases. This implies that as data becomes more
valuable, sacrificing data utility for privacy protection becomes
less beneficial to the collector. In such cases, though increasing
privacy protection level can reduce the transfer paid to data
owners, the resulting decrease of data utility will cause a larger
loss to the collector. When is quite large, data is so valuable
to the collector that even a minor decrease in data utility, which
is caused by a weak anonymization, will cause a large loss to
the collector. As a result, the collector prefers to do nothing to
protect privacy. From Fig. 5 we can see that, as becomes
higher, in a larger range of , protecting privacy is more pre-
ferred by the collector than providing no protection. This result
coincides with the observation we've got in Section IV-A2, that
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Fig. 4. An illustration of how data collector's income and transfer change with the privacy protection level: (a) expected income ; (b) expected transfer
. The plots, which denote the optima, are obtained via the simulations described in Section IV-A1 where is set to 15. Values of shown in the figure

have been normalized by dividing original value by the maximum among all results. Values of have been normalized in a similar way. Red stars denote the
income (or transfer) at the optimum, i.e., (or ).

Fig. 5. Relationship between the optimal privacy protection level and the value
of data.

is, a better protection of privacy is required if the collector wants
to get data of higher utility.
More insight about how the parameter influences the design

of privacy protection level can be obtained by analyzing the
second case discussed in Section III-D2, i.e., . As
mentioned earlier, whether the data collector's payoff can reach
its maximum at an interior can be determined by evaluating
the derivation as follows.
When meets the following condition

(59)
there is , and iff . In such a case,
the collector's payoff increases as the privacy protection level
decreases, thus .
When reaches its maximum at an

interior which satisfies . It can

be verified that the second order condition
also holds. From Fig. 4 we know that, as the privacy protec-
tion level increases (i.e., decreases), both the income and
the transfer decreases. When is relatively small, the reduced
transfer caused by one-unit increase of protection level is com-
parable with the corresponding income loss. At some point,
a small increase of protection level causes no change to the
payoff, that's when the payoff is maximized. Moreover, notice
that and .
Hence, if , the data collector cannot get a posi-
tive payoff unless a certain level of privacy protection can be
realized. From Fig. 5 we can see that, as becomes smaller,

moves towards 0. This phenomena implies that as the data
becomes less valuable to the collector, the collector has to put
more effort to protect data owners' privacy, so that a low transfer
will be accepted by data owners and the collector can still keep
his payoff stay at a certain level.

B. Experiments on Real-World Data
1) Dataset and Anonymization Configurations: To evaluate

the performance of the contracts in a context where anonymiza-
tion is performed on real data, we conduct experiments on
the Adult data set [19], which is widely used in the study of
data anonymization. The original data set consists of 32,561
records from a census database, and each record consists of
15 attributes. After removing records with unknown values,
we randomly choose 30,000 records for experiment. Similar to
previous study on anonymization [20], [4], only 9 attributes,
namely age, workclass, education, marital-status, occupa-
tion, race, sex, native-country, and salary-class, are kept for
experiment.
To perform anonymization, we develop a Java project based

on the open source anonymization framework ARX [21], which
supports different types of privacy criteria and providesmultiple
methods for measuring information loss [1]. Here we choose the
most widely applied privacy criterion, i.e., -anonymity, to con-
duct experiments. A simple explanation to this privacy criterion
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Fig. 6. Relationship between the privacy criterion and information loss. The
information loss is measure by precision [3]. The blue curve is fitted
by using the data denoted by red stars. By using MATLAB curve fitting
toolbox, we choose a power function to formulate the fitted curve, which is

. From the reported R-square (coefficient
of determination) index, which is 0.9896, we know that such formulation is
appropriate.

is that after anonymization, the probability that an individual
being re-identified by an attacker is no higher than . Hence,
if the -anonymity criterion is met by the anonymized data, the
realized privacy protection level can be defined as .
After anonymization, the utility of data decreases. The

decrease of utility, also referred to as information loss, can
be measured in different ways. Here we choose the preci-
sion metric [3], which ranges from 0 to 1. Intuitively, if a
larger is chosen as the privacy criterion, the information
loss will becomes higher. In order to quantitatively analyze
how the information loss changes with , we conduct a group
anonymization experiments on aforementioned data set. All
the 9 attributes are treated as quasi-identifiers, namely each
of them can be generalized according to a domain general-
ization hierarchy [20]. For each , we run the
anonymization program and record the reported information
loss . Experiment results are shown in Fig. 6. By using the
curve fitting toolbox provided in MATLAB, we formulate as
a power function of . Then, by defining , which
means is interpreted as the ratio of the decreased utility to
that of the original data, we get the formulation defined in (1).
2) Contract Simulation: To demonstrate the superiority of

the optimal contract over the linear-production contract, we con-
duct multiple experiments to simulate data owners' response to
different contracts, and check whether the optimal contract can
bring the data collector a higher payoff. Experiments are config-
ured in the following way. First, we randomly divide the 30,000
records into groups, where is set to 3000, 300, and 30 re-
spectively. Each group of records corresponds to a data owner.
That is to say, we set respectively. The
privacy parameter of each data owner is set by uniformly
sampling in the interval . The rest parameters are set as

, and
.

Given the value of and the value of , the maximal
payoff that the data collector can get from a certain con-
tract is computed as follows. First, we determine the optimal
privacy protection level by using the method described
in Section IV.A1. Then, based on the production function

defined in the contract, we determine the number of
records that each data owner will provide. Let denote
the number of records and denote the owner's type. We set

, where denote the smallest integer
that is no less than . Based on and the information rent
function , the information rent paid to owner can be
determined. After above computation, we construct a new data
set by randomly choosing records from the 10 records cor-
responding to each owner . To run anonymization experiments
on this data set, we set . Then, based on the reported
information loss and each owner's , we can determine
the collector's payoff . Considering that records in the new
data are randomly chosen, for a given and a contract, we
repeat above procedure 5 times and report the average results.
3) Comparison Results: Simulation results are shown in

Fig. 7. As we can see, in all settings of , the optimal contract
exhibits a better performance than the linear-production con-
tract. As shown in Fig. 7(a), (c) and (e), in all settings of ,
the optimal contract can bring the collector a higher payoff than,
if not equal to, that brought by the linear-production contract,
especially when is close to . As increases,
the difference between the two contracts, in terms of payoff,
becomes insignificant. On the other hand, Fig. 7(b), (d) and
(f) show that when , the optimal contract
can offer the data owners a better protection of privacy. How-
ever, as becomes quite high, the optimal contract can only
realize a similar, even lower, privacy protection level as that
realized by linear-production contract. It should be noted that
a lower privacy protection level does not mean the optimal
contract is worse than the linear-production contract, since the
optimal contract is designed to maximize the data collector's
expected payoff rather than maximizing the privacy protection
level. Also, from Fig. 7(f) we can see that when the number
of data owners is quite small , the optimal privacy
protection level approaches to 1 in all settings of . This
result can be explained in a following way. In the setting where

, each data owner owns 1000 records. In order to meet
the collector's requirement, say , on average each
data owner has to provide more than 600 records. The data
owners will show great concern about privacy when they are
asked to provide so many private data. Thus it is necessary for
the collector to offer strong protection to the owners' privacy.
To understand why the optimal contract loses its advantage

when is high, we can recall the geometrical interpretation
presented in Section III.C. As illustrated in Fig. 2, a high
means a large part of the curve segment defined by the pro-
duction function lies on the boundary. And as becomes
higher, the rest part of the curve becomes more “flat”. As for
the linear-production contract, it uses a liner production func-
tion. According to (52), when approaches , the pro-
duction decreases with at a very low rate. To sum up, when

is close to the maximum , the two types of con-
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Fig. 7. Performance evaluation of the optimal contract and the linear-production contract: (a)(c)(e) data collector's payoff; (b)(d)(f) optimal privacy protection
level, . (a) . (b) . (c) . (d) . (e) . (f) .

tracts will make no obvious difference in their production func-
tions, hence they exhibits similar performance. In addition to
above results, it should be noted that the linear-production con-
tract can be applied only when ,
while the optimal contract can also be applied to cases when

is low. In that sense, the optimal contract is more practical
than the linear-production contract.

V. CONCLUSION

To deal with the information asymmetry problem emerging
in private data collecting, in this paper we proposed a contract
theoretic approach to help the data collector make a rational de-
cision on how to pay the data owners. Considering that the data
collector also needs to carefully adjust the privacy protection
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level, we treated the privacy protection level as a contract item,
and explicitly solved the optimal production functions and in-
formation rent functions for any given protection level. We've
shown that as the collector's requirement on data changes, the
optimal functions may be formed in a different way. As for the
optimal privacy protection level, we've analyzed how it should
be adjusted when the collector faces a different requirement on
data utility or has a new valuation of data. Such analysis can
provide a practical guidance for private data collecting.
The optimal contract proposed in this paper is mainly based

on the assumptions we've made on data collector's income func-
tion as well as the relationship between data utility and privacy
protection level. Whether there are more reasonable formula-
tions of these two functions needs to be further investigated.
Besides, in our study we have assumed that the distribution of
data owners' privacy preference is known to the collector. In fu-
ture work, wewill study the contract design problem in a context
where the distribution knowledge is unavailable to the collector.
Moreover, currently we assume that the data owner's privacy pa-
rameter is pre-specified by the nature, yet it is important to ex-
plore practical ways to quantify individual's preference on pri-
vacy. Whether we can learn one's valuation of his privacy from
one's historical behavior is a problem worth further studying.

APPENDIX A
SIMPLIFICATION OF THE INCENTIVE CONSTRAINTS

According to (6), for any , the following two
inequalities hold:

(60)
(61)

Adding (60) and (61) yields

(62)

Above inequality should hold for any , which means
has to be a non-increasing function of . Furthermore,

(62) implies that both and are differentiable almost
everywhere. Hence, we can restrict the analysis to piecewise
differentiable functions. Given , (60) implies that the function

reaches its maximum at , thus
must satisfy the following two conditions:

(63)

(64)

By differentiating (63), (64) can be written as:

(65)

The (63) and (65) constitute the local incentive constraints.
Then, by using (63) we can write the data owner's information
rent as

(66)

The non-increasing property (65) ensures that the third item in
the right-hand side of above equation is non-negative, which
means the local incentive constraints imply also the global in-
centive constraints. Hence, we can reduce the infinity of incen-
tive constraints in (6) to a differential equation (63) and a mono-
tonicity constraint (65).
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