
Optimizing the Rekeying Cost for Contributory
Group Key Agreement Schemes

Wei Yu, Yan (Lindsay) Sun, Member, IEEE, and K.J. Ray Liu, Fellow, IEEE

Abstract—Although a contributory group key agreement is a promising solution to achieve access control in collaborative and dynamic

group applications, the existing schemes have not achieved the performance lower bound in terms of time, communication, and

computation costs. In this paper, we propose a contributory group key agreement that achieves the performance lower bound by

utilizing a novel logical key tree structure, called PFMH, and the concept of phantom user position. In particular, the proposed scheme

only needs Oð1Þ rounds of the two-party Diffie-Hellman (DH) upon any single-user join event and OðlognÞ rounds of the two-party DH

upon any single-user leave event. Both the theoretical bound analysis and simulation show that the proposed scheme achieves a lower

rekeying cost than the existing tree-based contributory group key agreement schemes.

Index Terms—Security, key management, tree structure.

Ç

1 INTRODUCTION

ONE fundamental challenge in securing group applica-
tions is to achieve access control such that only

authorized group members can access group communica-
tions. Group access control is usually achieved by encrypt-
ing data using a group key that is shared among all
legitimate group members. The issues of establishing and
updating group keys are addressed by group key agree-
ment schemes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [26], [27]. Since
many practical group applications do not prefer utilizing
centralized key servers, contributory solutions of key
agreement have drawn extensive attention [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], especially for applications
where centralized administration and pairwise secure
channels are not applicable.

In contributory group key agreement schemes, all group
members contribute their shares and compute the group
key collaboratively, and the group key is generated as a
(usually one-way) function of individual contributions
from all group members [1], [2], [3], [5], [4], [6], [7], [8],
[9], [10], [11]. Upon membership changes, the group key
needs to be updated to incorporate the share from the
joining user or to eliminate the share of the leaving user to
maintain backward secrecy and forward secrecy [9]. Establish-
ing and updating the group key in large dynamic groups
often consumes a considerable amount of computation and
communication resources. For large-scale dynamic group

applications where group members do not have ample
communication and computation capability, such as in
some mobile ad hoc and sensor networks, the bottleneck of
utilizing contributory key agreement schemes for access
control will be their cost efficiency.

The early design of contributory group key agreement
schemes mostly focuses on the efficiency of initial group key
establishment, such as in [1], [2], [3]. These schemes,
however, encounter a high rekeying cost upon group
membership changes. Later, Steiner et al. proposed a family
of Group Diffie-Hellman (GDH) protocols by extending the
two-party Diffie-Hellman (DH) protocols [21] to the group
scenarios [4], [6], [7]. The GDH protocols achieve an efficient
key update upon user join but still require a high cost for
member leave. Recently, logical key tree structures are used
to improve the scalability of contributory key agreements
[9], [10]. Kim et al. proposed a tree-based contributory group
key agreement protocol called Tree-based Group Diffie-
Hellman (TGDH), where a binary balanced tree is adopted
to maintain the keying material [9]. In TGDH, the group key
can be updated by performing logn rounds of the two-party
DH upon any single-user join or leave, where n is the group
size. Mao et al. proposed another tree-based contributory
key agreement scheme called Dynamic SubTree (DST) [10].
By using a special join-tree/exit-tree topology and exploiting
cost amortization, DST can reduce the average time cost to
�ðlog lognÞ rounds of the two-party DH for single-user join
or leave. However, DST has an unrealistic requirement that
members know other members’ leave time in advance.
When the members’ leave time is not known, the time cost
upon single-user leave is �ðlognþ log lognÞ, which is higher
than that of TGDH.

What is the lowest possible cost of contributory group
key agreement schemes? The theoretical analysis in [22]
indicates that for any tree-based contributory group key
management scheme, the lower bound of the worst-case
cost is �ðlognÞ rounds of the two-party DH for either user
addition or deletion. That is, either the cost for adding a
user or the cost for deleting a user is no less than �ðlognÞ. In

228 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

. W. Yu is with Microsoft Corporation, One Microsoft Way, Redmond, WA
98052. E-mail: weiy@microsoft.com.

. Y. Sun is with the Department of Electrical and Computer Engineering,
University of Rhode Island, 4 East Alumni Ave., Kingston, RI 02881.
E-mail: yansun@ele.uri.edu.

. K.J.R. Liu is with the Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742.
E-mail: kjrliu@umd.edu.

Manuscript received 11 Nov. 2004; revised 13 June 2006; accepted 19 Apr.
2007; published online 23 May 2007.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0162-1104.
Digital Object Identifier no. 10.1109/TDSC.2007.1006.

1545-5971/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

addition, it is obvious that at least one round of the two-
party DH needs to be performed for adding or deleting a
user in any circumstance. Therefore, the lowest possible
cost for contributory key agreement is �ðlognÞ for user join
and Oð1Þ for user leave or �ðlognÞ for user leave and Oð1Þ
for user join. Both TGDH and DST do not achieve these
lower bounds. In addition, from [22], we can also derive
that the total rounds of the two-party DH for any sequence
of n single-user join events and n user leave events is
bounded by �ðn lognÞ. This bound is in fact looser than the
previous two bounds.

To achieve the lower bound of the rekeying cost, in this
paper, we propose a novel and efficient logical key tree
structure, called PFMH tree, as well as a cost-minimizing
PFMH tree-based contributory group key agreement
(PACK) protocol suite that handles dynamic group mem-
bership events. The optimality of the proposed PACK
protocol suite lies in that it only needs Oð1Þ rounds of the
two-party DH upon any single-user join event and
OðlognÞ rounds of the two-party DH upon any single-user
leave event, which achieves the lower bound. Both
theoretical analysis and simulation studies show that PACK
has a much lower rekeying cost than the existing tree-based
contributory group key agreements.

The rest of this paper is organized as follows: Section 2
briefly introduces security requirements and performance
metrics for contributory group key agreement schemes.
Section 3 presents the proposed PFMH tree structure, as well
as two basic procedures to manage the PFMH key trees.
Section 4 describes the proposed PACK protocol suite to
optimize the rekeying cost upon single-user join and leave
events. Section 5 analyzes the performance of the proposed
scheme and demonstrates its efficiency by comparing it with
existing tree-based contributory group key agreement
schemes through both bound analysis and simulation
studies. Section 6 discusses the detection of untruthful users
who do not perform the key agreement protocol honestly.
Finally, a conclusion is drawn in Section 7.

2 SECURITY REQUIREMENT AND PERFORMANCE

METRIC

In this section, we briefly introduce the security require-
ments of contributory key agreement, the performance
measures, and the implementation cost of the DH protocol
between two groups.

Group key management schemes must be able to adjust
group secrets subsequent to membership changes, includ-
ing single-user addition, single-user deletion, group merge, and
group partition [9]. Single-user addition (deletion) means
that one user joins (leaves) the group. Group merge
(partition) involves multiple users who join (leave) the
group simultaneously. The security requirements with
dynamic membership include group key secrecy, forward
secrecy, backward secrecy, and key independence [9]. Group key
secrecy, which is the most basic property, requires that it
should be computationally infeasible for a passive adver-
sary to discover any group key. Forward secrecy requires
that a passive adversary who knows a contiguous subset of
old group keys cannot discover subsequent group keys,
whereas backward secrecy requires that a passive adversary

who knows a contiguous subset of group keys cannot
discover preceding group keys. Key independence, which is
the strongest property, requires that a passive adversary
who knows a proper subset of group keys cannot discover
any other group key. According to [9], key independence
can be achieved when both forward secrecy and backward
secrecy are achieved.

The overhead of group key agreement involves the
computation cost, communication cost, and time cost. Since
most of the existing contributory key agreement schemes
use the two-party DH protocol [21] as a basic building
module, the computation cost comes mainly from the
cryptographic primitives that are needed to perform the
two-party DH, such as modular exponentiation, and the
communication cost comes from sending and receiving
rekeying messages. The time cost is used to describe the
latency in group key establishing and updating. In con-
tributory group key agreement, by exploiting the possible
parallelism when performing group key establishing and
updating, the time cost can be significantly reduced.

Among existing contributory group key agreement
schemes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], the
tree-based schemes are the most promising because of their
scalability. Next, we introduce the implementation of the
two-group DH (two-party DH among two groups), which is
the basic building module for most tree-based contributory
group key agreement schemes. Let A and B denote two
subgroups, where the users in A share a common group
key KA, and the users in B share a common group key KB.
Let fðKÞ (which we refer to as the blinded key of key K)
denote the modular exponentiation operation, that is,

fðKÞ ¼ gK mod p; ð1Þ

where g is the exponential base and p is the modular base.
The two-group DH can be implemented as follows: Each
subgroup elects one member as its delegate, which will
compute and send its blinded subgroup key to all members
of the other subgroup. Suppose that member A1 is the
delegate elected by the subgroup A and member B1 is the
delegate elected by the subgroup B. To perform the two-
group DH between these two subgroups, A1 and B1 need to
exchange the following keying messages: A1 sends the
blinded key fðKAÞ to all members of subgroup B, and B1

sends the blinded key fðKBÞ to all members of subgroup A.
Now, each member in A or B then calculates the new group
key KAB as follows:

KAB ¼ fðKBÞð ÞKAmod p ¼ fðKAÞð ÞKBmod p: ð2Þ

In this implementation, each member needs at least one
modular exponentiation operation to calculate the new
group key. If a delegate does not know its own subgroup’s
blinded key, one extra modular exponentiation operation
is also needed to calculate the blinded key. For the
communication cost, each delegate needs to send a keying
message to all the members in the other subgroup. In this
paper, we use Ccastðn; ‘Þ to denote the communication cost
needed to send a message with length ‘ to n nodes and
use Cme to denote the computation cost of a modular
exponentiation operation. Thus, for each round of the two-
group DH with the size of subgroups being n1 and n2 and

YU ET AL.: OPTIMIZING THE REKEYING COST FOR CONTRIBUTORY GROUP KEY AGREEMENT SCHEMES 229

the keying message length being ‘, the communication cost
is Ccastðn1; ‘Þ þ Ccastðn2; ‘Þ, and the computation cost is no
more than ðn1 þ n2 þ 2ÞCme.

It is worth noting that sending a message to n nodes can
be implemented in many ways. It can either be implemen-
ted through multicast communications, which we refer to as
multicast-n, or be implemented through unicast, which we
refer to as unicast-n. In general, the communication cost of a
multicast-n operation is not the same as the communication
cost of a unicast-n operation. The former usually incurs less
communication cost than the latter. Further, the gap
between the communication cost of a multicast-n operation
and the communication cost of a unicast-n operation may
vary according to the underlying network architectures. For
example, in wireless networks, the gap is usually very
obvious due to the broadcast nature of wireless media,
whereas in wired networks without link-level multicast
support, the gap is usually not that obvious.

In this paper, when analyzing the communication cost of
sending a message to n nodes, both terms (multicast-n and
unicast-n) will be used. Although the communication cost of
multicast-n1 and multicast-n2 with n1 6¼ n2 are usually
different, to simplify our illustration, in this paper, we will
not distinguish them. Let Cmulticastð‘Þ denote the commu-
nication cost of a multicast-n operation, and let Cunicastð‘Þ
denote the communication cost of a unicast-1 operation,
where ‘ is the length of the message to be sent. Further,
when performing the two-group DH between two sub-
groups, the only messages exchanged are their blinded
keys. Since, in general, all blinded keys have the same
length, without loss of generality, the message length ‘ will
not be explicitly stated. Besides exchanging blinded keys, a
user may also need to send messages to all of the group
members when it wants to join or leave a group. In this
paper, we use Cbroadcastð‘Þ to denote the communication cost
incurred by broadcasting a message with length ‘ to all
group members.

3 PFMH KEY TREE STRUCTURE AND BASIC

PROCEDURES

In tree-based contributory group key agreement schemes,
keys are organized in a logical tree structure, referred to as
the key tree. In a key tree, the root node represents the group
key, leaf nodes represent the members’ private keys, and
each intermediate node corresponds to a subgroup key
shared by all the members (leaf nodes) under this node. The
key of each nonleaf node is generated by performing the
two-party DH between the two subgroups represented by
its two children where each child represents the subgroup
including all the members (leaf nodes) under this node [9].
Since the two-group DH is used, the key tree is binary. For
each node in the key tree, the key path denotes the path from
this node to the root, and the copath denotes the sequence of
siblings of each node on its key path. Fig. 1 shows a simple
key tree example with six members, where Mi denotes the
ith group member, and ðl; vÞ denotes the vth node at level l
of the tree. For example, for member M2, its key path is the
sequence of nodes {(3, 1), (2, 0), (1, 0), (0, 0)}, and its copath
is the sequence of nodes {(3, 0), (2, 1), (1, 1)}.

According to [9], in order to compute the group key, a
node only needs to know its own key and all the blinded
keys on its copath. In other words, for a node to be able to
calculate the group key, it only needs to know its own keys
and all the blinded keys on its copath. For example, as shown
in Fig. 1,M2 only needs to know its own key and the blinded
keys represented by the nodes (3, 0), (2, 1), and (1, 1) in order
to calculate the group key.

A leaving user can leave from an arbitrary position in the
key tree. In fact, for user leave, when group members have
similar computation and communication capability, the best
tree structure that reduces the worst-case rekeying overhead
is a balanced key tree structure.1 When using a balanced key
tree structure, as in TGDH [9], the worst-case rekeying time
cost for both user leave and user join is OðlognÞ. In order to
further reduce the rekeying time cost for user join, one way is
to always insert the joining user at the root of the key tree
and, consequently, the rekeying time cost for single-user join
becomes Oð1Þ. However, such a scheme may result in an
extremely unbalanced key tree structure and increase the
rekeying cost for user leave to OðnÞ.

In order to achieve the lower bound for both user join
and user leave simultaneously, in this paper, we propose a
novel and efficient key tree structure for contributory group
key agreement schemes, which we refer to as the PFMH
tree. PFMH tree is a combination of two special key tree
structures: partially full (PF) key tree and maximum height
(MH) key tree. In this paper, the size of a key tree is defined
as the total number of leaf nodes in this tree, the function
logðÞ and log2ðÞ will be used exchangeably, and when we
say a “full (key) tree,” we always mean a fully balanced
binary (key) tree with size 2k, where k is a nonnegative
integer.

Definition 1 (PF key tree). Let T be a binary key tree of size n,
and let n0 ¼ 2blognc. T is a PF key tree if and only if it satisfies
one of the following properties: 1) T is a full key tree, and
2) the left subtree of T is a full key tree with size n0, and the
right subtree of T is a PF key tree with size ðn� n0Þ.

Definition 2 (MH key tree). A key tree T of size n is a MH key
tree if and only if it satisfies one of the following properties:
1) n ¼ 1, and T is a tree with only one leaf node. 2) The right
subtree of T is a leaf node, and the left subtree of T is an
MH key tree with size n� 1.

Definition 3 (PFMH key tree). A key tree T of size n is a
PFMH key tree if and only if it satisfies one of the following

230 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

1. The case where users have varying computation and communication
capabilities is beyond the scope of this paper.

Fig. 1. A simple key tree example.

properties: 1) T is a PF key tree. 2) The left subtree of T is a PF
tree, and the right subtree of T is an MH tree.

According to the above definitions, we can see that the
height of a PF key tree with size n is dlogne, the height of an
MH tree with size n is n� 1. In this paper, without
introducing ambiguity, we will use dlogne and logn
exchangeably. Also, given a PFMH key tree T , we will
use main tree to refer to the PF subtree of T , denoted by
Tmain, and use join tree to refer to the MH subtree of T ,
denoted by Tjoin. It is easy to see that the height of Tmain is
always bounded by logn. Fig. 2 illustrates these special key
tree structures. Next, we describe two basic procedures to
manage and update PFMH key trees: unite and split.

Let T ¼ fT1; . . . ; TLg be a set of full key trees. Each key
tree Ti 2 T represents a subgroup, and each leaf node of Ti
is a member of this subgroup. If a group member belongs to
Ti and Ti 2 T , then this group member belongs to T . The
procedure uniteðT Þ is to combine those key trees in T into a
single PF key tree through performing a series of two-group
DHs among these subgroups, as well as the subgroups
generated during this procedure. In general, given a set of
full key trees T , the result of uniteðT Þ may not be unique,
but all of the obtained PF key trees have a similar structure.
In this paper, we consider a special case where the full key
trees in T are ordered and indexed according to their sizes.
Moreover, any group member in T knows the indices and
sizes of any trees in T , as well as the structure of these trees.
The structure of a tree refers to the list of group members
belonging to this tree and their exact positions in this tree.
Then, a group member can decide with whom it should
perform the two-group DH and in what order.

Procedure 1 presents one specific implementation of
uniteðT Þ for this special case. According to Procedure 1, the
whole procedure is partitioned into many rounds. At the
beginning of each round, there remains a set of full trees
(subgroups) indexed according to their sizes and their
subtrees’ indices in the previous rounds. The larger the size
of a subgroup, the lower its index. In each round, a
remaining subgroup may either remain alone or be paired
with another remaining subgroup according to the follow-
ing rule: Two subgroups, Ti and Tjði < jÞ, will be paired
together if and only if all of the three conditions can be
satisfied:

. There is no other remaining subgroup in the round
with an index lying between i and j.

. The total number of subgroups with a size equal to
jTij and with an index lying before Ti is even.

. jTij ¼ jTjj or Tj is the subgroup with the largest
index.

It is easy to see that in each round, a subgroup will either

remain alone or be paired with one and only one other

subgroup to build a larger subgroup. Further, in each
round, all pairs of subgroups can perform the two-group

DH between them in parallel, which can significantly

reduce the time cost. If Procedure 1 is followed by all

group members, the obtained PF key tree is unique, and

each member can know its location in the final PF before

starting the procedure and can locally construct the final PF
tree without explicitly exchanging key tree updating

information.

Procedure 1 uniteðfT1; . . . ; TLgÞ
.T ¼ fT1; . . . ; TLg; jTij � jTjj for any 1 � i < j � L; each

member in Ti 2 T knows the index and size of any tree

Tj 2 T , as well as the structure Tj, including the list of

group members in Tj and their exact positions in Tj.

T 0 ¼ T ; L0 ¼ L;

while ðjT 0j > 1Þ do

/*Executed in parallel:*/
for (each pair of trees Ti, Tiþ1 2 T 0) do

if ((the total number of trees in T 0 with size equal to

jTij and with index before Ti is even) AND

(jTij ¼ jTiþ1j or Tiþ1 is the tree in T 0 whose index is

the largest)) then

Two delegates will be elected by subgroups Ti
and Tiþ1 to perform the two-group DH between

them, and a new group key K will be generated.
A new key tree will be generated with its root

node representing K, with the left child of the

root node being Ti and with the right child of the

root node being Tiþ1. Remove Ti and Tiþ1 from T 0.
end if

end for

Put all newly generated key trees in this round into T 0,
and let L0 be the total number of key trees now in T 0.
Re-index all the key trees in T 0 with integers ranging

from 1 to L in such a way that a tree is assigned index i

(that is, this tree’s name becomes Ti) if and only if: 1) for

any tree Tj 2 T 0 with index j < i, all subtrees of Tj that

directly come from T have lower indices than all

YU ET AL.: OPTIMIZING THE REKEYING COST FOR CONTRIBUTORY GROUP KEY AGREEMENT SCHEMES 231

Fig. 2. Examples of (a) PF, (b) MH, and (c) PFMH key trees.

subtrees of Ti that directly come from T ; and 2) for any

tree Tj 2 T 0 with j > i, all subtrees of Tj that directly

come from T have higher indices than all subtrees of Ti
that directly come from T .

end while

Return the remaining tree T1 in T 0, which is the final PF

key tree. Meanwhile, each member in the final PF key tree
will construct the final key tree structure locally by

following the above key tree generation procedure.

Given a key tree T , the procedure splitðT Þ is to partition
T into a set of full key trees with the minimum set size.
Specifically, after applying the procedure splitðT Þ, any
obtained key tree is a full key tree, and no more than one
obtained key tree comes from any full subtree of T .
Procedure 2 presents a way to locally and virtually split a
key tree, where “locally” means that no intercommunica-
tion is needed among group members and each member
only needs to update the key tree structure maintained by
itself locally, whereas “virtually” means that no two-group
DH is needed to perform “split.” Meanwhile, the set of
obtained full key trees are also indexed according to their
size and their positions in the original key tree.

Procedure 2 splitðT Þ
if (T is a full tree) then

Return fTg;
else if (T is empty) then

Return ;.
else

Let Tleft and Tright be the left and right subtrees of T ;

Return splitðTleftÞ
S
splitðTrightÞ.

end if

Let L be the number of obtained full key trees. Index

these key trees with the integers ranging from 1 to L in

such a way that a tree is indexed as Ti if and only if: 1) for

any tree Tj 2 T 0 with j < i, jTjj > jTij or Tj lies in the left

side of Ti in T ; and 2) for any tree Tj 2 T 0 with j > i,
jTjj < jTij or Tj lies in the right side of Ti in T .

Fig. 3 shows two examples of a key tree update when
applying unite and split procedures. Fig. 3a demonstrates
how the key tree is updated when five full key trees are
united into a PF key tree. Fig. 3b demonstrates how the key
trees are updated when a PFMH key tree is split into a set of
full key trees.

In the split procedure, each group member (leaf node)
only needs to truncate the current key tree maintained by
itself, so no communication cost and negligible computation

and time costs are needed. In the unite procedure, an extra
cost will be incurred when performing a sequence of two-
group DHs to generate the new key tree. Next, we analyze
the cost associated with the unite procedure described in
Procedure 1. The results will be used later to analyze the
cost of those proposed key agreement protocols.

Theorem 1. Let T ¼ fT1; . . . ; TLg be a set of full key trees, withPL
i¼1 jTij ¼ n, jT1j � jT2j � . . . � jTLj, and the subscript ‘

being the index of the full tree T‘. Assume that any group
member in any full tree Ti 2 T knows the index and size of

any tree Tj 2 T , as well as the structure of Tj. Then, the costs
associated with the uniteðT Þ using Procedure 1 can be
bounded as follows:

1. The time cost, which is the number of parallel rounds
that needs to executed, is upper bounded by logn in all
situations.

2. The total communication cost is upper bounded by
2ðL� 1ÞCmulticast in all situations provided that the
exchange of keying materials between two subgroups
during performing the two-group DH is implemented
using multicast.

3. Consider the special situation that jTij ¼ 1 for all
1 � i � L, the total computation cost is upper bounded
by nðlognþ 2ÞCme, and the total communication cost
is upper bounded by ðn lognÞCunicast provided that the
exchange of keying materials between two subgroups
during performing the two-group DH is implemented
using unicast.

4. Consider the special situation that jTij 6¼ jTjj for any
1 � i 6¼ j � L, the total computation cost is upper
bounded by 2ðnþ lognÞCme, and the total commu-
nication cost is upper bounded by 2nCunicast provided
that the exchange of keying materials between two
subgroups during performing the two-group DH is
implemented using unicast.

5. Consider the special situation that jT1j � n=2 and for
any tree Ti 2 T , there exists no more than one other tree
in T with the same size as Ti, the total computation cost
is upper bounded by ð2:5nþ 2LÞCme, and the total
communication cost is upper bounded by 2:5nCunicast
provided that the exchange of keying materials between
two subgroups during performing the two-group DH is
implemented using unicast.

6. Consider the special situation where jT1j < n=2 and for
each tree Ti 2 T there exists no more than one other tree
in T with the same size as Ti, the total computation cost
is upper bounded by ð3nþ 2LÞCme, and the total

232 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

Fig. 3. Examples of a key tree update after applying (a) unite and (b) split procedures.

communication cost is upper bounded by 3nCunicast
provided that the exchange of keying materials between
two subgroups during performing the two-group DH is
implemented using unicast.

Proof. See Appendix. tu

4 PACK: A PFMH TREE-BASED CONTRIBUTORY

GROUP KEY AGREEMENT

In this section, we describe the proposed PACK protocol
suite. As a contributory scheme, in PACK, each group

member equally contributes its share to the group key, and
this share is never revealed to the others. To satisfy the
security requirements, PACK includes a set of rekeying
protocols to update the group key upon group membership
change events. Compared with the existing tree-based
contributory group key agreement schemes, PACK can
achieve the minimum rekeying time cost upon membership
change events in the sense that for any single-user join
event, the rekeying time cost is of order Oð1Þ, and for any

single-user leave event, the rekeying time cost is of order
OðlognÞ. Meanwhile, the rekeying computation and com-
munication costs can also be significantly reduced com-
pared with the existing tree-based contributory group key
agreement schemes. This is achieved through adopting the
proposed PFMH tree as the underlying key tree structure
and introducing phantom nodes in the key tree to handle
member leave.

In PACK, each member will maintain and update the
global key tree locally. Each group member knows all the
subgroup keys on its key path and knows the ID and the
exact location of any other current group member in the key
tree. As to be shown next, upon a group membership
change event, a group member only needs to update the
global key tree maintained by itself, which can greatly
reduce the communication overhead. In PACK, when a new
user joins the group, it will always be attached to the root of

the join tree to achieve Oð1Þ rekeying cost in terms of
computation per user, time, and communication. When a
user leaves the current group, according to the leaving
member’s location in the key tree, as well as whether this
member has a phantom location in the key tree, different
procedures will be applied, and the basic idea is to update
the group key in OðlognÞ rounds and simultaneously
reduce the communication and computation costs.

4.1 Single-User Join Protocol

When a prospective user M wants to join the group G, it
initiates the single-user join protocol by broadcasting a
request message that contains its member ID, a join request,
its own blinded key, some necessary authentication
information, and its signature for this request message.
After receiving this user join request message, the current
group members will check whether M has the privilege to
join the group based on certain group access control

policies. If M has the authorization to join, the key tree
will be updated by incorporating M’s share, and a new
group key will be generated in order to incorporate a secret
share from M and to guarantee the group keys’ backward

secrecy. Procedure 3 describes the single-user join protocol
in PACK.

Procedure 3 joinðG;MÞ
.T is the PFMH key tree of group G, Tmain is the main tree

of T , Tjoin is the join tree of T .

if (Tjoin is empty) then

A delegate will be elected by group G to perform the

two-group DH with M, and a new group key K will

be generated. A leaf node will be created to represent

M, and a new root node will be created to represent K

with its right child being the node representing M and

its left child being Tmain. The node representing M

becomes the join tree of the updated key tree.
else

Round 1: A delegate will be elected by group Tjoin to

perform the two-group DH with M, and a new

subgroup key Kjoin will be generated. A leaf node will

be created to represent M, and a new intermediate

node will be created for Kjoin with its right child being

M and its left child being the old Tjoin.

Round 2: Two delegates will be elected separately by
Tmain and the new join tree to perform two-group DH

between them, and a new group key K will be

generated. A new root node will be created to

represent K with its right child being Tjoin and its left

child being Tmain.

end if

Each current member updates the key tree maintained by

itself locally according to the above key tree update
procedure, and a delegate will send an updated copy of

the key tree to the new joining member M.

In PACK, the rekeying upon single-user join needs to
perform at most two rounds of the two-group DH. If the
join tree is not empty, a new join tree is generated by
performing the two-group DH between the new member
and the old join tree, with the left subtree being the old join
tree and the right subtree being the node representing the
new member. If the join tree is empty, the node represent-
ing the new member becomes the join tree. The group key is
generated by performing the two-group DH between the
new join tree and the main tree. Since all the current
members know the group key tree structure and know the
location that the new member should be put in, they can
update the key tree themselves.

Fig. 4 shows two examples of a key tree update upon
single-user join events. In the first example, the join tree is
empty, and the main tree consists of four members. After
the new member M5 joins the group, a new node is created
to act as the new root, and the node (1, 1) becomes the new
join tree that represents M5. In the second example, when
M6 joins the group, at the first round, the two-group DH is
first performed between M5 and M6 to generate a new join
tree, at the second round, the two-group DH is performed
between the new join tree and the main tree to generate a
new group key.

Table 1 lists the rekeying cost upon a single-user join
event in PACK, where n denotes the total number of leaf

YU ET AL.: OPTIMIZING THE REKEYING COST FOR CONTRIBUTORY GROUP KEY AGREEMENT SCHEMES 233

nodes in the new group, and jTjoinj is the old join tree size.
Case 1 considers the situation that the join tree is empty,
and the protocol only needs to perform one round of the
two-group DH. Case 2 considers the situation that the join
tree is not empty, and the protocol needs to perform two
rounds of the two-group DH. For Case 2, the term jTjoinj þ 2
in the computation cost comes from performing the two-
group DH between the new member and the old join tree.
Since in general jTjoinj � n, this term usually can be
ignored.

It is worth pointing out that when we calculate the time
complexity, we have not considered the extra time needed
for the join user to tell the group that it wants to join.
However, this does not affect our results because in our
time complexity analysis, we use the “round” as the unit. In
other words, we do not strictly require the two messages’
exchange to be synchronized. Instead, how this can be
implemented really depends on the specific implementation
of the two-group DH.

4.2 Single-User Leave Protocol

When a current group member M wants to leave the group,
it broadcasts a leave request message to initiate the single-
user leave protocol, which contains its ID, a leave request,
and a signature for this message. Once M leaves the group,
the group key will be updated to remove M’s share, and all
the keys on M’s key path will be updated to maintain group
keys’ forward secrecy. In PACK, to reduce the rekeying cost
upon a single-user leave event, we introduce the concept of a
phantom node that allows an existing member to simulta-
neously occupy more than one leaf node in the key tree. In
particular, when memberM leaves the group, another group
member M 0 will move to the position occupied by M in the
key tree and generate a new secret key, and all the keys on
M’s key path will be recursively updated. It is worth noting
that here “moving” only means that each member adjusts
the location of M 0 and M in the key tree. After moving M 0 to
M’s position, the node that M 0 previously occupied will not
be deleted immediately. As a result, now M 0 occupies two

leaf nodes in the key tree. We refer to the node associated to

M 0’s previous position as the phantom node, which is known

by all group members. In order to maintain the group keys’

forward secrecy, a phantom node should be deleted no later

than the associated group member leaving the group.

Procedure 4 describes the single-user leave protocol in

PACK.

Procedure 4 LeaveðG;MÞ
.T is the PFMH key tree of G, and n is the size of T , Tmain,

and Tjoin are the main tree and join tree of T .

if (ðM 2 TjoinÞ AND ð1 < jTjoinj � lognÞ) then

SCENARIO 1: Let P be M’s sibling, remove M and

M’s parent from the key tree. If P has no children,

change P’s secret share; otherwise, change P’s right

child’s secret share. Recursively update all the keys
on P’s key path by applying multiple rounds of the

two-group DH.

else if ((M 2 Tjoin AND (jTjoinj ¼ 1 OR jTjoinj > logn))

OR (M 2 Tmain AND jTjoinj > 1)

OR (M 2 Tmain AND M is the rightmost

nonphantom leaf node)

OR (M 2 Tmain AND M has a phantom node in T))

then

SCENARIO 2: First, remove all phantom nodes and

M from T . Second, apply the split procedure, and let

T ¼ fT1; . . . ; TLg ¼ splitðT Þ. Third, change TL’s

rightmost leaf node’s secret share and recursively

update all the subgroup keys on this left node’s key

path in TL. Fourth, apply the unite procedure

uniteðT Þ.
else

SCENARIO 3: Find the rightmost nonphantom leaf

node M 0 in T . Let Pnew denote the node occupied by

M and Pold denote the node occupied by M 0. M 0

moves to Pnew and generates a new secret share for

this location. If Pold lies in the join tree, then remove

234 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

Fig. 4. Examples of a key tree update upon a single-user join event.

TABLE 1
Rekeying Cost upon a Single-User Join Event

Pold and the root of T ; otherwise, let Pold be M 0’s

phantom node. Recursively update all the keys on

Pnew’s key path by applying multiple rounds of the

two-group DH.

end if

All members update the key tree maintained by them
locally according to the above key tree update procedure.

SCENARIO 1. This scenario considers the case that the
leaving member M is in the join tree, and the size of the join
tree is no larger than logn. In this case, since the depth of
the join tree is no more than logn, we can simply remove
M’s share from the group key by removing M from the key
tree, changing one current member’s secret share (which
member’s share should be changed is described in Proto-
col 4) and recursively updating all the keys on M’s key path.
Meanwhile, all members update the key tree maintained by
themselves.

Let h be M’s depth in T . Since at most h� 1 rounds of
two-group DH protocols need to be performed recursively,
the time cost is upper bounded by h� 1. Except the last
round, which involves all the existing members, in the
ith ð1 � i < h� 1Þ round, at most jTjoinj � hþ iþ 1 mem-
bers are involved. Then, the total computation cost is upper
bounded by ðnþ h� 1þ

PjTjoinj�1

k¼jTjoinj�hþ2 kÞCme, where n comes
from the last round, h� 1 comes from the number of blinded
keys that needs to be calculated, and jTjoinj � hþ 1þ i comes
from the ith round. Since jTjoinj � logn, a loose upper bound
is ðnþ

Plogn
k¼1 kÞCme or ðnþ 0:5ðlognÞ2ÞCme. Similarly, it is

easy to check that the total communication cost in terms of
multicast is upper bounded by 2ðh� 1ÞCmulticast, and the
total communication cost in terms of unicast is upper
bounded by ðnþ 0:5ðlognÞ2ÞCunicast.

Fig. 5 shows one example of a key tree update upon
single-user leave under this scenario. In this example, user
M6 leaves the group where node (1, 0) is the root of the
main tree and node (1, 1) is the root of the join tree. Since the
size of the join tree is 2, according to Procedure 4, the node
representing M6 will be directly removed from the key tree,
M5 changes its secret share, and a new group key will be
generated by applying the two-group DH between M5 and
the subgroup in the main tree.

SCENARIO 2. This scenario considers the case that any
of the following situations happens:

1. The leaving member M is in the join tree, and the
size of the join tree is either larger than logn or equal
to 1.

2. M is in the main tree, and the size of the join tree is
larger than 1.

3. M is in the main tree and is the rightmost non-
phantom leaf node.

4. M is in the main tree and occupies a phantom node
in the key tree.

In these situations, instead of removing M (as well as its
phantom location) from the key tree and recursively
updating all the keys on its key path, the whole key tree
will be reorganized to generate a new PF tree as the main
tree, and the join tree is set to be empty. This will reduce the
rekeying cost, as well as maintain a good key tree structure.
The basic procedure is to first remove all the phantom
nodes in the existing key tree and then apply the split
procedure to partition the remaining key tree into many
small full key trees that are indexed according to their size
and their locations in the original key tree. After changing a
certain member’s secret share, the unite procedure will be
applied to combine these full key trees into a PF key tree.
Finally, all members will update the key tree structure
maintained by themselves according the above procedure.

It is worth noting that due to the special structure of the
PFMH tree, the PFMH tree structure is maintained after
removing some phantom nodes. According to Procedure 4,
Scenario 3, only those leaf nodes on the rightmost of the tree
can be phantom nodes. In other words, all phantom nodes
lie in the rightmost part of the tree. It is easy to check that
for any PF tree, after removing any number of rightmost
leaf nodes and those corresponding nonleaf nodes, the
remaining part is still a PF tree.

Since all the remaining members (leaf nodes) know the
exact structure of the key tree, after applying the split
procedure, the set of obtained full key trees will be indexed
in the same way by all group members. Since the total
number of remaining members is less than n, according to
Theorem 1, clause 1, the total time cost is upper bounded by
logn. If situation 1, 2, or 3 happens, the total number of full
key trees after applying the split procedure is upper
bounded by logðnÞ þ jTjoinj. In this case, the total commu-
nication cost in terms of multicast is upper bounded by
2ðlogðnÞ þ jTjoinjÞCmulticast. If situation 4 happens, the total
communication cost in terms of multicast is upper bounded
by 2ð2 lognþ jTjoinjÞCmulticast, where the extra 2 lognCmulticast
is due to the fact that the main tree can be split into at most
2 logn full trees.

Next, we analyze the computation cost under this
scenario, which is mainly incurred by the unite procedure.
After applying the split procedure, for any size that is greater
than 1, there exists no more than one full key tree with this
size when situation 1, 2, or 3 happens, and there exists no
more than two full key trees with this size when situation 4
happens. The unite procedure can be implemented in two
steps. In the first step, all the key trees with only one leaf
node will first be combined together into a set of full key
trees with different sizes. In the second step, these full key
trees will be combined together with the other full key trees
obtained by applying the split procedure to get the final PF
tree. We first consider the more probable case that T1 � n=2,
where T1 is the largest full key tree obtained after applying
the split procedure. According to Theorem 1, clauses 3 and 5,
in this case, the computation cost is upper bounded by
Cmeð2:5nþ 2ðlognþ jTjoinjÞ þ jTjoinjðlogðjTjoinjÞ þ 1ÞÞ, where

YU ET AL.: OPTIMIZING THE REKEYING COST FOR CONTRIBUTORY GROUP KEY AGREEMENT SCHEMES 235

Fig. 5. An example of a key tree update upon single-user leave under

the first scenario.

the term jTjoinjðlogðjTjoinj þ 1ÞÞ comes from merging the
nodes from the join tree into a set of full key trees with
different sizes. If T1 < n=2, which is a less probable case,
according to Theorem 1, clauses 3 and 6, the total
computation cost is upper bounded by

ð3nþ 2ðlognþ jTjoinjÞ þ jTjoinjðlogðjTjoinjÞ þ 1ÞÞCme:

Similarly, the total communication cost in terms of unicast is
upper bounded by ð2:5nþ jTjoinj logðjTjoinjÞÞCunicast if T1 �
n=2 and is upper bounded by ð3nþ jTjoinj logðjTjoinjÞÞCunicast
if T1 < n=2.

If condition 4 is satisfied, which is a very rare event, at
most ðnþ lognÞCme extra computation cost is needed to
first combine those full key trees with the same size into a
set of larger full key trees, and at most nCunicast extra
communication cost in terms of unicast is needed.

Fig. 6 shows four examples of a key tree update upon
single-user leave under this scenario:

. The first example corresponds to situation 1. The
leaving member M6 is in the join tree, and the size
of join tree with root (1, 1) is larger than logn. In
this example, after removing M6 and applying the
split procedure, three full key trees (subgroups) are
obtained: fM1;M2;M3;M4g, fM5g, and fM7g. The
result of the unite procedure has also been
demonstrated.

. The second example corresponds to situation 2. The
leaving memberM2 is in the main tree with root (1, 0),
and the size of the join tree with root (1, 1) is larger
than 1. In this case, after removing M2 and applying
split, three full key trees are obtained: fM3;M4g,
fM5;M6g, and fM1g. The result of unite has also been
illustrated in the right side of the figure.

. The third example corresponds to situation 3. The
leaving member M4 is in the main tree with root
(0, 0) (the join tree is empty) and is the rightmost
nonphantom leaf node, where nodes (2, 2) and (2, 3)
are phantom nodes. In this case, after removing the

node representing M4 and the phantom nodes and
applying split, two full key trees are obtained:
fM5;M6g and fM3g. The result of unite has also
been illustrated in the right side of the figure.

. The fourth example corresponds to situation 4. The
leaving member M6 is in the main tree with root
(0, 0) (the join tree is empty) and has occupied a
phantom node (2, 3). In this case after removing the
node representing M4 and the phantom node and
applying split, three full key trees are obtained:
fM3;M4g, fM1g, and fM5g. The result of unite has
also been illustrated in the right side of the figure.

SCENARIO 3. This scenario covers all the situations
that neither of the first two scenarios can cover. Specifi-
cally, this scenario considers two situations: 1) M is in the
main tree, and the size of the join tree is 1, and 2) the join
tree is empty, and M is in the main tree, is not the
rightmost nonphantom node, and does not have a
phantom node in the key tree. Under Scenario 3, the
leaving member M is removed from the key tree, and M 0,
which is the member who occupies the rightmost non-
phantom leaf node, moves to M’s previous position,
generates a secret share for this node, and recursively
updates all the keys on this node’s key path. Now, M 0

occupies two positions, and the original position is called
M 0’s phantom position. It is easy to check that the time
cost is bounded by logn, the communication cost in terms
of multicast is bounded by 2ðlognÞCmulticast, the computa-
tion cost is upper bounded by ðnþ 2jTleftj þ lognÞCme,
where Tleft is Tmain’s left subtree, and the total commu-
nication cost in terms of unicast is upper bounded by
ðnþ 2jTleftjÞCunicast.

Fig. 7 shows one example of a key tree update upon
single-user leave under this scenario. In this example, the
join tree is empty, and the root of the main tree is (0, 0).
When user M2 leaves the group, member M6 will move to
the location (3, 1) that previously represents M2. Mean-
while, M6 will also occupy node (2, 3), which now is a
phantom node. M6 will change its secret share and

236 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

Fig. 6. Examples of a key tree update upon single-user leave under the second scenario. (a) Situation 1. (b) Situation 2. (c) Situation 3.

(d) Situation 4.

recursively update all the keys on its key path, which is {(2,

0), (1, 0), (0, 0)}.
Table 2 summarizes the rekeying cost upon single-user

leave events under different situations. Usually, we have

jTleftj � n=2, h ’ 1
2 logn, and jTjoinj � n, and the average size

of Tleft is about 0:75n. For the second and third scenarios, in

most cases, we can simplify the upper bound of the

computation cost as Oð2:5nCmeÞ. For the first scenario, we

can simplify the bound of the computation cost as OðnCmeÞ.

4.3 Group Merge and Group Partition Protocols

PACK also has group merge and group partition protocols

to handle simultaneously the join and leave of multiple

users. Although multiple user events can be implemented

by applying a sequence of single-user join or leave

protocols, such sequential implementations are usually

not cost-efficient. Procedure 5 describes the group merge

protocol, which combines two or more groups into a single

group, and returns a PF key tree. Procedure 6 describes the

group partition protocol, which removes multiple group

members simultaneously from the current group and

construct a new PF key tree for the rest of the group

members.

Procedure 5. mergeðfG1; . . . ;GKgÞ
.T1; . . . ; TK are the key trees of G1; . . . ;GK ;
Remove all phantom nodes from T1; . . . ; TK ;

T ¼ uniteðsplitðT1Þ
S

. . .
S
splitðTKÞÞ;

Return T .

Procedure 6. PartitionðG;G1Þ
.T is the key tree of G;

Remove all phantom members and members belonging to
group G1 from T ;

T ¼ uniteðsplitðT ÞÞ;
Return T .

In the group merge protocols, after removing all phantom

nodes from those key trees corresponding to different

subgroups, each key tree is split into several full key trees.

The final result is obtained by uniting these full key trees into

a PF tree following Procedure 1. Similar to the group

partition protocol, after removing all phantom nodes and

leaving nodes, the original key tree is split into several full

key trees, and the unite procedure is then applied on these

full key trees to create a PF key tree. Since the height of the

returned tree is logn, where n is the group size after

merging/partitioning, the time cost of group merge/parti-

tion is bounded byOðlognÞ. Obviously, the group merge and

partition protocols have a lower cost than the sequential

implementations.

5 PERFORMANCE EVALUATION AND COMPARISON

5.1 Forward and Backward Security

Group key secrecy means that attackers cannot obtain the

group key even if they know all blind keys, which has been

proved in the random-oracle model [23]. To show that

PACK satisfies forward and backward secrecy, similar

arguments as in [9] can be used, which have provided a

detailed proof for TGDH. PACK and TGDH use similar

group key update procedures. The major difference

between them is in the underlying key tree structures,

which do not affect the security of the scheme. Therefore, in

this paper, we will not provide a detailed proof of forward

and backward secrecy. Next, we only roughly sketch the

proof. We first consider backward secrecy. When a new

user M wants to join the group, M picks its secret share r.

After several rounds of the two-group DH, M gets all

blinded keys on its copath, and it can compute all secret

keys on its key path using its own secret share and the

blinded keys on its copath. Clearly, all of these keys contain

M’s secret share; hence, they are independent of the

previous secret keys on that path. Therefore, M cannot

derive any previous keys. The forward secrecy can be

shown in a similar way. When a member M leaves the

group, at least one current member changes its share, and

all the keys on M’s key path will be updated to remove

M’s secret share. Hence, M only knows at most all blinded

keys, and the group key secrecy property prevents M from

deriving any future group keys. By combining backward

secrecy and forward secrecy, we can derive the key

independence.

YU ET AL.: OPTIMIZING THE REKEYING COST FOR CONTRIBUTORY GROUP KEY AGREEMENT SCHEMES 237

Fig. 7. An example of a key tree update upon single-user leave under

the third scenario.

TABLE 2
Rekeying Cost Bounds upon a Single-User Leave Event

5.2 Cost Comparison

This section compares the rekeying cost in PACK upon
single-user join and leave events with that of two existing
tree-based contributory group key agreement schemes:
TGDH [9] and DST [10]. All three types of costs are
considered: time, computation, and communication in
terms of multicast. Since, in general, a members’ leaving
time is not known in advance, in DST, only the join tree is
used. Table 3 lists the approximate bounds of the different
costs for the three schemes.

From the above comparison, we can see that PACK has
the lowest cost in terms of time, computation, and
communication. For example, for user join, only one or
two rounds are needed in time cost, whereas DST needs
1þ log logn rounds, and TGDH needs logn rounds. Similar
results can also be seen in the communication cost for user
join. The total computation cost is computed as the average
of the user join cost and leave cost; DST has a similar cost as
TGDH, which is an order of 2n, whereas for PACK, the
order is from n to 1:75n, with the savings ranging from
15 percent to 50 percent compared with that of DST and
TGDH.

5.3 Simulation Results

In our simulations, we generate the user activities according
to the following probabilistic models: Users join the group
according to a Poisson process with the average arrival rate
�, and the users’ staying time in the group follows an
exponential distribution with mean � (such a model is
motivated by the user statistics in study of Mbone [24],
[25]). Then, �� is the average number of users in the group,
that is, the average group size. For each simulation, we
initialize the group size to be 0, fix �, and vary � to get
different average group size configurations. For each
configuration (different average group size), a sequence of
100�� users join the group according to the Poisson process
with rate �, and each user’s staying time is drawn
independently from an exponential distribution with mean
�. In the simulations, we have compared the rekeying costs
of the three schemes, PACK, TGDH [8], and DST [10], in all
three aspects: computation, communication, and time.

The simulation results are presented in Fig. 8. From these
results, we can see that upon a single-user join event, PACK
has the lowest cost among all three schemes. Compared with
DST, PACK has a more than 10 percent reduction in

computation cost and a more than 65 percent reduction in
communication cost and time cost. Compared with TGDH,
the reduction is even more, about 50 percent in computation
cost and about 80 percent in time and communication costs.
Upon a single-user leave event, compared with DST, PACK
has about a 25 percent reduction in computation cost, about
a 15 percent reduction in time cost, and a similar commu-
nication cost. Although PACK has slightly higher computa-
tion and communication costs than TGDH upon a single-
user leave event, when averaged over both join and leave
events, the reduction is still significant, with a 20 percent
reduction in computation cost, 35 percent reduction in
communication cost, and 40 percent reduction in time cost.

6 CONTRIBUTORY GROUP KEY AGREEMENT WITH

KEY VALIDATION

In practice, there may exist malicious or compromised
group members who do not perform the key agreement
protocol honestly and cause key generation failure. One
example of key generation failure is group partition where
some users share one key while the others share another
different key. Therefore, besides the four security require-
ments discussed in Section 2, the group key management
should also have the key validity property. That is, without
being detected by other users, malicious users cannot
prevent a valid group key from being generated by
providing false information. In this section, we discuss the
possible damage that untruthful users can cause and the
mechanisms to check the key validity.

When implementing the two-group DH using the
method described in Section 2, an untruthful member can
cause key generation failure only if it has been elected as a
delegate. In this case, an untruthful member, for example, a
in subgroup A, can send a false blinded key fðK0AÞ to
selected members in subgroup B. As a consequence, those
members in B who have received false blinded keys from a
cannot obtain the valid group key KAB, that is, these
members have been implicitly revoked from the new group.

We introduce two methods to check the validity of the
key establishment procedure and to detect malicious
members. One is preventive, and the other is detective. In
the preventive scheme, for each group, m members are
elected as delegates and broadcast the blinded key. Then,
each group member checks whether these m copies of
blinded keys are the same. Since all the keying messages

238 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

TABLE 3
Rekeying Cost Comparison among Different Schemes

have been signed by the senders, the member who has sent
false information can be easily detected by other group
members. In the detective scheme, after the each round of
DH, m members are elected to broadcast a common known
message encrypted using the newly generated group/
subgroup key. Other members check whether they can
use their new group/subgroup key to successfully decrypt
the message. If a user cannot obtain this commonly known
message after decryption, it broadcasts an error message
that includes the blinded key and the messages it has
received. Again, since keying messages are signed by their
senders, those malicious members who have sent a false
blinded key or false encrypted messages can be detected.

Although colluders can compromise both preventive and
detective schemes, the probability of a successful collusion
attack is very low because those m delegates or m users
who broadcast the encrypted message are randomly
selected. In addition, the detective method is more resistant
to collusion attacks than the preventive methods. In the
preventive method, the m delegates are selected within one

subgroup, whereas in the preventive method, the m users
are selected from both subgroups.

Key validation requires an extra cost. In each round
of the two-group DH, the preventive scheme requires
2m broadcast, and the reactive scheme requires m broad-
cast, m encryption, and n decryption, where n is the size
of the new subgroup after the DH round. It is noted that
the extra cost due to checking is proportional to the cost of
the key management schemes without the checking
schemes. Thus, in the previous analysis and comparisons,
we did not count the extra cost associated with key
validation.

7 CONCLUSION

In this paper, we designed PACK, a highly efficient
contributory key agreement scheme that has much lower
communication, computation, and time overhead than
existing schemes and achieves the performance lower bound
derived in [22]. PACK reduces the overhead associated with
key updating in two ways. First, it uses the novel PFMH tree

YU ET AL.: OPTIMIZING THE REKEYING COST FOR CONTRIBUTORY GROUP KEY AGREEMENT SCHEMES 239

Fig. 8. Comparison of rekeying costs among PACK, TGDH, and DST.

structure that consists of a main tree, which is optimal for
user leave, and a join tree, which is optimal for user join.
Second, the concept of phantom user location in the PFMH
allows the cost amortization when handling user leave.
Upon single-user join, PACK has the time cost as one or two
rounds of the two-group DH, the communication cost as two
or four multicast, and the average computation cost as one
modular exponentiation per user. Upon a single-user leave
event, PACK takes at most logn rounds of the two-group DH
in terms of time cost, OðlognÞ multicast in communication
cost, and an average of 2 modular exponentiations per user
in computation cost, where n is the current group size. The
performance of PACK is compared with that of TGDH and
DST. Both theoretical bound analysis and simulation results
have shown that PACK has much lower rekeying costs in
terms of communication, computation, and time than
existing schemes.

APPENDIX

PROOF OF THEOREM 1

1. Consider the worst-case scenario: L ¼ n, that is,
jTlj ¼ 1 for all l. Then, Procedure 1 works as follows:
In the first round, the set of group members are
partitioned into dn=2e subgroups, with each sub-
group consisting of one or two members. For any
subgroup of size 2, the two-group DH is performed
between the two members in this subgroup to
generate a new key tree of size 2. In the ith round,
the set of existing key trees are partitioned into
dn=2ie subgroups, with each group consisting of one
or two existing key trees. If there is a subgroup
consisting of only one existing key tree, then this key
tree must have the minimum size (largest index)
among all the existing trees. For any subgroup with
two existing key trees, the two-group DH is
performed between these two key trees to generate
a new key tree with its right child being the key tree
that has a smaller size (larger index). Repeat this
procedure until only one tree is left, which is the
final PF key tree. Since there are only n group
members, at most logn rounds are needed, so the
time cost is upper bounded by logn. For other
scenarios where there exists jTij 6¼ 1, the time cost is
always no more than logn, since in these cases Ti can
be viewed as the result of merging all the leaf nodes
in Ti without introducing any time cost.

2. Since we need and only need to perform L� 1 times
of two-group DH protocols to unite L full key trees
into one PF tree and since each two-group DH
protocol needs two multicast in communication cost
provided that the exchange of keying material
between two subgroups during performing the
two-group DH is implemented using multicast, the
total communication cost is always upper bounded
by 2ðL� 1ÞCmulticast.

3. According to Procedure 1, we know that at most
logn rounds of the two-group DH need to be
performed in this situation. At the first round, each
member calculates its blinded key and a new
subgroup key. At the ith round ði > 1Þ, at most
dn=2i�1e users (which are selected as delegates) need

to calculate their blinded keys, and at most n users
need to calculate their subgroup keys. Following this
analysis, we can see that the total computation cost is
upper bounded by nðlognþ 2ÞCme. Further, if the
exchange of keying material between two subgroups
during performing the two-group DH is implemen-
ted using unicast, it is easy to see that a blinded key
needs to send to a certain member if and only if this
member needs to calculate a key for a newly
generated subgroup that it belongs to, which is
equivalent to say that the total communication cost is
upper bounded by ðn lognÞCunicast in this situation.

4. In this special situation, according to the definition
of a PF tree, it is easy to check that the key tree
illustrated in Fig. 9 is the obtained PF key tree after
applying Procedure 1. Assume that the size of each
full subtree Ti is 2mi , and let xi denote both the PF
subtree and its size. According to Procedure 1, we
know that the PF subtrees xL; . . . ; x1 are generated
sequentially with xL first (directly from T) and
x1 last. Also, when xi is generated, at most
xi þ 2 modular exponentiation operations are
needed, so the total computation cost is upper
bounded by

Cme
XL
i¼1

ðxi þ 2Þ ¼ Cme 2 lognþ
XL
i¼1

xi

 !
: ð3Þ

Since we have

xi ¼ 2mi þ xiþ1; ð4Þ

xi � 2xiþ1; ð5Þ

XL
i¼2

xi < x1 ¼ n; ð6Þ

the above bound is further upper bounded by
2ðnþ lognÞCme. Meanwhile, it is easy to check that
the total communication cost is upper bounded by
2nCunicast in this situation provided that the ex-
change of keying material between two subgroups
during performing the two-group DH is implemen-
ted using unicast.

5. In this special situation, let the key tree illustrated in
Fig. 10a be the PF tree obtained after applying the
unite procedure. Now, consider the computation cost
incurred by the full subtree T 0i :

240 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

Fig. 9. Obtained PF key tree after applying the unite procedure.

Case 1. If T 0i comes directly from the original set
T , the cost introduced by T 0i has been totally
included in (3).

Case 2. If T 0i is the merging result of two full trees
directly from the original set T and each with size
2mi�1, compared with the first case, an extra computa-
tion cost is needed to first merge the two trees into a
single full tree. Since the total number of leaf nodes in
T 0i is 2mi and each leaf node needs one modular
exponentiation to calculate the new subgroup key
associated to T 0i , the extra computation cost intro-
duced by T 0i is 2miCme þ 2.

Case 3. If T 0i is the merging result of more than
two full key trees of the original set T , since we have
assumed that for each size, the number of trees with
this size in T is no more than 2, then at least one
child of T 0i with size 2mi�1 comes directly from T . Let
TLi and TRi be the left and right children of T 0I , and
assume that TLi comes directly from T . In this case,
either there exists no key tree with size 2mi�1 in the
right side of T 0i or if there exists jT 0iþ1j ¼ 2mi�1, then
T 0iþ1 must come directly from T in order not to
violate the assumption that no more than two key
trees in T have the same size, and T 0iþ1 will not
introduce an extra cost except those included in (3).
If there exists no subtree with size 2mi�1 in the right
side of T 0i , we add a virtual subtree TRi to the
generated PF tree as in Fig. 10b and move all the cost
introduced by merging smaller full trees into this
subtree. If jT 0iþ1j ¼ 2mi�1, we can simply exchange
the subtree T 0iþ1 with the right subtree TRi of T 0i that is
not directly from the original set T , as in Fig. 10c.
Now, the total cost is kept to be the same, but the
extra cost introduced by T 0i is the same as in Case 2.

Following the above analysis and the condition

that jT1j � n=2 (that is, T1 comes directly from T),

the total extra computation cost that are not included

in (3) is upper bounded by
Pm2

i¼1 2iCme. Now, the

total computation cost is upper bounded by

2LCme þ Cme
Xm2

i¼1

2i þ
XL
i¼1

xi

 !
: ð7Þ

By applying (4), (5), (6), and jT1j ¼ 2m1 � n, we have

Xm2

i¼1

2i þ
XL
i¼1

xi � 2m2þ1 þ 2x1 � x1=2

þ 2x1 ¼ 2:5x1 ¼ 2:5n:

ð8Þ

That is, the total computation cost is upper bounded

by ð2:5nþ 2LÞCme. Meanwhile, we can conclude that

in this situation, when the exchange of keying

materials is implemented using unicast, the total

communication cost is upper bounded by

2:5nCunicast.
6. For the special situation that jT1j < n=2 and for each

tree Ti 2 T , there exists no more than one other tree

in T with the same size as Ti, by following the same

analysis as in (5), we can show that the total

computation cost is upper bounded by

2LCme þ Cme
Xm1

i¼1

2i þ
XL
i¼1

xi

 !
; ð9Þ

where the only change from (7) to (9) is that m2 is

changed to m1 due to the reason that T 01 does not

come directly from T .
By applying (4), we have that

Xm1

i¼1

2i þ
XL
i¼1

xi ¼ x1 þ ðx2 þ 2m1Þ þ
Xm2

i¼1

2i

þ
XL
i¼3

xi � 2x1 þ 2m2þ1 þ x2 � 3x1 ¼ 3n:

ð10Þ

That is, the total computation cost is upper bounded

by ð3nþ 2LÞCme. Meanwhile, we can conclude that in

this situation, when the exchange of keying materials

is implemented using unicast, the total communica-

tion cost is upper bounded by 3nCunicast. tu

ACKNOWLEDGMENTS

This work was supported in part by the US Army Research

Office under URI Award No. DAAD19-01-1-0494.

YU ET AL.: OPTIMIZING THE REKEYING COST FOR CONTRIBUTORY GROUP KEY AGREEMENT SCHEMES 241

Fig. 10. Analysis of the computation cost. (a) Obtained PF key tree. (b) Create a virtual subtree for TR2 . (c) Exchange TR2 with T 03.

REFERENCES

[1] I. Ingemarsson, D.T. Tang, and C.K. Wong, “A Conference on Key
Distribution System,” IEEE Trans. Information Theory, vol. 28, no. 5,
pp. 714-720, Sept. 1982.

[2] D.G. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A Secure
Audio Teleconference System,” Proc. Advances in Cryptology,
pp. 520-528, 1990.

[3] M. Burmester and Y. Desmedt, “A Secure and Efficient Con-
ference Key Distribution Scheme,” Advances in Cryptology—Proc.
Workshop Theory and Application of Cryptographic Techniques
(EUROCRYPT ’94), pp. 275-286, 1994.

[4] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman Key
Distribution Extended to Group Communication,” Proc. Third
ACM Conf. Computer and Comm. Security (CCS ’96), pp. 31-37, 1996.

[5] K. Becker and U. Wille, “Communication Complexity of Group
Key Distribution,” Proc. Fifth ACM Conf. Computer and Comm.
Security (CCS ’98), pp. 1-6, 1998.

[6] G. Ateniese, M. Steiner, and G. Tsudik, “Authenticated Group Key
Agreement and Friends,” Proc. Fifth ACM Conf. Computer and
Comm. Security (CCS ’98), pp. 17-26, 1998.

[7] M. Steiner, G. Tsudik, and M. Waidner, “Key Agreement in
Dynamic Peer Groups,” IEEE Trans. Parallel and Distributed
Systems, vol. 11, no. 8, pp. 769-780, Aug. 2000.

[8] Y. Kim, A. Perrig, and G. Tsukid, “Simple and Fault-Tolerant Key
Agreement for Dynamic Collaborative Groups,” Proc. Seventh
ACM Conf. Computer and Comm. Security (CCS ’00), May 2000.

[9] Y. Kim, A. Perrig, and G. Tsudik, “Tree-Based Group Key
Agreement,” ACM Trans. Information and System Security, vol. 7,
no. 1, pp. 60-96, Feb. 2004.

[10] Y. Mao, Y. Sun, M. Wu, and K.J.R. Liu, “Dynamic Join-Exit
Amortization and Scheduling for Time-Efficient Group Key
Agreement,” Proc. INFOCOM ’04, 2004.

[11] Y. Amir, Y. Kim, C. Nita-Rotaru, J.L. Schultz, J. Stanton, and G.
Tsudik, “Secure Group Communication Using Robust Contribu-
tory Key Agreement,” IEEE Trans. Parallel and Distributed Systems,
vol. 15, no. 5, pp. 468-480, May 2004.

[12] G.H. Chiou and W.T. Chen, “Secure Broadcasting Using the
Secure Lock,” IEEE Trans. Software Eng., vol. 15, pp. 929-934, Aug.
1989.

[13] S. Mittra, “Iolus: A Framework for Scalable Secure Multicasting,”
Proc. ACM Conf. Applications, Technologies, Architectures, and
Protocols for Computer Comm. (SIGCOMM ’97), pp. 277-288, 1997.

[14] C.K. Wong, M. Gouda, and S.S. Lam, “Secure Group Commu-
nications Using Key Graphs,” Proc. ACM Conf. Applications,
Technologies, Architectures, and Protocols for Computer Comm.
(SIGCOMM ’98), Sept. 1998.

[15] D.M. Wallner, E.J. Harder, and R.C. Agee, Key Management for
Multicast: Issues and Architectures, Internet draft, work in progress,
Sept. 1998.

[16] M.J. Moyer, J.R. Rao, and P. Rohatgi, “A Survey of Security Issues
in Multicast Communications,” IEEE Network, vol. 13, no. 6,
pp. 12-23, Nov./Dec. 1999.

[17] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner,
“The VersaKey Framework: Versatile Group Key Management,”
IEEE J. Selected Areas in Comm., vol. 17, no. 9, pp. 1614-1631, Sept.
1999.

[18] L.R. Dondeti, S. Mukherjee, and A. Samal, “DISEC: A Distributed
Framework for Scalable Secure Many-to-Many Communication,”
Proc. Fifth IEEE Symp. Computers and Comm. (ISCC ’00), pp. 693-
698, 2000.

[19] A. Perrig, D. Song, and D. Tygar, “ELK, A New Protocol for
Efficient Large-Group Key Distribution,” Proc. IEEE Symp. Security
and Privacy, pp. 247-262, 2001.

[20] Y. Sun, W. Trappe, and K.J.R. Liu, “A Scalable Multicast Key
Management Scheme for Heterogeneous Wireless Networks,”
IEEE/ACM Trans. Networking, vol. 12, no. 4, pp. 653-666, Aug.
2004.

[21] W. Diffie and M. Hellman, “New Directions in Cryptography,”
IEEE Trans. Information Theory, vol. IT-22, no. 6, pp. 644-654, Nov.
1976.

[22] J. Snoeyink, S. Suri, and G. Varghese, “A Lower Bound for
Multicast Key Distribution,” Proc. INFOCOM ’01, 2001.

[23] M. Bellare and P. Rogaway, “Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols,” Proc. First ACM Conf.
Computer and Comm. Security (CCS ’93), 1993.

[24] K.C. Almeroth and M.H. Ammar, “Multicast Group Behavior in
the Internet’s Multicast Backbone (mbone),” IEEE Comm. Maga-
zine, pp. 124-129, June 1977.

[25] K.C. Almeroth, “A Long-Term Analysis of Growth and Usage
Patterns in the Multicast Backbone (mbone),” Proc. INFOCOM ’00,
vol. 2, pp. 824-833, Mar. 2000.

[26] Y. Mao, Y. Sun, M. Wu, and K.J.R. Liu, “JET: Dynamic Join-Exit-
Tree Amortization and Scheduling for Contributory Key Manage-
ment,” IEEE/ACM Trans. Networking, vol 14, no 5, pp.1128-1140,
Oct. 2006.

[27] W. Trappe, Y. Wang, and K.J.R. Liu, “Resource-Aware Conference
Key Establishment for Heterogeneous Networks,” IEEE/ACM
Trans. Networking, vol 13, no 1, pp.134-146, Feb. 2005.

Wei Yu received the BS degree in computer
science from the University of Science and
Technology of China (USTC) in 2000, the MS
degree in computer science from Washington
University in St. Louis in 2002, and the PhD
degree in electrical engineering from the Uni-
versity of Maryland in 2006. From August 2000
to May 2002, he was a graduate research
assistant at Washington University in St. Louis.
From September 2002 to July 2006, he was a

graduate research assistant with the Communications and Signal
Processing Laboratory and the Institute for Systems Research,
University of Maryland. He joined Microsoft in August 2006. His
research interests include network security, wireless communications,
and networking, game theory, wireless multimedia, and pattern
recognition.

Yan (Lindsay) Sun received the BS degree with
the highest honor from Beijing University, Beij-
ing, in 1998 and the PhD degree in electrical and
computer engineering from the University of
Maryland in 2004. She is currently an assistant
professor in the Electrical and Computer En-
gineering Department, University of Rhode
Island. Her research interests include network
security and wireless communications and net-
working. She received the Graduate School

Fellowship at the University of Maryland from 1998 to 1999 and the
Excellent Graduate Award of Beijing University in 1998. She received a
US National Science Foundation (NSF) Faculty Early Career Develop-
ment (CAREER) Award in 2007. She is a member of the IEEE, the IEEE
Signal Processing Society, and the IEEE Communication Society.

K.J. Ray Liu (F’03) received the BS degree from
the National Taiwan University and the PhD
degree from the University of California, Los
Angeles (UCLA), both in electrical engineering.
He is a professor and the associate chair of
Graduate Studies and Research in the Electrical
and Computer Engineering Department, Univer-
sity of Maryland, College Park. His research
contributions encompass broad aspects of wire-
less communications and networking, informa-

tion forensics and security, multimedia communications and signal
processing, bioinformatics and biomedical imaging, and signal proces-
sing algorithms and architectures. He is the recipient of numerous
honors and awards including best paper awards from the IEEE Signal
Processing Society (twice), IEEE Vehicular Technology Society, and
EURASIP; IEEE Signal Processing Society Distinguished Lecturer,
EURASIP Meritorious Service Award, and the US National Science
Foundation Young Investigator Award. He also received various
teaching and research recognitions from the University of Maryland
including the Distinguished Scholar-Teacher Award, Poole and Kent Co.
Senior Faculty Teaching Award, and Invention of the Year Award. He is
vice president—Publications and on the board of governors of the IEEE
Signal Processing Society. He was the editor-in-chief of the IEEE Signal
Processing Magazine and the founding editor in chief of the EURASIP
Journal on Applied Signal Processing. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

242 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

