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Abstract—Network service acquisition in a wireless environ-
ment requires the selection of a wireless access network. A key
problem in wireless access network selection is to study the
rational strategy considering the negative network externality,
i.e, the influence of subsequent users’ decisions on an individ-
ual’s throughput due to the limited available resources. In this
work, we formulate the wireless network selection problem as
a stochastic game with negative network externality and show
that finding the optimal decision rule can be modelled as a
multi-dimensional Markov Decision Process (MDP). A modified
value iteration algorithm is proposed to efficiently obtain the
optimal decision rule with a simple threshold structure, which
enables us to reduce the storage space of the strategy profile. We
further investigate the mechanism design problem with incentive
compatibility constraints, which enforce the networks to reveal
the truthful state information. The formulated problem is a
mixed integer programming problem which in general lacks an
efficient solution. Exploiting the optimality of substructures, we
propose a dynamic programming algorithm that can optimally
solve the problem in the two-network scenario. For the multi-
network scenario, the proposed algorithm can outperform the
heuristic greedy approach in a polynomial-time complexity.
Finally, simulation results are shown to validate the analysis and
demonstrate the effectiveness of the proposed algorithms.

Index Terms—Game theory, stochastic game, negative network
externality, Markov decision process, network selection, mecha-
nism design, dynamic programming.

I. INTRODUCTION

NOWADAYS, wireless network services such as Femto-
cells [1] and Wi-Fi access points are widely deployed

to provide Internet access in areas such as homes, offices,
airports, hotels, etc. While there may be multiple available
wireless networks, a user can only choose one to join. Figure
1 shows an example of the Wi-Fi network selection from a
smart phone. Since the networks can be owned by different
operators, the network selection problem, which used to be
resolved in a centralized manner by admission control [2],
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Fig. 1. Wi-Fi network selection.

[3], should be investigated in a distributed perspective by con-
sidering users’ own interests. In the wireless access network
selection problem, a myopic strategy can usually be adopted
by choosing the one with the strongest signal. A consequence
of this strategy is the congestion of users to communicate
with certain network controllers such as access points (APs),
switches, or routers. The concentration of users creates an
unbalanced load in the network, which leads to an inefficient
resource utilization for service providers and a poor quality-
of-service (QoS) for users.

Efficient resource utilization is an important issue in modern
wireless access networks due to limited available resources
such as signal power, temporal and spatial bandwidth. On
one hand, the service provider attempts to maximize resource
utilization such that the available resources can accommodate
as many users as possible. On the other hand, due to the
individual rationality and the selfish nature, a user aims
to optimize his/her own utility. Therefore, a user’s optimal
strategy in such a resource-sharing scenario inevitably has to
take into consideration the negative network externality [4],
[5], i.e., the influence of other users’ strategies on the user’s
own utility. Commonly referred in economics and business,
the negative network externality is the effect that occurs
when more users make the available resource less valuable.
For example, the traffic congestion overloads the highway.
Overwhelming customers degrade the quality-of-service in a
restaurant. The negative network externality in these examples
impairs the utilities of the users making the same decision.

In this paper, we firstly focus on how a user should choose
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one of the available wireless access networks considering
the negative network externality. Wireless access network
selection is an essential problem of resource utilization and
has received great attention recently [6]–[17]. In [13], central-
ized approaches are investigated to provide congestion relief
by explicit channel switching and network-directed roaming.
A distributed access point selection algorithm based on no
regret learning is proposed in [14]. The authors show that
the algorithm can guarantee convergence to an equilibrium.
The arrival and departure of the users in network selection
problems are also considered in [16] and [17]. Another class
of network selection approaches is based on game theory.
Game theory has been recognized as an ideal tool to study the
interactions among users [18], [19]. It has been widely used in
wireless communications and networking for many different
problems [19]–[23] including power control [20], cooperation
stimulation [23], and security enforcement [24]. In [7], Mittal
et al. consider users changing locations as strategies to obtain
more resources and analyze the corresponding Nash equilibria
(NE). In [12], the network selection is modelled as a conges-
tion game, where players make decisions simultaneously to
optimize the interference and throughput. Also, the congestion
in the network selection game is similar to that in the channel
selection game, e.g., [25]–[27]. In [25], an atomic congestion
game in which resources are allowed to be reused among non-
interfering users is considered. In [26] and [27], the authors
investigated game theoretic solutions to the distributed channel
selection problem in opportunistic spectrum access systems. A
comprehensive review and comparison of existing decision-
theoretic solutions including Markov decision process, game
theory and stochastic control can be found in [28].

However, most of the existing works study the network se-
lection problem under the scenario where users make decisions
simultaneously. In this paper, we consider the problem under a
different scenario where users make decisions sequentially and
their optimal decisions involve the prediction of subsequent
users’ decisions due to the negative network externality. Se-
quential decisions considering the negative network externality
effect are studied in the Chinese restaurant game [29]–[31],
in which the equilibrium of grouping under the scenario of a
fixed total number of players is characterized. In this work,
we formulate the wireless access network selection problem
as a stochastic game with negative network externality, where
users arrive at and depart from networks in a probabilistic
manner. The problem of finding the optimal decision rule is
shown to be a multi-dimensional Markov Decision Process
(MDP). Different from the conventional MDP [32], the multi-
dimensional MDP has multiple potential functions and thus the
dynamic programming (DP) [33] cannot be directly applied.
We propose a modified value iteration algorithm to find the
equilibrium for the multi-dimensional MDP. The analysis
of the proposed algorithm shows that the strategy profile
generated by the algorithm has a threshold structure, which
enables us to save the storage space of the strategy profile from
O(N2) to O(N logN), where N2 is the number of system
states in the two-network scenario. Simulation results verify
the analysis and demonstrate the efficiency and effectiveness
of the proposed algorithm, i.e., while achieving the optimal
strategy for the individual, the proposed algorithm attains sim-

ilar performance of social welfare compared to the centralized
method that maximizes the social welfare.

The second focus of this paper is the truthful mechanism
design [34]–[38] for the network selection game. Mechanism
design is to devise pricing and allocation rules satisfying the
incentive compatibility [35], [36]. In the network selection
game, users makes decisions relying on the system states
which consist of the information provided by the networks,
possibly owned by different operators with different inter-
ests. Therefore, the reported state may be untruthful if it
is profitable to make a deceitful claim. In this work, we
investigate the mechanism design problem with incentive
compatibility constraints, which enforce the networks to report
truthfully, while optimizing the utility of users. The formulated
problem is a mixed integer programming problem which in
general lacks an efficient solution. Exploiting the optimality
of substructures, we propose a dynamic programming algo-
rithm that can efficiently and optimally solve the problem
in the two-network scenario. For the multi-network scenario,
the proposed algorithm can outperform the heuristic greedy
approach in a polynomial-time complexity. Finally, simulation
results are shown to validate the analysis and demonstrate the
effectiveness of the proposed algorithms.

The novelty and technical contribution of this work are
summarized as follows. We formulate the distributed wireless
access network selection problem as a multi-dimensional
MDP, which, to the best of our knowledge, is new and has
not been studied before. We propose a modified value iteration
algorithm to search for an equilibrium. We also analyze the
proposed algorithm and show that the resulting strategy profile
has a threshold structure. We further propose an efficient dy-
namic programming algorithm to design a truthful mechanism
which enforces the networks to truthfully reveal the state
information.

The rest of the paper is organized as follows. The system
model and the formulation of the wireless access network
selection game is described in Section II. In Section III, we
propose a modified value iteration algorithm for the multi-
dimensional MDP. The threshold structure of the strategy pro-
file generated by the proposed algorithm is analyzed in Section
IV. In Section V, we describe the mechanism design problem
for the network selection game and propose the dynamic
programming algorithm. In Section VI, the performance of the
proposed algorithms is evaluated using numerical simulation.
Finally, Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe in detail the system model and
the problem formulation of the wireless access network selec-
tion problem. To better illustrate the idea, we first introduce
some necessary notations including the probabilistic model
and then characterize the (approximate) equilibrium. Note that
as will be seen, the model is quite general and hence its
application is not restricted to the network selection problem
but can also be deployed in other problems with negative
network externality.



5050 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 10, OCTOBER 2013

A. System Model

The system under consideration comprises K wireless ac-
cess networks and each network has a capacity of N users,
i.e., a network can simultaneously serve at most N users. For
the sake of notational conciseness, we consider that all the
networks have the same capacity. The analysis can be easily
extended to the system with networks of different capacity.
We also assume that the networks have no buffer room for
users, which means when a network is full, users cannot
make request of connection to the network. Each user in
network k obtains a utility Rk(sk) per unit time, where sk
is the current number of users in network k. The utility
function is defined as the individual throughput, i.e., Rk(sk) =

log(1 + PS/N0

(sk−1)PI/N0+1 ), ∀k, which represents the achievable
data rate under inter-user interference, where PS/N0 denotes
the signal-to-noise power ratio, and PI/N0 is the interference-
to-noise power ratio. The utility represents the quality-of-
service (QoS) guaranteed by the network but restricted to
the available resource such as the total transmission power
and the bandwidth of radio frequency. The negative network
externality is manifested in the decrease of the data rate
as the number of users in the network increases due to a
higher inter-user interference. Note that the utilities of users
in the same network are assumed the same at each time slot
since the network can provide the same QoS to each user by
means of resource allocation, even though the instantaneous
channel conditions of different users may be different. For
example, centralized downlink power control algorithms [39],
[40] can be applied by the network to attain a common signal
to interference-plus-noise ratio (SINR) or to maximize the
minimum SINR among the users.

The users with Poisson distributed arrival rate λ̄0 (users per
second) have choices of connecting to one of the K networks.
After a user makes his decision, he/she cannot switch to any
of other networks and has to stay during a period of time with
exponential distribution of parameter μ̄, which is assumed the
same for all networks for simplicity. The users with arrival rate
λ̄k can only choose network k, for k = 1, . . . ,K . These users
can be envisioned as either the users with certain deterministic
behavior, or the users who can only have access to one
specific network due to the geographical distribution. Note
that incorporating this type of users only makes the system
model more general since we can simply set these rates as
zero if there are no such users.1

The system state s = (s1, . . . , sK) takes its value from
the state space S = {(s1, . . . , sK)|sk = 0, 1, ..., N, k =
1, . . . ,K}, and represents the state that sk users are in network
k, for k = 1, . . . ,K . We consider a discrete time Markov
system where a time slot has duration T (seconds). Then the
arrival and departure probabilities λk = λ̄kTe

−λ̄kT and μ =
μ̄T e−μ̄T can be approximated as λk ≈ λ̄kT, k = 0, . . . ,K
and μ ≈ μ̄T when T is sufficiently small [41]–[43]. Let
F(s) = {k|sk = N, k = 1, . . . ,K} be the index set of the
full networks which are serving the maximum number of

1More general types of users, such as users who can only connect to one
of a subset of K networks, can be considered. Here for simplicity we only
consider two types of users, i.e., users who have choices of connecting to any
one of K networks, and users who can only choose one specific network.

users and thus cannot accept any more. The complement set
of F(s) is denoted by F̄(s) = {k|sk < N, k = 1, . . . ,K},
i.e., the index set of the non-full networks. The strategy
space of network selection is restricted in F̄(s) when s is
a boundary state, i.e., when σs ∈ F̄(s). We assume that the
connection request from users arriving at the full networks will
be rejected and the traffic then goes to other non-full networks.
To model such a traffic transition, we therefore assume that
the traffic immediately flows to the non-full network. For
the two-network case, at most only one non-full network
has room for those users, so the traffic goes to that non-
full network. For the multi-network case, multiple non-full
networks can accommodate those users. In order to provide
a well-defined Markov system and to simplify the notation,
we assume that the traffic goes to a specific network, i.e.,
min F̄(s), the network with the minimum index. Notice that
if F̄(s) = φ, i.e., all networks are full, no connection request
can be accepted. The network selection strategy when the
user observes state s is denoted as σs, which takes value in
F̄(s). We define σs = j if network j is chosen. The indicator
function Ik(σs) is then defined as: if σs = j, Ij(σs) = 1;
otherwise Ij(σs) = 0. We have the state transition probability
of an arrival event as

Psys (s+ ej |s)

=

{∑
i∈F(s) λi + λj + Ij(σs)λ0, if j = min F̄(s),

λj + Ij(σs)λ0, if j ∈ F̄(s)\{min F̄(s)
}
,

(1)

where s and s + ej denote the system states at the current
time slot and the next time slot, and ej is a standard basis
vector whose j-th coordinate is 1 and other coordinates are 0.
At system state s, since the number of users in network j is
sj , the transition probability of a departure event is given by

Psys (s− ej |s) = sjμ, j = 1, . . . ,K. (2)

Furthermore, the probability that the system state remains the
same is

Psys (s|s) =
{
1−∑K

j=0 λj −
∑K

j=1 sjμ, if F̄(s) �= φ,

1−∑K
j=1 sjμ, if F̄(s) = φ.

(3)

The duration of a time slot T should be chosen such that∑K
j=0 λj +KNμ ≤ 1, i.e., T ≤ 1/(

∑K
j=0 λ̄j +KNμ̄).

For instance, when K = 2, 0 ≤ s1 ≤ N − 1, and 0 ≤ s2 ≤
N − 1, the transition probability is given by

Psys {s′|s = (s1, s2)}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(σs)λ0 + λ1, if s′ = (s1 + 1, s2),

I2(σs)λ0 + λ2, if s′ = (s1, s2 + 1),

s1μ, if s′ = (s1 − 1, s2),

s2μ, if s′ = (s1, s2 − 1),

1− λ0 − λ1 − λ2 − s1μ− s2μ, if s′ = (s1, s2),

0, otherwise.
(4)

Similarly the corresponding transition probability for s1 =
N , 0 ≤ s2 ≤ N − 1 or 0 ≤ s1 ≤ N − 1, s2 = N can
also be defined. Figure 2 depicts the state transition diagram
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Fig. 2. State diagram of the 2-D Markov chain.

when K = 2. The dynamic of the two-network system can be
described by a two-dimensional (2-D) Markov chain where the
probability Psys(s|s) is not shown in Figure 2 for conciseness.

B. Expected utility

The strategy profile σ = {σs|∀s ∈ S} is a mapping
from the aggregate state space to the action space, i.e.,
σ : {0, 1, ..., N}K �→ {1, 2, . . . ,K}. Given a strategy profile
σ, we can obtain the system transition probability in (1) - (3).
When a rational user arrives and observes system state s0,
he/she makes the decision σs0 = k̂ which leads the user into
the system state s1 = s0 + ek̂. Then, the expected utility of
the rational user is given by

Vk̂(s1) = E

[ ∞∑
t=1

(1− μ)t−1Rk̂(st)

∣∣∣∣∣ s1
]
, (5)

where st denotes the system state at time t. Since μ is the
probability that the service is terminated in one time slot, then
(1−μ) can be interpreted as the probability that the user stays
in the network in one time slot. The value (1 − μ) can also
be regarded as the discounting factor for the future utility as
shown later in (6). The strategy σs0 = k̂ determines which
network the user will enter and thus which expected utility
function the user will obtain. Denoted by Vk̂(s1), the expected
utility function is the expected value of the discounted sum
of the immediate utilities Rk̂(st) accumulated from the next
time slot. Notice that s1 = s0 + ek̂ is uniquely determined
by the user’s strategy σs0 , but the subsequent states st, for
t ≥ 2, are stochastic and dependent on the arrival of other
users, including users from user-arrival stream k, 1 ≤ k ≤ K ,
and other rational users.

From the Bellman equation [32], the expected utility in (5)
can be shown to satisfy the following recursive expression.

Vk(s) = Rk(sk) + (1− μ)
∑
s′

Pk (s
′|s)Vk(s

′), (6)

where

Pk

(
s′|s) =⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈F(s) λi + λj + Ij(σs)λ0, if j = min F̄(s),

λj + Ij(σs)λ0, if j ∈ F̄(s)\{min F̄(s)
}
,

siμ, if s′ = s− ei, ∀i �= k,

(sk − 1)μ, if s′ = s− ek,

1−∑K
j=0 λj −∑K

j=1 sjμ+ μ, if s′ = s,

0, otherwise.

(7)

which is the transition probability given that the user still stays
in network k. The probability of transition from s to s − ek
is (sk − 1)μ since sk − 1 users may leave the network. The
transition probability from s to other states is similar to the
definition of Psys in (4).

C. Best Response of Rational Users

Due to the selfish nature, when observing the state s, a
rational user will choose the strategy σs to maximize his
expected utility. Thus, the rational strategy σs has to satisfy

σs = argmax
k

Vk(s+ ek). (8)

It can be seen that with the strategy profile in which the
strategy of every state satisfies (8), no user can obtain a higher
expected utility by unilateral deviation to any other strategy.
Therefore, the strategy profile satisfying (6)-(8) is a Nash
equilibrium of the stochastic game.

III. MODIFIED VALUE ITERATION ALGORITHM

The problem of finding the strategy profile satisfying (6)-(8)
is not a conventional Markov Decision Process problem. In a
conventional MDP problem [32], a single potential function
is associated with each system state, and the optimal strategy
can be obtained directly by optimizing the potential function.
Such a problem can often be solved via the theory of dynamic
programming (DP) [33]. However, in our model, multiple
potential functions are related in a vector form:⎡
⎢⎢⎢⎣
V1(s)
V2(s)

...
VK(s)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
R1(s1)
R2(s2)

...
RK(sK)

⎤
⎥⎥⎥⎦+(1− μ)

⎡
⎢⎢⎢⎣
p1 0 · · · 0
0 p2 · · · 0
...

. . .
...

0 0 · · · pK

⎤
⎥⎥⎥⎦
T⎡
⎢⎢⎢⎣
v1

v2

...
vK

⎤
⎥⎥⎥⎦ ,

(9)

where 0 denotes an all-zero vector, pk and vk are vectors
comprising Pk(s

′|s) and Vk(s
′) as elements, k = 1, . . . ,K .

The transpose operator is denoted by (·)T .
The strategy σs is determined by comparing Vk(s+ek) for

all k as in (8). Thus, DP cannot be directly applied in such
a problem. It is important to point out that a user makes a
decision after he arrives and observes the system state s. The
strategy leads the user into some network k and results in an
expected utility Vk(s+ ek). In subsequent time slots, the user
cannot change from the network he/she is staying to any other
network. The expected utility is affected by others’ strategies
through the transition probabilities as given in (6).

We can see that given the expected utilities {Vk}Kk=1, the
rational strategy profile σ should satisfy (8). On the other
hand, given a strategy profile σ, the expected utilities {Vk}Kk=1
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can be found by (6), where the transition probability Pk(s
′|s)

is a function of the strategy σs. To obtain the optimal strategy
profile σ∗ satisfying (6)-(8), we propose a modified value
iteration algorithm to iteratively solve the problem. At the n-th
iteration, the rational strategy profile is given by

σ(n+1)
s = argmax

k
V

(n)
k (s + ek), ∀s ∈ S. (10)

The expected utility functions can be obtained by solving

V
(n+1)
k (s) = Rk(sk) + (1− μ)

∑
s′∈S

P
(n+1)
k (s′|s)V (n+1)

k (s′),

∀s ∈ S, ∀k ∈ {1, . . . ,K}, (11)

where the transition probability P
(n+1)
k (s′|s) is updated using

the corresponding updated strategies, i.e.,

P
(n+1)
k

(
s′|s) =⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈F(s) λi + λj + Ij(σ

(n+1)
s )λ0, if s′ = s+ ej , j = min F̄(s)

λj + Ij(σ
(n+1)
s )λ0, if s′ = s+ ej , j ∈ F̄(s)\{min F̄(s)

}
sjμ, if s′ = s− ej , j �= k

(sk − 1)μ, if s′ = s− ek

1−∑
j∈F̄s

Pk (s+ ej |s)−∑K
j=1 Pk (s− ej |s) , s′ = s,

0, otherwise,
(12)

The solution to (11) can be obtained through several ap-
proaches, one of which is the value iteration algorithm [32].
The algorithm first initializes V

(n+1)
k (s) as an arbitrary value

such as zero and iteratively updates it using (11). The iteration
function is a contraction mapping so the convergence to a
unique fixed point is guaranteed. Another approach is to
consider (11) as K sets of linear systems, where each set has
N2 unknown variables corresponding to {V (n+1)

k (s), ∀s} and
N2 equations. Such linear systems can be solved by linear
programming or matrix inversion.

In the next section, we will theoretically show that for
K = 2, the proposed algorithm results in a threshold structure
of the strategy profile at each iteration, and such a threshold
structure is also observed for general K > 2. However,
the strategy profile may not converge but oscillates near the
threshold due to the hard decision rule in (8). The non-
convergence occurs when the rational strategy of the state
near the threshold oscillates between different choices each
time when the expected utility is updated. When such a situa-
tion happens, the expected utilities corresponding to different
strategies are very close to each other. Hence, to solve this
problem, we relax the hard decision rule by allowing a small
region of tolerance for switching among the strategies [44],
which leads to the soft decision rule as follows.

σ(n+1)
s =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ
(n)
s ,

if V (n)

σ
(n)
s

(s+ e
σ
(n)
s

) ≥ maxk V
(n)
k (s + ek)− ε,

argmaxk V
(n)
k (s+ ek),

if V (n)

σ
(n)
s

(s+ e
σ
(n)
s

) < maxk V
(n)
k (s + ek)− ε,

(13)

where ε > 0 is a small constant. Table I summarizes the
proposed modified value iteration algorithm for the multi-
dimensional MDP. Notice that the algorithm stops when an

TABLE I
MODIFIED VALUE ITERATION ALGORITHM

(i) Initialize: V (0)
k (s) = 0, ∀k ∈ {1, . . . , K}, ∀s ∈ S . T = φ.

(ii) Loop :
1. Update {σ(n+1)

s } by (13).
If {σ(n+1)

s } = {σ(n)
s }, then stop loop.

else if {σ(n+1)
s } ∈ T , then

choose a {σs} ∈ T̄ , and let {σ(n+1)
s } = {σs}.

end if
T = T ∪ {σ(n+1)

s }.
2. Update {P (n+1)

k (s′|s)} by (12).
3. Solve {V (n+1)

k (s)} in (11) by value iteration or linear
programming.

Until T̄ = φ or {σ(n+1)
s } = {σ(n)

s }.

equilibrium is found or all the strategy profiles are searched.
By definition, when the algorithm obtains a solution, the
resulting strategy profile is an ε-approximate NE [18], in
which the strategy at each state has an expected utility that is
at most ε less than that of any other strategy. Note that there
may be multiple ε-approximate NEs especially for a larger
ε when a larger region of tolerance is allowed for switching
among the strategies.

IV. THRESHOLD STRUCTURE OF STRATEGY PROFILE

In this section, we show that the strategy profile produced
by the proposed modified value iteration algorithm in each it-
eration exhibits a threshold structure for two-network systems.
With the assumption that Rk(sk), k = 1, 2, are non-increasing,
the following lemma shows that V1(s) is non-decreasing and
V2(s) is non-increasing along the line of s1 + s2 = m,
∀m ∈ {1, 2, ..., 2N}.

Lemma 1: For n ≥ 0,

V
(n)
1 (s) ≥ V

(n)
1 (s + e1 − e2), (14)

V
(n)
2 (s) ≤ V

(n)
2 (s + e1 − e2). (15)

Proof: We use induction to show that (14) and (15) hold
for all n ≥ 0.

i) Since V
(0)
1 (s) and V

(0)
2 (s) are initialized as zeros, (14)

and (15) hold for n = 0.
ii) We assume the induction hypothesis holds for some n ≥

0. Then it can be shown that (14) and (15) also hold for (n+1)
by analyzing the following difference. Let s′ = s + e1 − e2.
For 0 ≤ s1 ≤ N − 2 and 1 ≤ s2 ≤ N − 1,

V
(n+1)
1 (s)− V

(n+1)
1 (s′) = R1(s1)−R1(s1 + 1)

+ (1− μ)
[
λ1

(
V

(n)
1 (s+ e1)− V

(n)
1 (s′ + e1)

)

+ λ0

(
I1(σs)V

(n)
1 (s+ e1)− I1(σs′)V

(n)
1 (s′ + e1)

)

+ λ2

(
V

(n)
1 (s+ e2)− V

(n)
1 (s′ + e2)

)

+ λ0

(
I2(σs)V

(n)
1 (s+ e2)− I2(σs′)V

(n)
1 (s′ + e2)

)

+ (s1 − 1)μV
(n)
1 (s− e1)− s1μV

(n)
1 (s′ − e1)

+ s2μV
(n)
1 (s− e2)− (s2 − 1)μV

(n)
1 (s′ − e2)

+ (1− λ0 − λ1 − λ2 − s1μ− s2μ)
(
V

(n)
1 (s)− V

(n)
1 (s′)

)]
.

(16)
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Due to the fact that the utility function R1(s1) is non-
increasing in s1 and the induction hypothesis which guarantees
the non-negativeness of many differences of terms in (16), by
rearranging a few terms, it suffices to discuss the following
cases.

Case 1: σ(n)
s = σ

(n)
s′ = 1. Then, V (n)

1 (s+ e1)− V
(n)
1 (s′ +

e1) ≥ 0 by the induction hypothesis.
Case 2: σ(n)

s = σ
(n)
s′ = 2. Then, V (n)

1 (s+ e2)− V
(n)
1 (s′ +

e2) ≥ 0 by the induction hypothesis.
Case 3: σ

(n)
s = 1 and σ

(n)
s′ = 2. Then, V

(n)
1 (s + e1) −

V
(n)
1 (s′ + e2) = 0.
Case 4: σ

(n)
s = 2 and σ

(n)
s′ = 1. Then, V

(n)
1 (s + e2) −

V
(n)
1 (s′ + e1) ≥ 0 by the induction hypothesis.
Therefore, we have V

(n+1)
1 (s) − V

(n+1)
1 (s′) ≥ 0, for 0 ≤

s1 ≤ N−2 and 1 ≤ s2 ≤ N−1. Next, it can be easily checked
that the inequality still holds for the case of s1 = N − 1, 1 ≤
s2 ≤ N − 1 as well as the case of 0 ≤ s1 ≤ N − 1, s2 = N .
Similarly, V (n)

2 (s) ≤ V
(n)
2 (s′) can also be established.

The following lemma shows the difference of V1(s + e1)
and V2(s+e2) is non-increasing along the line of s1+s2 = m,
∀m ∈ {1, 2, ..., 2N}.

Lemma 2: V
(n)
1 (s+ e1)−V

(n)
2 (s+ e2) ≥ V

(n)
1 (s′ + e1)−

V
(n)
2 (s′ + e2), where s′ = s+ e1 − e2.

Proof: It can be easily shown using Lemma 1.
Theorem 1: The strategy profile generated by the modified

value iteration algorithm has a threshold structure for K = 2.
Proof: The soft decision rule in (13) for K = 2 can be

rewritten as

σ(n+1)
s =

⎧⎪⎨
⎪⎩

σ
(n)
s , if |V (n)

1 (s+ e1)− V
(n)
2 (s+ e2)| ≤ ε,

1, if V (n)
1 (s+ e1) > V

(n)
2 (s+ e2) + ε,

2, if V (n)
2 (s+ e2) > V

(n)
1 (s+ e1) + ε.

(17)

If σ(n)
s = 2 and σ

(n+1)
s = 1, i.e., the strategy of the current

iteration is updated to be different from the one of the previous
iteration, then we must have V

(n)
1 (s + e1) > V

(n)
2 (s + e2) +

ε. Lemma 2 implies that V1(s
′ + e1) − V2(s

′ + e2) is non-
increasing along the line of s′1 + s′2 = s1 + s2. Thus, for
s′ = s− ke1 + ke2, k = 1, 2, . . . ,min{s1, N − s2}, we have

V1(s
′ + e1)− V2(s

′ + e2) ≥ V1(s+ e1)− V2(s+ e2) > ε > 0.

Therefore, σ
(n+1)
s′ = 1 for s′ = s − ke1 + ke2, k =

1, 2, ...,min{s1, N−s2}. Similarly, if σ(n)
s = 1 and σ

(n+1)
s =

2, then σ
(n+1)
s′′ = 2, for s′′ = s + ke1 − ke2, k =

1, 2, ...,min{N−s1, s2}. With the above discussion, the strate-
gies along the line of s1+s2 = m, ∀m ∈ {1, 2, ..., 2N} retain
a threshold structure in each iteration. Since the initialization
of the strategy profile exhibits a threshold structure trivially,
the strategy profile obtained in each iteration of the algorithm
has a threshold structure.

In a two-network system, the number of system states is
N2 and thus N2 strategies are needed to be stored without the
threshold structure. The storage space of each strategy is 1 bits.
Now with such threshold structure on each line s1 + s2 = m,
m = 1, 2, ..., 2N , we can simply store the threshold point on
each line. Each threshold point requires the storage space of
logN bits. Therefore, The storage of the strategy profile can
be reduced from O(N2) to O(N logN).

In this paper, we only provide the analysis for the two-
network systems. The analysis for systems with more than
two networks is difficult due to the lack of the optimality in a
single potential function as in the admission control problem
[45], [46]. However, it is observed from the simulation results
in Section VI that the multi-network systems also possess the
strategy profiles with threshold structures. The theoretic anal-
ysis of the threshold structure for the multi-network systems
is important but out of the scope of this paper, and will serve
as one of our future work.

V. TRUTHFUL MECHANISM DESIGN

In the above discussion, we have implicitly assumed the
networks truthfully report their states sk, and therefore the
user can observe the true system state s, by which he/she can
make a decision to maximize his/her utility. However, without
appropriate incentives, the networks may not truthfully report
their states. Instead, a network may untruthfully report some
state s′k different from the true state sk if profitable. In this
section, we consider to enforce truth-telling as a dominant
strategy for the networks by incorporating pricing rules into
the wireless access network selection game.

A mechanism consists of pricing rules {Pk(s)} and alloca-
tion rules {ak(s)}, where Pk(s) is denoted as the unit price
of the expected rate Vk(s) provided by network k at state s,
and ak(s) is denoted as the allocation probability, which is
either 1 or 0, i.e., whether or not the user enters network k.
The utility of network k is given by

Uk(s) = Vk(s + ek)Pk(s)− ck(s + ek)ak(s), (18)

where ck(s+ek) is the cost per user. With the states reported
from the networks, these rules determine the user allocation
and the price the user has to pay, both as functions of the
reports from networks. For example, if network k reports
his state as s′k and others report s−k = {sj : j �= k}, his
utility becomes Vk(s+ek)Pk(s

′
k, s−k)−ck(s+ek)ak(s

′
k, s−k).

Notice that Vk(s + ek) and ck(s + ek) are functions of true
states that do not depend on the reports. Thus, the truth-
telling or the incentive compatibility (IC) constraints are,
∀sk, s′k, s−k,

Vk(sk + 1, s−k)Pk(sk, s−k)− ck(sk + 1, s−k)ak(sk, s−k)

≥ Vk(sk + 1, s−k)Pk(s
′
k, s−k)− ck(sk + 1, s−k)ak(s

′
k, s−k),

which means truth-telling is a dominant strategy for each
network at each state. The mechanism also has to satisfy the
individual rationality (IR) constraints, i.e., ∀sk, s−k,

Vk(sk + 1, s−k)Pk(sk, s−k)− ck(sk + 1, s−k)ak(sk, s−k) ≥ 0,
(19)

which guarantees all networks would attend the mechanism.
In the previous sections, we study the network selection

game with the focus of the interdependence between the
users. In this section, we study the interplay among the
networks. To this end, we assume that users’ strategies are
chosen based on the ex ante optimality [18], [35], i.e., the
allocation rule is based on optimizing the expected objective
over the state probability. The truthful mechanism design is to
construct a set of pricing and allocation rules which optimize
a specific objective while satisfying IC and IR constraints. For
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example, the mechanism design problem Pp for minimizing
the expected payment can be formulated as follows.

Pp : min
{Pk},{ak}

∑
s∈S

π(s)
K∑

k=1

Pk(s)Vk(s+ ek) (20)

s.t. (IC), (IR), ak(s) ∈ {0, 1}, ∀s,∀k. (21)
K∑

k=1

ak(s) = 1, ∀s ∈ S , (22)

Other mechanism design objectives such as the utility max-
imization Pu can be formulated by substituting (20) with
users’ expected utility function as follows.

max
{Pk},{ak}

∑
s∈S

π(s)
K∑

k=1

[λak(s)Vk(s+ ek)− Pk(s)Vk(s+ ek)]

s.t. (21), (22).

The unit cost ck(s + ek)/Vk(s + ek) is denoted as wk(s).
The (IC) constraints become

Pk(sk, s−k)− wk(sk, s−k)ak(sk, s−k)

≥ Pk(s
′
k, s−k)− wk(sk, s−k)ak(s

′
k, s−k),∀sk, s′k, s−k. (23)

In the following, we need a monotonicity assumption for
the unit cost, i.e., wk(sk, s−k) is non-decreasing in sk, i.e.,
wk(sk, s−k) ≥ wk(s

′
k, s−k), if sk ≥ s′k. Since Vk(sk, s−k) is

non-increasing in sk, the assumption holds when ck(sk, s−k)
is non-decreasing in sk. For example, if the per-user cost
is a constant in each network, i.e., ck(sk, s−k) = Ck, then
the assumption holds. The monotonicity of wk(sk, s−k) leads
to the threshold structure of ak(sk, s−k) as in the following
lemma.

Lemma 3: Under IC constraints, there exists a threshold
value of sk on the allocation rule ak(sk, s−k), i.e., given s−k,
there exists s∗k(s−k) ∈ {−1, 0, 1, . . . , N}, such that

ak(sk, s−k) =

{
1, sk ≤ s∗k(s−k)
0, sk > s∗k(s−k).

(24)

Proof: From (23), we have

Pk(sk, s−k)− Pk(s
′
k, s−k)

≥ wk(sk, s−k) [ak(sk, s−k)− ak(s
′
k, s−k)] . (25)

Interchanging sk and s′k, we also have

Pk(s
′
k, s−k)− Pk(sk, s−k)

≥ wk(s
′
k, s−k) [ak(s

′
k, s−k)− ak(sk, s−k)] . (26)

Combining the above two inequality leads to
[
wk(sk, s−k)− wk(s

′
k, s−k)

] [
ak(sk, s−k)− ak(s

′
k, s−k)

] ≤ 0.
(27)

Thus, since wk(sk, s−k) is non-decreasing in sk, the allo-
cation rule ak(sk, s−k) has to be non-increasing in sk. With
this monotonicity and the fact that ak(sk, s−k) can only have
value of 0 or 1, we can conclude that there exists a threshold
of ak(sk, s−k) in sk as described in (24).

Corollary 1: If K = 2, then s∗1(s2) is non-decreasing in
s2, and s∗2(s1) is non-decreasing in s1.

Proof: Suppose ∃s2 such that s∗1(s2 + 1) < s∗1(s2). By
Lemma 3, we have a1(s1, s2 + 1) = 0, for s1 > s∗1(s2 +
1), which implies a2(s1, s2 + 1) = 1, for s1 > s∗1(s2 + 1),
due to the constraint that a1(s) + a2(s) = 1, ∀s. Therefore,

a2(s
∗
1(s2), s2 + 1) = 1, which implies a2(s

∗
1(s2), s2) = 1 by

Lemma 3, but we also have a1(s
∗
1(s2), s1) = 1, which leads

to a contradiction.
The following lemma shows that only adjacent IC con-

straints are necessary.
Lemma 4: Non-adjacent IC constraints are redundant.

Proof: Let us consider the two adjacent IC constraints as
follows.

Pk(sk, s−k)−wk(sk, s−k)ak(sk, s−k)

≥ Pk(sk − 1, s−k)− wk(sk, s−k)ak(sk − 1, s−k), (28)

Pk(sk − 1, s−k)− wk(sk − 1, s−k)ak(sk − 1, s−k)

≥ Pk(sk − 2, s−k)− wk(sk − 1, s−k).ak(sk − 2, s−k) (29)

Adding (28) and (29), we have

Pk(sk, s−k)− wk(sk, s−k)ak(sk, s−k)

≥ Pk(sk − 2, s−k)− wk(sk, s−k)ak(sk − 2, s−k)

− wk(sk, s−k) [ak(sk − 1, s−k)− ak(sk − 2, s−k)]

+ wk(sk − 1, s−k) [ak(sk − 1, s−k)− ak(sk − 2, s−k)]

≥ Pk(sk − 2, s−k)− wk(sk, s−k)ak(sk − 2, s−k). (30)

The last inequality is due to that wk(sk, s−k) is increasing
in sk and ak(sk, s−k) is decreasing in sk. It shows that the
non-adjacent IC constraints can be inferred from the adjacent
ones.

Using the adjacent IC constraints, we can obtain the bounds
for the payments, i.e., given an allocation rule {ak(s)}, the
incentive compatible payment rule {Pk(s)} satisfies

Pk(sk, s−k) + wk(sk, s−k) [ak(sk − 1, s−k)− ak(sk, s−k)]

≥ Pk(sk − 1, s−k) ≥ Pk(sk, s−k)

+ wk(sk − 1, s−k) [ak(sk − 1, s−k)− ak(sk, s−k)] (31)

In the optimization problems Pp, we aim to minimize a lin-
ear combination of Pk(sk, s−k) with nonnegative coefficients.
Clearly, the lower bound in (31) should be binding; otherwise,
the objective function can always be better optimized by
decreasing the non-binding Pk(sk, s−k). Hence, the payment
rule can be expressed as

Pk(sk, s−k) = Pk(N, s−k)

+
N∑

r=sk+1

wk(r − 1, s−k) [ak(r − 1, s−k)− ak(r, s−k)] . (32)

To minimize Pk(sk, s−k) while satisfying the IR constraint
in (19), Pk(N, s−k) should be set as 0. Substituting Lemma
3 into (32), we can conclude

Pk(sk, s−k) =

{
wk(s

∗
k, s−k), sk ≤ s∗k,

0, sk > s∗k,
(33)

where s∗k denotes s∗k(s−k) for notational simplicity.
From the IC and IR constraints, the pricing rule {Pk} can be

determined given the allocation rule {ak}, which is specified
by the thresholds {s∗k}. Thus (33) simply means the pricing
rule {Pk} is also specified by the thresholds {s∗k}. Using {s∗k}
as optimization variables, the problem Pp can be simplified
as

min
{s∗k}

∑
s∈S

π(s)
K∑

k=1

Pk(s)Vk(s)

s.t. (22), (24), (33).

(34)
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With the simplification, however, the optimization problem
is still difficult to be solved optimally since the optimiza-
tion variables {s∗k} is discrete and the exhaustive search
requires exponential-time complexity in N . Motivated by the
optimal substructures in the two-network case, a dynamic
programming algorithm is proposed for the above problem.
The optimal solution to the primary problem can be broken
down into solving the optimal solutions to its subproblems.
The dynamic programming technique essentially performs
recursive divide-and-conquer to tackle each of these sub-
problems. However, for the multi-network case, the proposed
dynamic programming approach is suboptimal but the per-
formance is satisfactory compared to the greedy method.
Other traditional optimization algorithms such as branch-and-
bound can be applied to optimally solve the mixed integer
programming problem, but the computational complexity is
prohibitively high (exponential in the number of states) since
such an algorithm basically performs exhaustive tree search
with certain pruning strategies. In general a mixed integer
program does not have an efficient solution. In this paper, we
aim to propose an algorithm that is able to achieve satisfactory
performance with reasonable complexity (polynomial in the
number of states).

A. Proposed Algorithm

Since the number of states is NK , the exhaustive search
over all possible allocation rules requires complexity of
O(KNK

). Such an exponential complexity is formidably high
even for a moderate N . In this subsection, we propose a
polynomial time algorithm based on dynamic programming
to search for the thresholds {s∗k}. Let fDP

k ({si : i ∈ I}|{sj :
j ∈ J }) denote the optimal value of a set of system states
specified by ({si : i ∈ I}|{sj : j ∈ J }), where the set J
consists of coordinates with coordinate j being fixed as sj . The
set I consists of the coordinates with ranges, where coordinate
i ranges from 1 to si. The set I has k coordinates, i.e., the
considered set of system states is k-dimensional. The optimal
value function fDP

k can be computed using lower-dimensional
optimal value functions. The recursive calculation is described
by the following equations. For k = 2, . . . ,K,

fDP
k ({si : i ∈ I}|{sj : j ∈ J }) = min

i∈I

{

fDP
k (si − 1, s−i|{sj : j ∈ J }) + fDP

k−1 (s−i| {sj : j ∈ J ∪ {i}})
}
,

where s−i = {sl : l �= i, l ∈ I}. (35)

ai∗(si∗ , s
′
−i∗ , sj , s−j) = 0,∀s′−i∗ � s−i∗ , (36)

i∗ = argmin
i∈I

{
fDP
k (si − 1, s−i|{sj : j ∈ J })

+fDP
k−1(s−i|{sj : j ∈ J ∪ {i}})

}
, (37)

where s′−i∗ � s−i∗ denotes s′−i∗ ∈ {s′l : s′l ≤ sl, l �= i∗, l ∈
I}. The boundary condition is

fDP
1 (si|s−i) = fDP

1 (si − 1|s−i)
wi(si, s−i)

wi(si − 1, s−i)

+ π(si, s−i)Vi(si + 1, s−i)wi(si, s−i), (38)

a−i∗(si∗ , s
′
−i∗ , sj , s−j) = 1,∀s′−i∗ ≤ s−i∗ , (39)

where i∗ is the minimizer in (37) when k = 2. Notice that
(38) is equivalent to fDP

1 (si|s−i) =
∑si

r=0 π(r, s−i)Vi(r +

TABLE II
DYNAMIC PROGRAMMING ALGORITHM FOR MECHANISM DESIGN

(i) Initialization: obtain {V (0)
k (s)} and {π(0)(s)} using Table I.

(ii) Loop:
1. With initial I = {1, . . . ,K}, J = φ, evaluate

f
(n)
K (N, . . . , N) using (35)-(39) to obtain {a(n+1)

k (s)}
and {P (n+1)

k (s)}.
2. Calculate {V (n+1)

k (s)} and {π(n+1)(s)}.
Until {a(n+1)

k (s)} and {P (n+1)
k (s)} converge.

1, s−i)wi(si, s−i), but the recursive form in (38) is more
efficient in computation with the price of using more storage
space. The proposed algorithm is to evaluate fDP

K (N, . . . , N)
with I = {1, . . . ,K} and J = φ by using (35)-(39). The
following proposition shows the optimality of the solution
obtained by the proposed algorithm when K = 2. The proof
is omitted due to space limitation.

Proposition 1: For K = 2, the proposed algorithm opti-
mally solves Pp in O(N2).

For K ≥ 3, the solution obtained by the proposed algo-
rithm may be sub-optimal since monotonicity of allocation
thresholds in Corollary 1 only holds when K = 2. However,
it will be shown in Section VI that the proposed algorithm
still outperforms the heuristic greedy method. For a general
K , the computational complexity of the proposed algorithm
can be shown to be O(NK), which is polynomial in N .

Given the expected rate {Vk(s)} and the stationary probabil-
ity {π(s)}, the proposed dynamic programming can efficiently
find solutions of the allocation rule {ak(s)} and the pricing
rule {Pk(s)} to the problem Pp. However, {Vk(s)} and
{π(s)} depend on {ak(s)} since the state transition probability
depends on {ak(s)}. Therefore, we propose to iteratively up-
date {Vk(s)}, {π(s)}, and {ak(s)}. The proposed mechanism
design algorithm for the network selection game is summa-
rized in Table II. In the numerical simulation, we observed
that the iterative algorithm exhibits very fast convergence. The
typical number of iterations to converge is between 5 to 8.

The proposed algorithm can be easily modified to solve
Pu by replacing the min in (35) and (37) with the max, and
changing the boundary condition in (38) to be f1(si|s−i) =∑si

r=0 π(r, s−i)Vk(r, s−i)(λ− w(si, s−i)).

VI. NUMERICAL SIMULATION

In this section, we use numerical simulation to verify
the analysis and evaluate the performance of the proposed
modified value iteration algorithm as the rational strategy. The
proposed method is compared with the following schemes.
We first define the social welfare given a strategy profile σ
as SWσ =

∑
s∈S πσ(s)

∑K
k=1 skRk(sk), where πσ(s) is

the stationary probability at system state s. The centralized
method is to exhaustively search through all the possible
strategy profiles and choose the one that achieves the largest
social welfare, i.e., σcent = argmaxσ SWσ. Thus, the
centralized method requires a computational complexity of
O(K |S|), which is exponentially increasing in the number
of system states and is impossible to be used in practice.
The myopic strategy is obtained by choosing the largest
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Fig. 3. The threshold structure of the strategy profile during iterations of
the proposed algorithm.

immediate utility after making the decision, i.e., σmyop
s =

argmaxk∈{1,...,K} Rk(sk + 1). In current cellular systems,
the cell selection is done by choosing the base-station with
the highest detected SNR. Such an approach is similar to the
myopic strategy since it only concerns about the immediate
utility. Finally, the random strategy is to randomly make
the decision with equal probability, i.e., Pr

{
σrand
s = k

}
=

1
|F̄(s)| , ∀k ∈ F̄(s), where | · | denotes the cardinality of a set.
In the following simulation, the performance of the random
strategy is obtained by averaging the performance of 1000
instances for each set of parameters.

The algorithm analysis in Section IV shows that there
exists a threshold structure of the strategies along each line
of s1 + s2 = m, ∀m ∈ {1, 2, ..., 2N}. We verify the analysis
by numerical simulation in Figure 3, which illustrates the
strategy profile computed by the proposed algorithm in a two-
network system where Ps/N0 = 50, PI/N0 = 10, T = 0.08
(sec), λ̄0 = 0.5 (users/sec), λ̄1 = 0.125 (users/sec), λ̄2 = 2.5
(users/sec), μ̄ = 1.25 (users/sec), ε = 0.05 and N = 8. The
x-axis (y-axis) denotes s1 (s2), i.e., the number of users in
network 1 (network 2). The number marked at the coordinate
s = (s1, s2) denotes the computed strategy σs, which is either
1 or 2 in this scenario. This figure shows the strategy profile
converges in 30 iterations. The green (dot-dash) line is drawn
in between different strategies to emphasize the threshold. The
threshold lines of certain iterations (1, 2, and 10) are also
shown in the figure to illustrate the evolution of the strategy
profile during the iterations of the proposed algorithm. It is
observed that at each iteration, the threshold structure of the
strategies always exists along the diagonal lines as the analysis
in Section IV. In the rest of simulations, instead of specifying
the arrival rates and the time slot duration, we consider
the parameters as transition probabilities since the relative
values of these probabilities directly influence the resulting
performance. Figure 4 shows the converged strategy profile of
a three-network system, where Ps/N0 = 50, PI/N0 = 10,
λ0 = 0.1, λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, μ = 0.1, ε = 0.05
and N = 5. It is observed that the strategy profile also has a
threshold structure.

Figure 5 validates the individual rationality of the proposed
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Fig. 4. The threshold structure of the strategy profile for a three-network
system.
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method in a two-network system, where the parameters are
set to be Ps/N0 = 50, PI/N0 = 10, λ0 = 0.2, λ1 = 0.01,
λ2 = 0.3, μ = 0.25, ε = 0.05, and N = 4. The decision
maker’s expected utility, defined as E[Vσs(s+ eσs)], is evalu-
ated versus the probability of deviation pd. For computational
tractability of the centralized method, the number of users
N is set to be 4. Note that the time slot duration is chosen
to ensure that λ0 + λ1 + λ2 + 2Nμ ≤ 1 but the relative
values of these probabilities are retained. The user at state s
deviates from the given strategy σs with probability pd. The
decision maker’s expected utility can only be impaired if he
deviates from the strategy profile generated by the proposed
method. However, by deviating from the centralized strategy
that maximizes the social welfare, the user can possibly obtain
higher expected utility (about 70% performance improvement
in Figure 5). Clearly, the individual rationality is not satisfied
for the centralized strategy.

Figure 6(a) and 6(b) show the comparison of the decision
maker’s expected utility with different strategy profiles in
a two-network system where Ps/N0 = 50, PI/N0 = 10,
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(a) The decision maker’s expected utility versus λ2.
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(b) The decision maker’s expected utility versus λ0.

Fig. 6. Comparison of different strategies for the decision maker’s expected
utility.

λ1 = 0.01, μ = 0.15, ε = 0.5, and N = 4. We use the myopic
strategy as the baseline by normalizing the performance of
other methods with that of the myopic strategy. In Figure
6(a), λ0 = 0.2 and λ2 is varied from 0.05 to 0.75. In
Figure 7(b), λ2 = 0.3 and λ0 is varied from 0.05 to 0.75.
It can be seen that the proposed method performs the best
among all the schemes since the decision maker optimizes his
expected utility by choosing network to his best advantage.
The myopic strategy always has performance 1 due to the
normalization. The random strategy is worse than the myopic
method which exploits the information of the immediate
utility. The centralized method performs the worst because
it maximizes the social welfare and results in sacrificing the
decision maker’s expected utility.

In Figure 7(a) and 7(b), we compare the social welfare
performance of the strategy profiles generated by different
approaches in a two-network system where the parameters are
Ps/N0 = 50, PI/N0 = 10, λ0 = 0.2, μ = 0.25, ε = 0.05 and
N = 4. In Figure 7(a), λ1 = 0.01 and λ2 is varied from 0.05
to 0.75. In Figure 7(b), λ2 = 0.3 and λ0 is varied from 0.05 to
0.75. The performance of each method is normalized by the
myopic one. It can be seen that the proposed method performs
similar to that of the centralized method which maximizes
the social welfare. Figure 8 shows the impact of ε on the
number of iterations for the strategy profile to converge using
the proposed modified value iteration algorithm. It can be seen
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Fig. 7. Comparison of different strategies for the social welfare.
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Fig. 8. The impact of ε on the number of iterations for the strategy profile
to converge.

that when ε increases, it requires smaller number of iterations
to converge since the region of tolerance for switching among
the strategy profile is larger, and possibly more ε-approximate
NEs are available.

Figure 9 and 10 show the performance comparison for
different mechanism designs when K = 2 and K = 3,
respectively. The exhaustive search is to search over all
possible allocation rules and find out the one with the optimal
objective value. The greedy algorithm is characterized by the
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Fig. 10. Comparison of different mechanism designs for the expected
payment versus λ3 when K = 3.

following recursive formula.

fG
k ({si, i ∈ I}|{sj, j ∈ J })
= min

i∈I
{
fG
k−1(s−i|{sj, j ∈ J ∪ {i}})} , (40)

ai∗(si∗ , s
′
−i∗ , sj , s−j) = 0, ∀s′−i∗ � s−i∗ ,

where i∗ = argmin
i∈I

{
fG
k−1(s−i|sj , j ∈ J ∪ {i})} . (41)

The boundary condition is

fG
1 (si|s−i) = fG

1 (si − 1|s−i)
wi(si, s−i)

wi(si − 1, s−i)

+ π(si, s−i)Vi(si + 1, s−i)wi(si, s−i), (42)

a−i∗(si∗ , s
′
−i∗ , sj, s−j) = 1, ∀s′−i∗ ≤ s−i∗ ,

where i∗ is the minimizor in (41) when k = 2. (43)

The greedy algorithm is to evaluate fG
K(N, . . . , N) with

I = {1, . . . ,K} and J = φ by using (40)-(43). With a
similar analysis, the computational complexity of the greedy
algorithm can be shown to be O(NK). Compared with the
proposed DP algorithm, the greedy method is a heuristic
approach which makes a local optimal decision according
to lower dimensional results. We can see more clearly by
considering the case K = 2, i.e.,

fG
2 (s1, s2) = min

{
fG
1 (s2|s1), fG

1 (s1|s2)
}
, (44)

(a1(s1, s
′
2), a2(s1, s

′
2)) = (0, 1), ∀s′2 ≤ s2,

if fG
1 (s2|s1) > fG

1 (s1|s2), (45)

(a1(s
′
1, s2), a2(s

′
1, s2)) = (1, 0), ∀s′1 ≤ s1,

if fG
1 (s2|s1) ≤ fG

1 (s1|s2). (46)

For example, when evaluating fG
2 (N,N), if fG

1 (s2 = N |s1 =
N) is larger than fG

1 (s1 = N |s2 = N), then state (N,N)
is allocated to network 1. Due to Lemma 3, the states
{(s1, N), ∀s1 ≤ N} are all allocated to network 1. Since the
unallocated states so far are {(s1, s2), 0 ≤ s1 ≤ N, 0 ≤ s2 ≤
N − 1}, we can then evaluate fG

2 (N,N − 1), and so on.
In Figure 9, we can see that the proposed DP algorithm can
achieve the same performance as the exhaustive search when
K = 2, but requires only a polynomial time complexity. The
greedy algorithm has a worse performance since it makes a
local optimal decision to determine the thresholds of allocation
rules. In Figure 10, different mechanism design approaches
are compared for K = 3. It can be seen that the proposed DP
algorithm still outperforms the greedy method. As discussed
in Section V, for a general K the proposed DP algorithm may
not achieve the global optimum. However, with much lower
complexity compared to the exhaustive search, the proposed
algorithm can achieve reasonably good results and thus can
serve as an approximate approach.

VII. DISCUSSION

Although we focus on the wireless access network selection
problem in this paper, we should notice that the model
described in this work is very general and can be applied
into many other problems. A closely related scenario is the
cell selection problem in cellular networks [47]–[49]. When a
mobile station desires to inform the cellular system whether it
is on the air, it registers to a base station which corresponds
to a cellular cell. In most current cellular systems, the cell
selection process is simply accomplished by a local signal-to-
noise ratio (SNR)-based strategy, which is to detect the SNR
of each cell and choose the cell with the largest SNR [48].
However, such a simple strategy does not take into account
the strategies of others, i.e., the negative network externality.
The QoS experienced by a mobile station will be degraded if
the limited resources are shared with a large number of users.
The utilization of system resources will also be degraded since
such a strategy results in cellular cells with unbalanced load.

It can be seen that the cell selection problem has the same
structure with the wireless access network selection problem.
Mobile stations sequentially choose one cellular cell (corre-
sponding to a base station) to register based on the obtained
information about each available cell. The utility of a mobile
station is determined by the expected throughput during the
period it stays in the cell. Furthermore, the instantaneous
throughput of a mobile station in a certain cell is affected by
the crowdedness of the cell due to the limited bandwidth and
the delay caused by the scheduling overhead. Thus, a rational
mobile station should choose a cellular cell in consideration
of other mobile stations’ decisions to avoid the crowdedness.

VIII. CONCLUSION

In this paper, we have studied the wireless access network
selection problem as a stochastic game with negative network
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externality, where a user decides which network to connect
to by considering subsequent users’ decisions. The problem is
shown to be a multi-dimensional MDP. We propose a modified
value iteration algorithm to obtain the optimal strategy profile
for each selfish user. The analysis of the proposed algorithm
shows that the resulting strategy profile exhibits a threshold
structure along each diagonal line. Such a threshold structure
can be used to save the storage space of the strategy profile
from O(N2) to O(N logN) in the two-network scenario.
Simulation results are shown to validate the analysis and
demonstrate that rational users will not deviate from the
strategy profile obtained by the proposed algorithm. For the
expected utility of the decision maker, the proposed method
is superior to other approaches. Moreover, its social welfare
performance is shown to be similar to that of the centralized
strategy which maximizes the social welfare.

We further investigated truth-telling enforcing mechanism
design in the wireless access network selection problem. The
mechanism design captures the incentive compatibility and
individual rationality constraints while optimizing the utility
of users. The formulated problem as a mixed integer program
in general does not have an efficient solution. By exploiting
the optimal substructures, a dynamic programming algorithm
is proposed to optimally solve the mixed integer programming
problem in the two-network scenario. For the multi-network
scenario, the proposed algorithm can outperform the heuristic
greedy approach in a polynomial-time complexity. Finally,
simulation results substantiate the optimality in the two-
network case and also demonstrate the effectiveness of the
proposed algorithm in the multi-network scenario.
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