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Abstract—Utilizing channel reciprocity, the traditional time-
reversal technique boosts the signal-to-noise ratio at the receiver
with very low transmitter complexity. However, the large delay
spread gives rise to severe inter-symbol interference (ISI) when
the data rate is high, and the achievable transmission rate is
further degraded in the multiuser downlink due to the inter-
user interference (IUI). In this work, we study the weighted sum
rate optimization problem by means of waveform design in the
time-reversal multiuser downlink where the receiver processing
is based on a single sample. Power allocation has a significant
impact on the waveform design problem. We propose a new
power allocation algorithm named Iterative SINR Waterfilling,
which is able to achieve comparable sum rate performance to
that of globally optimal power allocation. We further propose
another approach called Iterative Power Waterfilling for multiple
data streams. Iterative SINR Waterfilling provides better perfor-
mance than Iterative Power Waterfilling in the scenario of high
interference, while Iterative Power Waterfilling can work under
multiple data streams. Simulation results show the superior
performance of the proposed algorithms in comparison with
other waveform designs such as zero-forcing and conventional
time-reversal waveform.

Index Terms—Time reversal, waveform design, multiuser
downlink.

I. INTRODUCTION

THE traditional time-reversal (TR) waveform [1] is able
to boost the signal-to-noise ratio at the receiver with

very low transmitter complexity in a severe multipath channel.
Such a waveform is simply the time-reverse of the channel
impulse response which is transmitted by propagating back
through each multipath with channel reciprocity. In essence,
the environment is performing deconvolution on the fly for the
system. It can collect most energy of the multipaths to a single
tap. The receiver complexity is hence very low due to the one-
tap detection, that is, the receiver detects the received signal
using only one sample instead of more complicated receive
equalization.
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In broadband communication systems, the traditional time-
reversal technique can be viewed as a simple matched-filter
of the multipath channel which maximizes the signal-to-noise
ratio (SNR) at the receiver when using single-tap detection.
Such a waveform is optimal if only one symbol is transmitted.
However, when the symbol rate is high, large delay spreads
of the traditional TR waveform result in severe inter-symbol
interference (ISI) [2], [3]. Several approaches have been
proposed to suppress ISI. In [2], a zero-forcing (ZF) waveform
can be adopted to minimize the ISI, but ZF does not take
the noise into account. In [3], Emami et. al. improved the
traditional time-reversal waveform with the minimum mean
squared error (MMSE) waveform which suppresses both the
ISI and noise.

Although the ZF and MMSE waveforms can successfully
suppress the ISI and hence improve the performance of TR
systems, they only consider the single-user scenario. In mul-
tiuser downlink communications, one transmitter broadcasts
different data streams to many receivers at the same time.
Since each receiver is only interested in its own data stream,
the unintended data streams introduce inter-user interference
(IUI) to each receiver. In multiuser communications, due to the
low complexity compared to nonlinear methods, linear trans-
mit waveform design can be adopted to enhance the intended
signal and suppress the IUI to maximize the transmission
rate. Weighted sum rate is an important design criterion since
weighting coefficients provide prioritization among different
users in various applications. For example, the weights can
be chosen as queue lengths to minimize the risk of buffer
overflows [4], and the equal weights can be used to maximize
the achievable sum rate corresponding to the system capacity.

In the literature, there are some prior works on sum rate
optimization for MIMO broadcast channels with linear pre-
processing. Some of these works [5]–[7] directly optimize the
sum rate in the downlink, and some works [6], [8], [9] exploit
the uplink-downlink duality [10]–[13] to iteratively optimize
the sum rate. Such an iterative solution based on virtual uplink
first appeared in [14], [15]. In [11], the joint beamforming
and power control solutions to the max-min SINR problem
are developed. Cai et. al. further consider the max-min SINR
problem subject to a weighted-sum power constraint in multi-
cell downlink networks [13]. The approaches in [6] optimize
the weighted sum rate under linear zero-forcing constraints
and greedy algorithms are proposed to allocate data streams
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to users. In [8], the receiver is assumed to know the transmit
power allocation, and thus, the receiver is able to normalize
the received signal with the transmit power allocation and
the resulting problem is shown to be convex. In [9], the
weighted sum rate maximization is modelled into minimizing
the product of MSE, and sequential quadratic programming
is used to locate a local optimum of the minimization.
Most previous works on beamforming for multiuser MIMO
downlink channels assume flat fading and do not consider
the ISI introduced by multipath. ISI degrades the user’s
achievable rate as a self-interfering term proportional to its
own transmit power. To the best of our knowledge, the systems
with single-tap detection considering ISI and IUI have not
been considered before. In order to tackle this problem, we
propose a near-optimal waveform design to maximize the
weighted sum rate by simultaneously suppressing the ISI and
IUI. Pre-equalization for ISI and IUI is proposed in [16],
where the design criterion is MSE and thus the problems they
considered are convex. In this work, the waveform design in
the multiuser downlink systems where the receiver processing
is based on a single tap is formulated and shown to be
similar to the downlink beamforming problem. Beamforming
problems with the max-min SINR criteria are convex [11],
[13] and thus can be solved optimally, but beamforming for
weighted sum rate maximization is known to be a non-convex
optimization problem. In tackling the non-convex sum rate
maximization problem, d.c. (difference of convex functions)
programming has been applied in recent literature (e.g., [17],
[18]) by exploiting the fact that the sum rate can be written as
difference of convex functions. In [17], Kha et. al. proposed
an iterative algorithm in which the solution to a convex
optimization problem is calculated at each iteration, which
is accomplished by another iterative algorithm such as the
interior point method. Thus, the overall complexity of such
a method is quite high. Other d.c. programming approaches
(e.g., [18]) claimed to be able to obtain the global optimum are
mostly based on combinatorial optimization such as branch-
and-bound global search and usually require demanding com-
putational complexity. A practical approach is provided in [19]
to maximize weighted sum rate for MIMO-OFDM systems
but each user has only a single data stream. In this work, we
further provide an efficient solution to the weighted sum rate
maximization problem for multiple data streams. For single
data stream, the proposed algorithm is shown to perform better
than [19] in the scenario of high interference.

The proposed algorithms are based on the well-known
uplink-downlink duality, i.e., the waveform design for the
downlink can be obtained using virtual uplink, given any
power allocation. However, the power allocation problem for
sum rate optimization is non-convex for either uplink or down-
link. By exploiting the relation between the allocated power
and the SINR targets, we propose a power allocation algorithm
called Iterative SINR Waterfilling which can achieve compa-
rable performance to the globally-optimal power allocation.
The essential idea of the proposed scheme is to first allocate
the SINRs to the users to maximize the weighted sum rate,
and with the allocated target SINRs, the corresponding power
allocation can easily be determined. For multiple data streams,
we also propose an iterative power allocation algorithm

Fig. 1. The schematic diagram of the time reversal system.

called Iterative Power Waterfilling which is the multiple-data-
stream extension of the modified iterative waterfilling in [20].
Simulation results show that both the proposed approaches
significantly outperform traditional waveform designs such as
zero-forcing and time-reversal waveforms.

This paper is organized as follows. In Section II, the system
model and problem formulation are described. In Section III,
we introduce the proposed waveform design which alternately
optimizes between calculating the waveform and the power
allocation vector. The waveform design for multiple data
streams is proposed in Section IV. Finally, the numerical
simulation in Section V illustrates the performance compared
with traditional methods, and conclusion is drawn in Section
VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In the time reversal system [1], the receiver first sends an
impulse signal, which is then received by the transmitter as
a channel impulse response. Utilizing the channel impulse
response, the transmitter forms the TR waveform and sends
data symbols using the TR waveform. Figure 1 shows the
schematic diagram of the time reversal system. In this paper,
we consider multiuser downlink multipath channels with one
transmitter and K users. The receive signal of the kth user at
time m, yk[m], can be written as

yk[m] =
∑
l

hk[m− l]s[l] + nk[m], (1)

where s[m] is the transmit signal and hk[m] denotes the
channel impulse response of user k. The channel length of
hk[m] is denoted by Lk, i.e., hk[m] = 0 for m < 0 and
m ≥ Lk. Writing (1) in a matrix form, we have the receive
signal vector of the kth user as

yk = Hks+ nk = Hk

⎛
⎝ K∑

j=1

uj
√
pjxj

⎞
⎠+ nk, (2)

where yk is a (2L − 1) × 1 vector with L = maxk Lk, uj

is the transmit waveform, pj is the transmit power allocated
to user j, xj is the intended signal for user j, and nk is the
additive white Gaussian noise (AWGN) with mean zero and
variance σ2. In (2), Hk is a (2L−1)×L Toeplitz matrix with
each column vector being the shifted version of {hk[m]}Lm=1,
.

In the time-reversal communication system, user k estimates
the received signal by only yk[L]. Let H(l)

k denote the lth row
of Hk, the symbol at time slot l for user k as xk(l), and [nk]L



348 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 1, JANUARY 2013

as the Lth element of nk. The complete characterization of
the signal with ISI and IUI is given by

yk[L] = H
(L)
k uk

√
pkxk(L) +H

(L)
k

⎛
⎝ K∑

j=1,j �=k

uj
√
pjxj(L)

⎞
⎠

+

2L−1∑
l=1,l �=L

H
(l)
k

⎛
⎝ K∑

j=1

uj
√
pjxj(l)

⎞
⎠+ [nk]L. (3)

Assume that user k only decodes its own current symbol
xk(L) and considers the interferences (IUI and ISI) as noise.
Then the SINR of user k is given as

SINRDL
k =

uH
k R

(1)
k ukpk

uH
k R

(0)
k ukpk +

∑K
j=1,j �=k u

H
j Rkujpj + σ2

,

(4)

where R
(1)
k = H

(L)H
k H

(L)
k , Rj = HH

j Hj , and R
(0)
k = Rk −

R
(1)
k . The superscript DL denotes the downlink. The first term

and the second term in the denominator denote ISI and IUI,
respectively.

In this paper, we jointly design the waveform U =
[u1, ...,uK ] and power allocation vector p = [p1, ..., pK ]T

to maximize the weighted sum rate subject to a total power
constraint Pmax, i.e.,

PDL
Rate : max

p,U

K∑
k=1

αk log
(
1 + SINRDL

k

)

s.t. 1Tp ≤ Pmax,u
H
i ui = 1, pi ≥ 0, ∀i, (5)

where αk denotes the rate weighting coefficient for user k,
and 1 is an all-one vector with K elements.

III. ITERATIVE ALGORITHM FOR THE WEIGHTED SUM

RATE OPTIMIZATION

In this section, we develop an iterative algorithm for
the weighted sum rate optimization in multiuser downlink
time-reversal system. Since the waveform design structure
is decoupled in the virtual uplink system and the uplink-
downlink duality [10]–[12] builds a bridge between the two
systems, the proposed algorithm first solves the waveform
design and power allocation in the virtual uplink system,
and then transforms the solution into the original downlink
problem.

The optimal power allocation problem for sum rate maxi-
mization is non-convex either in downlink or virtual uplink. In
general, solving the global optimum for a non-convex problem
requires an exhaustive search, which is computationally im-
practical. Hence, we propose an algorithm to efficiently attain
a satisfactory near-optimal solution for the non-convex power
allocation problem. We will show in Section V by simulations
that the proposed algorithm can reach a solution which is very
closed to global optimum.

A. Uplink-Downlink Duality

As shown in (4), the SINR of every user depends on
the waveforms of all users, so all users’ waveforms have to
be jointly designed at the same time. Thus, the waveform

design is complicated in the downlink system. With the uplink-
downlink duality [10]–[12], the downlink optimal waveform
can be individually decided in the virtual uplink with fixed
power allocation.

The virtual uplink problem is constructed as follows.

PUL
Rate : max

q,U

K∑
k=1

αk log
(
1 + SINRUL

k

)

s.t. 1Tq ≤ Pmax,u
H
i ui = 1, qi ≥ 0, ∀i, (6)

where q = [q1, ..., qK ]T is the power allocation in the virtual
uplink, the downlink transmit waveform {uj}Kj=1 becomes the
uplink receive waveform, and the uplink SINR for user k is

SINRUL
k =

uH
k R

(1)
k ukqk

uH
k R

(0)
k ukqk +

∑K
j=1,j �=k u

H
k Rjukqj + σ2

,

(7)

where qk is the transmit power of user k in the virtual
uplink, and the superscript UL denotes the virtual uplink.
Examining the difference between (4) and (7), we can see
that SINRUL

k only depends on one user’s waveform uk, and
thus the waveform design structure is decoupled in the uplink
with the solution given by the generalized eigenvalue problem
[21].

By exploiting the fact that the SINR achievable regions
are the same [10] for the two dual problems, we develop an
iterative algorithm to solve PDL

Rate by first solving PUL
Rate. It

is now well-known [11] that for given SINR targets {γk}Kk=1,
the minimum required total power for the downlink and its
virtual uplink are the same. On the other hand, given a sum-
power constraint Pmax, the achievable SINR region is the same
for both the downlink and its virtual uplink. Therefore, the
solution for PUL

Rate is also the solution for PDL
Rate. Because

the transmit waveforms {uj}Kj=1 in PDL
Rate cannot be directly

solved, the proposed algorithm iterates between computing
the waveforms {uj}Kj=1 and solving for the uplink power
vector q. After the iteration for virtual uplink is completed,
the downlink power vector p is then calculated using the
waveforms {uj}Kj=1 and the virtual uplink power vector q.

Given a fixed power allocation, the optimal waveform
design of {uj}Kj=1 can be directly derived by leveraging the
uplink-downlink duality. Based on this, we can then focus on
the design of power allocation. We propose a power allocation
algorithm to be employed in the iterative sum rate optimization
algorithm. Due to the non-convexity of the problem, to obtain
the global optimum in general requires exhaustive search. The
proposed algorithm can attain a sub-optimum that is very
close to the global optimum in terms of weighted sum rate
performance and thus much better than traditional methods
such as zero-forcing and time-reversal waveforms. In the
following two subsections, we describe the waveform design
and the power allocation algorithm in detail.

B. Individual Waveform Design

The SINRUL
k in (7) can also be written as

SINRUL
k =

qku
H
k R

(1)
k uk

uH
k

(
qkR

(0)
k +

∑
j �=k qjRj + σ2I

)
uk

, (8)
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where only uk is involved and thus SINRUL
k can be opti-

mized by choosing uk to be the principle eigenvector of the
generalized eigenvalue problem,

qkR
(1)
k uk = SINRUL

k

⎛
⎝qkR

(0)
k +

∑
j �=k

qjRj + σ2I

⎞
⎠uk, (9)

This SINR-maximizing waveform turns out to be the MMSE
waveform

uMMSE
k = cMMSE

k

⎛
⎝ K∑

j=1

qjRj + σ2I

⎞
⎠

−1

H
(1)H
k . (10)

Here, cMMSE
k is a constant such that the norm of uMMSE

k is
normalized to unit. This can be easily verified by substituting
(10) into (9), and the corresponding eigenvalue can be obtained

as SINRUL
k = H

(1)
k

(
qkR

(0)
k +

∑
j �=k qjRj + σ2I

)−1

H
(1)H
k .

C. Power Allocation: Iterative SINR Waterfilling

Given fixed {uj}Kj=1, the problem PUL
Rate becomes solving

the power allocation vector q given a sum power constraint
Pmax. It can be verified that this problem is non-convex so
the global optimal solution is difficult to search. Instead, our
objective of the power allocation algorithm is to efficiently
obtain a near-optimal solution.

We propose a new power allocation algorithm called It-
erative SINR Waterfilling. The key feature of the proposed
algorithm is that, instead of directly allocating the power
{qk}Kk=1, we first allocate the SINRs {γk}Kk=1 to maximize the
weighted sum rate under the sum power constraint. And then
with the allocated SINRs, the power allocation of {qk}Kk=1

can be easily established. The conversion to SINR waterfilling
changes the objective function to be convex and the feasible
region to be non-convex. In the following, it will be seen that
such conversion can better capture the structure of interfer-
ence. The SINR is expressed in terms of the power by

γk = SINRUL
k =

uH
k R

(1)
k ukqk

uH
k R

(0)
k ukqk +

∑
j �=k u

H
k Rjukqj + σ2

.

(11)

Let D be a diagonal matrix with [D]kk = γk/u
H
k R

(1)
k uk, and

[Φ]kj =

{
uH
j Rkuj , k �= j

uH
k R

(0)
k uk, k = j

. (12)

On the other hand, rewriting (11), we can represent the power
allocation vector q in terms of {γk}Kk=1 by

q =
(
I−DΦT

)−1
Dσ, (13)

where σ is a K × 1 vector of all elements equal to σ2. With
(13), the power allocations {qk}Kk=1 can be obtained from the
SINR targets {γk}Kk=1.

Then the weighted sum rate optimization problem in terms
of {γk}Kk=1 can be reformulated as

max
γ1,...,γK

K∑
k=1

αk log (1 + γk) , (14)

s.t. 1T
(
I−DΦT

)−1
Dσ ≤ Pmax, (15)

ρ
(
DΦT

)
< 1, (16)

where ρ(·) denotes the spectral radius. Inequality (15) denotes
the sum power constraint in terms of {γk}Kk=1. The feasibility
condition (16) and the constraint that the obtained power
{qk}Kk=1 are all non-negative are equivalent to each other. The
detailed proof can be found in [22, Theorem 2]. One direction
can be shown by observing that in (13),

(
I−DΦT

)−1
=∑∞

i=0(DΦT )i if ρ
(
DΦT

)
< 1 (cf. [23, p.301]), and the

matrix DΦT is element-wise positive.
According to the Karush-Kuhn-Tucker (KKT) conditions,

the optimum γk must satisfy

γk =

(
αk

λtk
− 1

)+

, (17)

1T
(
I−DΦT

)−1
Dσ = Pmax, (18)

ρ
(
DΦT

)
< 1, (19)

where λ is the KKT multiplier and

tk =
uH
k R

(1)
k uk

γ2
k

1T
(
I−DΦT

)−1

Deke
T
k

×
(
I−DΦT

)−1

Dσ, (20)

and ek is the kth column of a K × K identity matrix. The
term tk is a function of {γk}Kk=1, i.e., it implicitly captures
the interference introduced by the SINR allocation. Next, in
order to solve λ, we show the monotonicity of λ in the left
hand side of (18) and (19).

Lemma 1: Let Λ be a square diagonal matrix with positive
diagonal elements, and S be a square matrix with positive
elements. Then ρ(ΛS) ≤ ρ(Λ)ρ(S).

Proof: Let x and y be the eigenvectors corresponding
to the maximum eigenvalues of ΛS and Λ1/2SΛ−1/2, re-
spectively, with ‖x‖ = 1, and ‖y‖ = ‖Λ1/2x‖. We have
‖y‖2 ≤ ρ(Λ)‖x‖2. Then,

ρ(ΛS) = xT (ΛS)x ≤ ρ(Λ1/2SΛ−1/2)‖y‖2
≤ ρ(S)ρ(Λ). (21)

Proposition 1: ρ(DΦT ) is monotonically decreasing with
λ. 1T

(
I−DΦT

)−1
Dσ is also monotonically decreasing

with λ if ρ(DΦT ) < 1.
Proof: Assume λ̂ > λ. From (17), we have γ̂k ≤ γk and

ρ(D̂D−1) ≤ 1. With Lemma 1,

ρ(D̂ΦT ) = ρ(D̂D−1DΦT ) ≤ ρ(D̂D−1)ρ(DΦT )

≤ ρ(DΦT ). (22)

Thus, ρ(DΦT ) is monotonically decreasing with λ.
If ρ(DΦT ) < 1, then

(
I−DΦT

)−1
=

∑∞
r=0

(
DΦT

)r
(cf. [23, p.301]). We have

1T
(
I−DΦT

)−1
Dσ = 1T

∞∑
r=0

(
DΦT

)r
Dσ

≥ 1T
∞∑
r=0

(
D̂ΦT

)r

D̂σ. (23)

Thus, 1T
(
I−DΦT

)−1
Dσ is also monotonically decreasing

with λ if ρ(DΦT ) < 1.
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TABLE I
ITERATIVE SINR WATERFILLING

(i) Given q, initialize γk with (11).
(ii) Loop:

1. Calculate tk using (20).
2. Bisection search λ with (17)-(19), i.e.,

(a) Set bisection upper bound λmax = maxk αk/tk ,
and lower bound λmin = δ > 0.

(b) Loop:
Set λ = 1

2
(λmax + λmin).

Compute γk =
(

αk
λtk

− 1
)+

.

If ρ
(
DΦT

)
< 1 then

If 1T
(
I−DΦT

)−1
Dσ < Pmax then

λmax = λ.
else

λmin = λ.
else

λmin = λ.
Until |1T

(
I−DΦT

)−1
Dσ − Pmax| < ε.

3. With γk obtained in last step, compute q by (13).
Until q converges or the max. number of iterations is reached.

TABLE II
ITERATIVE WEIGHTED SUM RATE OPTIMIZATION ALGORITHM FOR

SINGLE DATA STREAM

(i) Initialize qk = Pmax/K .
(ii) Loop (uplink optimization):

1. Calculate {uj}Kj=1 by (10).
2. Calculate q using Iterative SINR Waterfilling.

Until q and {uj}Kj=1 converges or the max. number of iterations
is reached.

(iii) Compute γk by (11).
(iv) Obtain downlink power vector p by (24).

Since the γk in (17), ρ(DΦT ), and 1T
(
I−DΦT

)−1
Dσ

are all monotonic with λ, the bisection search can be applied
to efficiently compute the λ such that the power constraint is
satisfied. In the one dimensional bisection search, the initial
upper bound of λ can be set as maxk αk/tk since the SINR
targets {γk}Kk=1 are all zero for λ higher than this value. The
lower bound can be set as a small positive number, which
corresponds to very large values of {γk}Kk=1.

Eqn. (17) is a waterfilling-like solution with a feasibility
constraint (19) and a nonlinear power constraint (18). The tk
can be considered as a modification term to the water level
due to the effect of the interference. In solving the optimum
γk, we can first fix tk, and then SINR target γk is found by
using bisection search for λ and substituting λ into (17). The
new γk is then used to update tk as in (20). The procedure
is repeated until convergence. The proposed Iterative SINR
Waterfilling is summarized in Table I.

We can incorporate a memory term for γk to slow down
the update and the convergence can be improved. In the nth
iteration, the γk(n) can be calculated by γk(n) = βγnew

k (n)+
(1−β)γk(n−1), where γnew

k (n) is the one obtained after the
bisection search and β is the forgetting factor with 0 < β < 1.

D. Iterative Sum Rate Optimization

The iterative sum rate optimization algorithm iterates be-
tween calculating the waveforms {uj}Kj=1 using (10) and the
power allocation q using Table I in the virtual uplink. The
iterative algorithm is not guaranteed to converge. However,

very fast convergence is almost always observed in the numer-
ical simulation. When the algorithm converges, the obtained
solution is a fixed point of (17)-(20), i.e., the solution satisfies
the KKT conditions. In case it does not converge or it takes a
long time to converge, the algorithm stops when the maximum
number of iterations is reached. The solution obtained in each
iteration is always feasible regardless of convergence. Hence,
after convergence or the maximum number of iterations is
reached, we can compute the corresponding achievable SINR
targets {γk}Kk=1 and the downlink power allocation p can then
be obtained similar to (13), i.e.,

p = (I−DΦ)
−1

Dσ. (24)

The proposed algorithm for the weighted sum rate optimiza-
tion algorithm is summarized in Table II. After convergence
or maximum number of iterations is reached, we take the
variables obtained at the last iteration as the solution. The
performance may be better if the iterative algorithm keeps
track of all passing solutions and chooses the best solu-
tion when the maximum number of iterations is reached.
However, keeping track of all passing solutions requires a
heavy overhead of space complexity but does not contribute
much to the averaged performance due to the rareness of the
non-converging cases. We have conducted simulations and
verified that the performance difference is not perceivable.
Hence, concerning the complexity and performance tradeoff,
we choose to use the variables obtained at the last iteration
instead of keeping track of all passing solutions.

The accuracy of using the virtual uplink to compute the
solution of the downlink is commented as follows. Given fixed
transmit waveforms {uj}Kj=1, the power allocation problems
to minimize the required sum power in the uplink and the
downlink for achieving certain SINR targets are dual problems
[10], [11]. As a consequence, the achievable weighted sum
rates of the uplink and the downlink under the same sum power
constraint are exactly the same. The solution in the uplink
can be transformed into the downlink using (13), where the
SINR targets are calculated by the uplink powers using (11),
to achieve exactly identical SINRs and thus exactly the same
weighted sum rate.

IV. MULTIUSER MIMO DOWNLINK WITH MULTIPLE

DATA STREAMS

In MIMO time-reversal systems where multiple data
streams are transmitted to each user, the transmit waveforms
of different data streams have a significant impact on the
achievable rates of all users. The proposed Iterative SINR
Waterfilling can only work for systems with single data
streams. In this section, we first describe the system model
and then also develop an iterative algorithm for the waveform
design.

A. System Model

The transmitter is now equipped with Nt transmit antennas.
Each of the K users has Nr,k receive antennas. The transmitter
is transmitting Mk data streams to user k. The Nr,k×1 receive
signal vector of the kth user at time m, yk[m], can be written
as yk[m] =

∑
l Hk[m− l]s[l] + nk[m], where the Nt × 1
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vector s[m] is the transmit signal at time m and the Nr,k ×
Nt matrices {Hk[m]}L−1

m=0 denote the MIMO channel impulse
response of user k at time m. We assume each channel is L-
tap. In a matrix form, the receive signal vector of the kth user
is given by

yk = Hks+ nk

= Hk

⎛
⎝Uk

√
Pkxk +

∑
j �=k

Uj

√
Pjxj

⎞
⎠+ nk, (25)

where yk = [yT
k [1], ...,y

T
k [2L− 1]]T ∈ C(2L−1)Nr,k , and the

Mk × 1 vector xk comprises Mk data streams intended for
user k. The matrix Uk = [UT

k [1], ...,U
T
k [L]]

T ∈ CLNt×Mk is
the transmit waveform for user k. The diagonal matrix Pk =
diag{pk1, ..., pkMk

} is the power allocated to the Mk data
streams of user k. nk ∈ C

(2L−1)Nr,k denotes the additive
white Gaussian noise and each element of nk is with zero
mean and variance σ2

k. The channel Hk ∈ C(2L−1)Nr,k×LNt

is a block-Toeplitz matrix in which each sub-block Hk[m] ∈
CNr,k×Nt is the channel matrix of receiver k at time m, i.e.,

Hk =

⎡
⎢⎢⎢⎣

Hk[1] 0 ... 0
Hk[2] Hk[1] ... 0

...
...

. . .
...

0 0 ... Hk[1]

⎤
⎥⎥⎥⎦ , (26)

In the MIMO time-reversal system, users perform the
single-tap detection by considering only the receive signal
vector at time L, i.e., yk[L]. Let H(l)

k denote the lth sub-block
row of Hk, e.g., H(L)

k = [Hk[L], ...,Hk[1]]. After processing
yk[L] with receive filter Vk, the complete characterization of
the signal, ISI and IUI is given by

x̂k(L) = VH
k yk[L]

= VH
k H

(L)
k Uk

√
Pkxk(L)

+VH
k H

(L)
k

⎛
⎝∑

j �=k

Uj

√
Pjxj(L)

⎞
⎠

+
∑
l �=L

VH
k H

(l)
k

⎛
⎝∑

j

Uj

√
Pjxj(l)

⎞
⎠+VH

k nk[L].

(27)

Assume that user k only decodes its own current symbol
xk(L) and considers the interferences (IUI and ISI) as noise.
Then the rate of user k is given as

RDL
k = log det

(
I+VH

k H
(L)
k UkPkU

H
k H

(L)H
k VkX

−1
k

)
,

(28)

where the superscript DL denotes downlink and the interfer-
ence matrix

Xk = σ2
kV

H
k Vk +

∑
l �=L

VH
k H

(l)
k UkPkU

H
k H

(l)H
k Vk

+
∑
j �=k

∑
l

VH
k H

(l)
k UjPjU

H
j H

(l)H
k Vk. (29)

The second term of (29) is the ISI of user k, and the third
term is the IUI from other users’ signals.

In the following, we will jointly design the transmit wave-
forms of the K users U = [U1, ...,UK ] and power allocation
P = diag {P1, ...,PK} to maximize the weighted sum rate∑K

k=1 αkR
DL
k subject to a total power constraint Pmax, i.e.,

PDL
Rate : max

P,U

K∑
k=1

αkR
DL
k

s.t. tr(P) ≤ Pmax, (30)

where αk denotes the rate weighting coefficient for user k.

B. Uplink-Downlink Duality for Multiple Data Streams

In (28) and (29), all the waveforms {Uj}Kj=1 are involved in
Rk, so the waveform design is complicated in the downlink.
With the uplink-downlink duality for multiple data streams
[12], the downlink optimal waveform can be found in the
virtual uplink with fixed power allocation. The sum rate
optimization problem in the virtual uplink is constructed as
follows.

PUL
Rate : max

Q,U

K∑
k=1

αkR
UL
k

s.t. tr (Q) ≤ Pmax (31)

where Q = diag {Q1, ...,QK} is the power allocation in
the virtual uplink, the downlink transmit waveform U is
equivalent to the uplink receive waveform, and the uplink
transmission rate for user k is

RUL
k = log det

(
I+UH

k H
(L)H
k VkQkV

H
k H

(L)H
k UkY

−1
k

)
,

(32)

where the superscript UL denotes the virtual uplink, and the
interference matrix

Yk = σ2
kU

H
k Uk +

∑
l �=L

UH
k H

(l)H
k VkQkV

H
k H

(l)
k Uk

+
∑
j �=k

∑
l

UH
k H

(l)H
k VjQjV

H
j H

(l)
k Uk. (33)

By exploiting the fact that under MMSE receive filtering
the SINR achievable regions of the two dual problems are the
same for multiple data streams [12], we develop an iterative
algorithm to compute the transmit waveform U and the uplink
power Q in the virtual uplink, and calculate the receive
waveform V and the downlink power P in the downlink.
In the following two subsections, we describe the waveform
design and the power allocation algorithm in detail.

C. Individual Waveform Design for Multiple Data Streams

As mentioned in Section IV-B, under MMSE receive fil-
tering the SINR achievable regions of the two dual problems
are the same [12]. Therefore, in this subsection we briefly
introduce the MMSE receive filter.

Given the power allocation matrix P and transmit waveform
U, the MMSE receive filter for the downlink can be derived
as

Vk =
(
H

(L)
k UkPkU

H
k H

(L)H
k +Xk

)−1

H
(L)
k Uk

√
Pk.

(34)
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Similarly, for the virtual uplink, given the power allocation Q
and transmit filter V, the MMSE receive filter is given by

Uk =
(
H

(L)H
k VkQkV

H
k H

(L)
k +Yk

)−1

H
(L)H
k Vk

√
Qk.

(35)

D. Power Allocation for Multiple Data Streams: Iterative
Power Waterfilling

We introduce the proposed power allocation algorithm for
multiple data streams. This algorithm is the multiple-data-
stream extension of the modified iterative waterfilling in
[20]. For multiple data streams, we cannot obtain the power
allocation vector by allocating the SINR targets since there
may be multiple solutions satisfying the same SINR targets.
Thus, we directly allocate the power allocation vector.

Given the transmit waveforms Uk, the power allocation
problem can be written as

max
{Pk}

K∑
k=1

αkRk

s.t.

K∑
k=1

tr (Pk) ≤ Pmax,Pk ≥ 0, ∀k. (36)

Taking derivative on the Lagrangian with respect to pkl,
1 ≤ l ≤ Mk, we have

αk

z−1
kl + pkl

− tkl = λ− μkl. (37)

where

zkl = eTl Φ
H
k,k,L

⎛
⎝Xk +

Lk∑
m=1,m �=l

pkmΦk,k,LemeTmΦH
k,k,L

⎞
⎠

−1

×Φk,k,Lel, (38)

and

tkl = αk

∑
i�=L

eTl Φ
H
k,k,i

(
Xk +Φk,k,LPkΦ

H
k,k,L

)−1

×Φk,k,LPkΦ
H
k,k,LX

−1
k Φk,k,iel

+
∑
j �=k

αj

∑
i

eTl Φ
H
j,k,i

(
Xj +Φj,j,LPjΦ

H
j,j,L

)−1

×Φj,j,LPjΦ
H
j,j,LX

−1
j Φj,k,iel, (39)

where the Mk ×Mk matrix Φk,j,i is defined as VH
k H

(i)
k Uj .

According to the Karush-Kuhn-Tucker (KKT) conditions
for (36), the optimum pkl satisfies

pkl =

(
αk

λ+ tkl
− z−1

kl

)+

, (40)

K∑
k=1

Lk∑
l=1

pkl ≤ Pmax. (41)

From the complementary slackness, either∑K
k=1

∑Lk

l=1 pkl = Pmax, λ > 0 or
∑K

k=1

∑Lk

l=1 pkl < Pmax ,
λ = 0 should be satisfied. Since λ is monotonic with respect to∑

k,l pkl, we can first check whether
∑K

k=1

∑Lk

l=1 pkl > Pmax

is satisfied for λ = 0. If so, the value of λ satisfying∑
k,l pkl = Pmax can be obtained via a one dimensional

TABLE III
ITERATIVE POWER WATERFILLING FOR MULTIPLE DATA STREAMS

(i) Given P
(ii) Loop:

1. Calculate tkl and zkl using (39) and (38).
2. Bisection search λ with (40) and (41), i.e.,

If
∑

k,l

(
αkt

−1
kl − z−1

kl

)+
< Pmax then

pkl =
(
αkt

−1
kl − z−1

kl

)+
.

else
(a) Set bisection upper bound λmax = max

k,l
{αkzkl − tkl},

and lower bound λmin = δ > 0.
(b) Loop:

Set λ = 1
2
(λmax + λmin).

Compute pkl =
(

αk
λ+tkl

− z−1
kl

)+
.

If
∑

k,l pkl < Pmax then
λmax = λ.

else
λmin = λ.

Until |∑k,l pkl − Pmax| < ε.
Until P converges or the max. number of iterations is reached.

TABLE IV
ITERATIVE WEIGHTED SUM RATE OPTIMIZATION ALGORITHM FOR

MULTIPLE DATA STREAMS

(i) Initialize Qk = Pmax∑
j Mj

IMk
, Uk = some random matrix.

(ii) Loop :
1. Calculate V by (34).
2. Calculate Q using Iterative Power Waterfilling.
1. Calculate U by (35).
1. Calculate P using Iterative Power Waterfilling.

Until (U,Q,V,P) converges or the max. number of iterations
is reached.

bisection search, where the upper bound of λ can be set as
maxk,l {αkzkl − tkl}, and we choose a small positive value
for the lower bound. Similar procedures can be done for
the case when λ = 0 and

∑
k,l pkl < Pmax. The proposed

Iterative Power Waterfilling is summarized in Table III.

E. Iterative Sum Rate Optimization for Multiple Data Streams

For multiple data streams, the sum rate optimization al-
gorithm iterates between the virtual uplink (U and Q) and
downlink (V and P). When computing one of (U,Q,V,P),
the other three variables are considered constant. Table III
is applied for calculating the power allocation P, and the
algorithm for computing Q is similar. Different from the
proposed algorithm for single data stream (Table II), where
the receive filter is simply a scalar and does not need to be
updated, for multiple data streams the calculation of P or
U relies on V, and the calculation of Q or V relies on U.
Therefore, the algorithm has to iterate between the virtual
uplink and the downlink. After convergence or maximum
number of iterations is reached, we take the variables obtained
at the last iteration as the solution and compute the achievable
sum rate accordingly. The algorithm is summarized in Table
IV.

The global optimum of a non-convex problem can be
obtained by exhaustive search which, however, requires pro-
hibitively high computational complexity. The solution of the
proposed iterative waveform design is suboptimal since we
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Fig. 2. Sum rate performance comparison for a 2-user system with L = 8,
D = 2, α1 = α2 = 1, and M1 = M2 = 1.

tradeoff the optimality with complexity. Simulation results
show that such sub-optima can still achieve a much better
weighted sum rate performance than traditional methods such
as Block-Diagonalization (BD) [24] and ZF.

V. NUMERICAL SIMULATION

In this section, we use numerical simulations to demonstrate
the performance of the proposed iterative sum rate optimiza-
tion algorithms. In the simulation, each path of the channel
is assumed to be an i.i.d. complex Gaussian random variable
with zero mean and variance of 1

2L per dimension.
The amount of ISI depends on the symbol rate. Thus,

we introduce the decimation ratio D, which represents the
ratio of the symbol duration to the signal sampling duration.
Each element in y is a signal sample, and the data symbols
are transmitted every D signal samples. Clearly, higher D
results in less ISI but lower symbol rate. In other words, one
symbol induces ISI to at most 	2(L− 1)/D
 other symbols.
Therefore, with decimation ratio D, the channel matrix H can
be decimated by keeping only 	2(L − 1)/D
 + 1 rows and
deleting the other rows for simplicity.

For example, if L = 3 and D = 2, the decimated H then
becomes

H =

⎡
⎣ h[0] 0 0

h[2] h[1] h[0]
0 0 h[2]

⎤
⎦ .

Figure 2 shows the sum rate performance of a 2-user system
with L = 8, D = 2, α1 = α2 = 1. Each rate is averaged
over 1000 channel realizations. TR denotes the traditional
time-reversal filter, i.e., uTR

k = cTR
k H

(1)H
k , where cTR

k is a
normalization constant such that ‖uTR

k ‖2 = 1; ZF denotes the
zero-forcing waveform, i.e., uZF

k = cZFk ([HT
1 , . . . ,H

T
K ]T )†ẽk,

where (·)† denotes the Moore-Penrose pseudo-inverse opera-
tor, and ẽk =

[
0T ,0T , . . . ,0T , eTL,0

T , . . . ,0T
]T

, which is a
K(2L− 1)× 1 vector with its kth vector as eL. Here with a
slight abuse of notation, we denote eL to be the Lth column
of a (2L − 1) × (2L − 1) identity matrix. The 0 denotes a

(2L− 1)× 1 all zero vector. Therefore, ẽk has only one non-
zero value at its ((2L−1)(k−1)+L)th element. cZFk is chosen
to normalize the norm of uZF

k to be 1.
We compare the proposed Iterative SINR Waterfilling with

equal power allocation and optimal power allocation in Figure
2. For the proposed algorithms, the forgetting factor β is
set to be 1/K . The maximum iteration number of Iterative
SINR Waterfilling is set to be 20. In this paper, since we
focus on demonstrating the performance advantage of the
proposed power allocation scheme, some parameters of the
proposed algorithms, such as the maximum number of it-
erations and the forgetting factor β, are empirically chosen
and the performance is already promising. Thus, we do not
aim to further optimize these parameters. The equal power
allocation is to split the total power equally to each user, i.e.,
pk = Pmax/K . The optimal power allocation is simulated by
exhaustive search of the discretized power variables, where
the number of discrete levels of each power variable is set as
103. The exhaustive search requires very high computational
complexity, which is exponentially increasing in the number
of variables as the number of discrete levels increases.

From the figure, the proposed power allocation can improve
the performance of equal power allocation for all waveform
designs, since the proposed Iterative SINR Waterfilling is able
to find sub-optima by taking into consideration the channel
gains. The improvement for the MMSE waveform is especially
significant at high power region. The MMSE waveform with
the proposed Iterative SINR Waterfilling performs almost
the same as the globally-optimal power allocation. We also
observe that even with the MMSE waveform, which is optimal
given any power allocation for single data stream, the equal
power allocation still saturates at high power region.

Note that since the sub-optimal waveforms TR and ZF do
not change under different power allocation, these methods do
not require iterations between the waveform design and power
allocation. For the MMSE with equal power allocation, since
the power allocation remains the same, the MMSE waveform
does not need to be updated accordingly. Therefore, these
methods are not iterative and thus require lower computational
complexity compared to the proposed algorithm, which has
two levels of iterations.

It is well-known [25] that since TR only maximizes the
received signal power without considering the interference,
it saturates at a lower rate, as shown in both figures. ZF
cancels the interference but sacrifices the received signal
power resulting in worse performance at low power region.
MMSE can strike a balance between the two by reducing
the interference including ISI and IUI, while keeping a high
received signal power.

In Figure 3, the proposed Iterative SINR Waterfilling is
compared with the convex approximation using geometric
programming (GP) [26], which approximates the rate function
log(1 + SINRk) as log(SINRk) in high SINR regime. With
such an approximation, the weighted sum rate function can
be shown to be a posynomial and the optimization problem
becomes a geometric program, which can be optimally solved
via standard convex programming techniques. In the figure,
for K = 2, L = 8, and D = 3, since the interference is
low and SINRk � 1, the sum rate optimization problem can
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Fig. 3. Sum rate performance comparison of the proposed algorithm in Table
II and the convex approximation using geometric programming (GP).
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Fig. 4. Convergence behaviors of the proposed sum rate optimization
algorithm.

be well approximated using the convex objective function,
and the performance of the proposed method is very close
to the globally optimal solution of the approximated convex
optimization problem. For K = 4, L = 8, D = 4, and K = 4,
L = 8, D = 3, the higher interference from more users
causes more performance degradation to the GP method. This
is because the approximate objective function

∑
k log(SINRk)

can be seen as the proportional fairness criterion for SINRs
and it deters some SINRk from being very small and sig-
nificantly decreasing the approximate objective function. On
the contrary, the original sum rate

∑
k log(1 + SINRk) is not

impaired as much if some SINRk are small, because most
power can be allotted to other users with lower interference
and still makes good contribution to the sum rate. In other
words, if some users’ interference is high, the original sum
rate maximization can abandon these users and allocate most
power to the others. Such a consequence cannot arise in the GP
method. Hence, only when the interference is low for all users,
the sum rate optimization problem can be well approximated
with the convex objective function.

The performance gap between the proposed method and
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Fig. 5. Sum rate performance for difference maximum numbers of iterations.

the GP method becomes larger as Pmax/σ
2 increases. This

seems not to comply with the intuition that the GP method can
obtain higher accuracy of approximation with high Pmax/σ

2.
Instead, the GP approximation is less accurate when the
available power is higher since the interference is also higher.
When Pmax/σ

2 is low, the noise is more dominant than
the interference, so the interference mitigation from power
allocation has less prominent influence on the sum rate. As
Pmax/σ

2 increases, the interference also increases. In a high
interference scenario, the proposed algorithm can make better
use of the available power compared with the GP method,
which is based on a less accurate approximation. Therefore,
the resulting advantage of the proposed algorithm is more
significant as Pmax/σ

2 increases. In this figure, we can also
observe that the performance gap for K = 4, L = 8, D = 3
between the two algorithms is larger than the gap for K = 4,
L = 8, D = 4 since the GP method allocates power based on
a less accurate approximation when the interference is higher.
Comparing between K = 4, L = 8, D = 3 and K = 2, L = 8,
D = 3, the proposed algorithm can achieve a better sum rate
performance when K increases, whereas GP instead performs
worse, which is again due to the ineffective approximation.

Figure 4 shows a typical convergence behavior of the
proposed sum rate optimization algorithm (Table II). Mono-
tonicity and very fast convergence are almost always observed
(typically about 3 to 12 iterations). The proposed sum rate
optimization algorithms with different maximum numbers of
iterations are compared in Figure 5. It can be seen that
the sum rate performance is improved with more iterations.
The improvement is more significant for smaller maximum
numbers of iterations and becomes less noticeable for higher
maximum numbers of iterations. We have performed exten-
sive (10,000 channel realizations) simulations to inspect the
convergence of the proposed algorithm. Over 99% of them
converge within 100 iterations, while the remaining less than
1% converge more slowly. Note that we define the convergence
as the rate improvement between two consecutive iterations
being within 10−6, i.e.,

∣∣(R(n+1) −R(n))/R(n)
∣∣ < 10−6.

We observed that for those cases with slow convergence, the
rate still monotonically increases but the increase is just too
slow to converge within 100 iterations. Since we assume L-
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Fig. 6. Sum rate performance comparison for different decimation ratio D
using the proposed algorithm in Table II. The performance is normalized by
D.
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Fig. 7. Sum rate performance comparison for a 2-user system with Nt = 6,
Nr,1 = Nr,2 = 2, L = 2, and M1 = M2 = 2.

path multipath channel with each path being a Gaussian, the
complexity to locate the peculiarity of these channels is very
high.

In Figure 6, we compare the sum rate performance with
different decimation ratio D. Note that for fair comparison,
the performance is normalized by 1/D which reflects the
frequency of channel usage. For smaller D, the transmission is
conducted more frequently but severer interference may occur
due to the ISI. Similarly for higher D, the ISI is reduced but
the channel is utilized less frequently. From the figure, we
can see that at low SNR region, D = 1 attains the highest
normalized performance since at low SNR, the ISI is less
prominent and the channel utilization is more important to
the normalized sum rate. On the other hand, at high SNR,
the ISI has a dominant effect and higher D can provide a
better normalized sum rate performance despite less frequent
channel usage.

Figure 7 shows the sum rate performance of a 2-user system
with L = 2, α1 = α2 = 1, Nt = 6, Nr,1 = Nr,2 = 2,
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Fig. 8. Comparison of the two proposed algorithms with different number
of users. L = 4, Nt = 1, Nr,k = 1, ∀k, Mk = 1,∀k, and Pmax/σ2 = 15
(dB).
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Fig. 9. Comparison of the two proposed algorithms. K = 4, L = 2, Nt = 1,
Nr,k = 1,∀k, and Mk = 1, ∀k.

and M1 = M2 = 2. The proposed algorithm (Table IV) is
compared with BD [24] and ZF. For BD, the signal space of
each user is orthogonal to each other, i.e., Uk is in the null
space of ISI and IUI. Thus, in order for BD to find a feasible
solution, the simulation parameters are chosen to satisfy LNt−
(2L− 1)

∑
j �=k Nr,j − (2L− 1)Nr,k ≥ Mk, ∀k. As to ZF, the

signal space of each data stream is orthogonal to each other.
Hence, ZF also has similar constraint on the dimensions.

We compare the Iterative Power Waterfilling as in Section
IV-D with equal power allocation in Figure 7. The equal
power allocation is to split the total power equally to each
data stream, i.e., Pk = Pmax∑

j Mj
IMk

. From the figure, it is
clear that the proposed power allocation outperforms equal
power allocation for MMSE, BD, and ZF. It is well-known
that interference cancellation based methods, such as BD and
ZF, suffer from the noise enhancement and thus result in worse
performance than MMSE.

We compare the two proposed power allocation algorithms
for single data stream with different number of users in Figure
8. The parameters are chosen as Nt = 1, Nr,k = 1, ∀k,
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Fig. 10. Comparison of the proposed algorithm and equal power allocation
for sum rate versus channel uncertainty.

L = 4, and αk = 1, ∀k. From the figure, Iterative SINR
Waterfilling outperforms the Iterative Power Waterfilling when
the number of users is large. Figure 9 shows that Iterative
SINR Waterfilling can achieve superior sum rate at high
SNR, where the parameters are chosen as K = 4, L = 2,
Nt = 1, Nr,k = 1, ∀k, and αk = 1, ∀k. From Figures
8 and 9, it can be seen that Iterative SINR Waterfilling
outperforms Iterative Power Waterfilling in the scenario of
high interference. Intuitively, the SINR targets have direct
influence on the sum rate and allocating the SINR can better
capture the impact of interference compared to allocating the
power.

In Figure 10, the proposed Iterative SINR Waterfilling is
compared with equal power allocation. The channel uncer-
tainty model for the kth user at time m is given by ĥk[m] =
hk[m] + ek[m], where ĥk[m] denotes the estimated channel
coefficient, hk[m] denotes the true channel with variance
σ2
h, and ek[m] is the estimation error with variance σ2

e . In
this figure, we can see that when the channel uncertainty is
small, the proposed method can still outperform the equal
power allocation. As the channel uncertainty increases, the
benefit of the proposed method over the equal power allocation
reduces, since the proposed method relies on the perfect
channel information to allocate the available power. When the
channel uncertainty is very high, the equal power allocation
performs better because the proposed method allocates the
power according to the coefficients almost uncorrelated to the
true channel.

Finally, we note that although we cannot prove the pro-
posed iterative algorithms converge to the global optimum,
the simulation results show that the proposed Iterative SINR
Waterfilling still results in comparable performance to that of
the globally-optimal power allocation and thus outperforms
other traditional methods.

VI. CONCLUSION

In this paper, we explored the weighted sum rate op-
timization problem by transmit waveform design for the

MIMO time-reversal multiuser downlink communication sys-
tems where the receiver processing is based on a single
sample. The waveform design problem is shown to have a
structure similar to the downlink beamforming problem with
a self-interfering term induced by the ISI. In order to tackle
the problem, we proposed a new power allocation scheme
called Iterative SINR Waterfilling which, instead of directly
allocating the power, the SINRs are first allocated to maximize
the weighted sum rate. With the allocated target SINRs, the
corresponding power allocation can be easily determined. For
multiple data streams, Iterative Power Waterfilling is further
proposed. Iterative algorithms alternately optimize the transmit
waveform and the power allocation for each user. Both of the
proposed sum rate optimization algorithms significantly out-
perform other traditional approaches such as zero-forcing and
time-reversal waveforms. We also demonstrated that Iterative
SINR Waterfilling outperforms Iterative Power Waterfilling in
the scenario of high interference, e.g., large number of users or
high SNR region. With the MMSE waveform, Iterative SINR
Waterfilling is shown to achieve near-optimal performance by
comparing with exhaustively-searched global optimum.
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