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ABSTRACT

Fall detection systems based on WiFi signals are gaining pop-
ularity recently. However, most of the existing works relying
on training are environment-dependent. In this paper, we pro-
pose DeFall, a novel WiFi-based environment-independent
fall detection system by leveraging the features inherently as-
sociated with human falls — the patterns of speed and accel-
eration over time. The system consists of an offline template-
generating stage and an online decision-making stage. In the
offline stage, the speed of human falls is first estimated based
on a statistical modeling about the Channel State Informa-
tion (CSI). Dynamic Time Warping (DTW) based algorithms
are applied to generate a representative template for typical
human falls. Then fall event is detected in the online stage
by evaluating the similarity between the patterns of realtime
speed/acceleration estimates and the representative template.
Extensive experiment results show that with a single pair of
WiFi transceivers, the proposed system can achieve a detec-
tion rate of 96% and a false alarm rate smaller than 1.5% un-
der both line-of-sight (LOS) and non-LOS (NLOS) scenarios.

Index Terms— WiFi, Channel State Information, Fall
Detection, Dynamic Time Warping

1. INTRODUCTION

The past few decades have witnessed the increase in the de-
mand of indoor fall detection systems which aim to detect the
falls for special groups of people, e.g., patients, elderly peo-
ple, and pregnant women. The systems could not only help
people live independently but also reduce the burden of care-
givers [1]. However, most of the existing systems rely on
cameras deployed in the area of interest, which is limited by
the requirements of line-of-sight (LOS) condition as well as
raises privacy-leakage concerns. Other conventional sensor-
based fall detection systems require wearables and are thus
not user-friendly.

Inspired by the fact that the radio frequency (RF) signals
can be altered by the propagation environment, wireless sens-
ing has become popular recently [2] [3]. By analyzing Chan-
nel State Information (CSI) accessible on mainstream devices
nowadays, a lot of wireless sensing applications have been

enabled such as indoor activity monitoring and event detec-
tion [4], motion detection [5], breathing estimation [6, 7] and
non-invasive fall detection [8–12]. WiFall, a WiFi-based fall
detector which extracts features from the CSI amplitude in-
formation to detect falls, is proposed in [8] [9], while Anti-
Fall [10] and RT-Fall [11] further explore the efficacy of phase
difference. And FallDeFi [12] exploits time-frequency analy-
sis for fall detection. Unfortunately, they cannot be general-
ized well to new environments without performance degrada-
tion and re-training/calibration is needed.

In this paper, we propose DeFall, standing for “Detect
Falls”, a WiFi-based environment-independent fall detection
system leveraging the unique patterns of the speed and ac-
celeration during a human fall. More specifically, as a hu-
man starts to fall to the ground, his/her body will experience
an extremely rapid speed increment. After the body hits the
ground, the speed reduces to near zero sharply. Most of the
human falls exhibit a similar pattern, rendering the feasibil-
ity of a robust fall detector by estimating the speed and ac-
celeration of the human body. The proposed system con-
sists of an offline template-generating stage and an online
decision-making stage. In the offline stage, the speed of hu-
man falls is estimated from the WiFi CSI by applying a sta-
tistical model on the radio wave propagation in an indoor
rich-scattering environment. Then band-relaxed Segmental
Local Normalized Dynamic Time Warping (SLN-DTW) and
DTW Barycenter Averaging (DBA) algorithms are performed
to generate a representative template for a typical human fall.
In the online stage, we evaluate the similarity between the
patterns of the realtime speed/acceleration estimates and the
representative template to detect a fall. To evaluate the per-
formance of the proposed system, we build a prototype using
commercial WiFi devices and conduct experiments under var-
ious settings. The results show that with a single pair of WiFi
transceivers, the proposed system can achieve a detection rate
(DR) of 96% on real falls and a false alarm rate (FAR) of
1.47% under both LOS and non-LOS (NLOS) scenarios.

The rest of the paper is organized as follows. The system
design, as well as the methodology of DeFall is presented in
Section 2. Experimental setup and performance evaluation
are discussed in Section 3. Finally, conclusions are drawn in
Section 4.
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2. SYSTEM DESIGN

In this part, we present an overview about the design of the
proposed WiFi-based fall detection system as Fig. 1 illus-
trates.
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Fig. 1. Overview of system architecture.

2.1. Speed Estimation

Since the proposed system utilizes the unique pattern of the
series of speed and acceleration during a human fall, it is crit-
ical to have an accurate estimate of the speed based on WiFi
CSI, which is not trivial due to the complex multipath propa-
gation indoors. Some existing approaches that utilize Doppler
Frequency Shift (DFS) to estimate the speed have not con-
sidered the multipath effect and thus may not even work in
NLOS conditions [13, 14].

Based on a novel statistical modeling of the electromag-
netic (EM) wave propagation in a rich-scattering multipath
environment [15], it has been shown that the speed of a mov-
ing object can be reliably estimated by evaluating the auto-
correlation function of the physical layer CSI. It does not re-
quire training and performs equally well in both NLOS and
LOS scenarios. In this paper, we adopt the methodology in
[15] to estimate the speed and will use the speed estimates for
fall detection.

2.2. Template-Generating Stage

In the template-generating stage of the proposed system, a
template database S = {S1, S2, ..., SM} is built first by in-
cluding M sequences of speed estimates, each of which is
calculated based on the CSI series collected during a random
fall.

However, due to the time measurement error during data
collection, there may exist redundant speed segments of other
activities before or after the fall event. To remove the re-
dundancy while adapting to the possible variability in event
instances, we resort to band-relaxed SLN-DTW [16], which
can detect low distortion local alignments between two time

series by dynamic programming [17]. SLN-DTW is applied
between every two speed sequences to extract their common
parts. Therefore, for each sequence Si, there are M − 1 pos-
sible truncations with M − 1 start indices Pi,s and M − 1
end indices Pi,e. And the part of Si with index lying in
[med(Pi,s),med(Pi,e)] is regarded as the sanitized speed se-
quence of the fall event in sample Si, where med(Pi,s) and
med(Pi,e) are medians of the start indices and the end in-
dices, respectively. In this way, the template database is re-
fined to Ŝ = {Ŝ1, Ŝ2, . . . , ŜM}.

The speed series in database Ŝ are then scaled to the same
length and averaged to construct a single representative pro-
file S̄. Since the direct averaging of time sequences by point-
to-point matching may be easily affected by shifting and mis-
alignment, to adapt to the temporal variability, the averaging
is also performed in the DTW space. The optimal average S̄
is defined as the sequence that has the smallest summation of
squared DTW distance with all series in the database. Given
our template database Ŝ = {Ŝ1, Ŝ2, . . . , ŜM}, and by denot-
ing DTW distance as DTW (x, y), which is the Euclidean
distance between two time series x and y calculated along
the optimal warping path, the problem to find S̄ in the DTW
space can be formulated as a convex problem:

S̄ = arg min
S

M∑
i=1

DTW 2(S, Ŝi), (1)

which can be solved by DTW Barycenter Averaging (DBA)
algorithm [18]. DBA performs an iterative algorithm that re-
fines an average sequence S on each iteration following an ex-
pectation maximization scheme with guaranteed convergence
in [19]. The optimal speed time sequence, produced by DBA,
is then considered as the speed template.

Besides speed, acceleration depicts the motion during a
fall from another different point of view. To get a more com-
prehensive description of the fall events, we derive an acceler-
ation series S̄′ from the speed template S̄ and combine them
by point-to-point stitching to generate a 2-D template S̄2D.
The efficacy of utilizing 2-D combined template S̄2D rather
than 1-D template S̄ or S̄′ will be discussed in Section 3.

2.3. Decision-Making Stage

After generating the template S̄2D, by comparing the speed
and acceleration estimates from the incoming stream with the
template, the system is able to detect a fall in real time. A slid-
ing window first slides through the incoming CSI data stream,
from which the corresponding speed and acceleration are es-
timated. The estimated speed and acceleration sequences are
combined to form a 2-D segment T2D. DeFall then compares
the template S̄2D generated in the first stage and the 2-D seg-
ment T2D and evaluates their similarity. Again, since the cap-
tured segment in the sliding window may be out of sync with
the template, the similarity is quantified by DTW distance.
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The smaller their DTW distance is, the more similarity they
have. If the DTW distance is smaller than an empirically pre-
defined threshold γ, the system reports a fall event is detected.

Since the classic DTW is sensitive to endpoints, the idea
of SLN-DTW is also applied in the decision-making stage.
Simpler than the process in template-generating stage, by
utilizing original SLN-DTW instead of band-relaxed SLN-
DTW, only the endpoints of 2-D testing segment T2D inside
the sliding window are defined adaptively since the endpoints
of 2-D template S̄2D are already well-defined in the template-
generating stage.

3. EXPERIMENT RESULTS

3.1. Hardware Setup

We implement our scheme using off-the-shelf WiFi devices
at carrier frequency 5.808GHz with a 40MHz bandwidth. To
capture the fast changes of speed, we conduct extensive ex-
periments in a typical office environment, and the sampling
rate is set to 1500Hz. The detailed setup is shown in Fig. 2
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Fig. 2. Experiment setup for LOS and NLOS scenarios.

with locations of transmitter (Tx) and receiver (Rx) marked,
and experiments are carried out under LOS and NLOS sce-
narios, respectively. Under LOS scenario, where the Tx is
deployed in position Tx1, both the Tx and Rx could “see” the
subject. Under NLOS scenario, where Tx is deployed in Tx2
and no direct path exists between the subject and the Tx.

3.2. Data Collection

The data collection is conducted in different days lasting for
3 months, during which the surrounding environment keeps
changing due to the changes of the placement of furniture. To
validate the feasibility of the proposed system, we first use a
human-like dummy to collect both template data and testing
data. After that, the CSI from real human falls are evaluated
to verify the efficacy of the system. The evaluation metrics
of the system performance are detection rate (DR) and false
alarm rate (FAR). DR is defined as the percentage of correctly
detected falls among all falls, while FAR is the percentage of
non-falls that are mistaken as falls among all non-falls.
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Fig. 3. An instance of speed and acceleration patterns for
“walk-then-fall”.

In the experiments, we consider two kinds of falls, “stand-
then-fall” and “walk-then-fall”. “Stand-then-fall” is per-
formed by first making the dummy stand up supported by a
stand and then letting it free fall; while “walk-then-fall” re-
quires the experimenter to walk around the dummy and then
let it fall. An instance of the speed and acceleration patterns
for “walk-then-fall” is shown in Fig. 3. For non-falls, daily
activities with relatively high speeds are taken into considera-
tion including walking and sitting. As Table 1 indicates, there
are a total of 846 fall samples and 814 non-fall samples.

3.3. Performance Evaluation

The generated template after sanitization and averaging is
shown in Fig. 4. The tendency of the template is the same as
expected with speed rising first and then dropping while the
acceleration first positive and then negative.

To evaluate the performance of the proposed system, dif-
ferent thresholds are applied in the decision-making stage and
the obtained ROC curve is illustrated in Fig. 5 (a). To show
the efficiency of the proposed system, we compare its ROC
curve with the simple-threshold method in [15], where the
simple threshold-based method detects falls based on maxi-
mum speed and maximum changes in acceleration. As Fig. 5
(a) illustrates, with the same level of FAR, the DR of the pro-
posed system is higher than the threshold-based method and
the Area Under the Curve (AUC) of the curves of DeFall is
larger as well, which proves that the proposed system in this
work achieves a better performance. Specifically, indicated
by the magnified part in Fig. 5 (a), at the same level of the
FAR lower than 1.5%, DeFall can achieve a high DR over
95% while the corresponding DR of threshold-based method
drops to a value smaller than 75%.

In addition, to prove that the 2-D template S̄2D outper-
forms any single template S̄ and S̄′, the same database is also
investigated with different templates, and the corresponding
ROC curves are shown in Fig. 5 (b). As shown, the 2-D com-
bined template achieves a better performance than any single
template with a more comprehensive description of activities.
Meanwhile, we also find that single acceleration template S̄′

is better than single speed template S̄. This is because the
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Fig. 5. ROC curves.
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Fig. 4. Generated template series.

changes of the absolute values of acceleration is larger than
that of the speed values, providing higher discrimination.

Furthermore, the necessity of high sampling rate is also
verified by experiments. Fig. 5 (c) shows the ROC curves
with data under different sampling rates. As illustrated, the
reduction of sampling rate leads to a degradation in perfor-
mance of the system. The reason is that as the sampling rate
decreases, the resolution and accuracy of the speed estimator
degrade correspondingly.

Table 1. Experimental Results in Terms of FAR and DR
Scenario Events Number DR FAR

LOS
Fall

Stand-then-Fall 424 97.40%
97.10%

-
-

Walk-then-Fall 94 95.74% -

non-Fall
Walking 167 -

-
0.00%

1.45%
Sitting down 177 - 2.82%

NLOS
Fall

Stand-then-Fall 270 98.15%
97.56%

-
-

Walk-then-Fall 58 94.83% -

non-Fall
Walking 212 -

-
0.47%

1.49%
Sitting down 258 - 2.33%

By selecting the threshold γ corresponding to an overall
DR of 97.28% and FAR of 1.47% as decision boundary, we
further tap out the performance on different activities indi-
cated in Table 1. The reliability of the proposed system can
be validated by the high accuracy with a DR higher than 97%
and a FAR lower than 1.5% under either LOS or NLOS sce-
narios. Note that the FAR of sitting is slightly higher than
walking due to the fact that sitting is more fall-like and can be

easily mistaken as falls. Moreover, we have two volunteers,
one male and one female to perform a total of 100 real falls.
Each of them tested 25 times under NLOS and LOS scenarios,
respectively. The overall DR on real falls with the selected γ
is 96.00%.

3.4. Robustness Test

To study the robustness of the system against the interference
from common dropping objects, we test objects with different
sizes and different materials. Each object dropping from a
height of 1m is tested 50 times and the results are indicated
in Table 2, which shows that all the FARs are 0.0%, verifying
the robustness of the system. This is because common objects
are much smaller than a human body and therefore they have
significantly less impact on wireless signal propagation.

Table 2. Robustness to Small Dropping Objects
Objects Material Size/Weight FAR
Bottle Plastic, water 0.5kg 0.0%
Bag Nylon 1kg 0.0%
Plate Plastic Radius = 12cm 0.0%
Plate Metal Radius = 10cm 0.0%
Book Paper 22cm× 18cm 0.0%
Box Paper 17cm× 17cm× 25cm, 0.8kg 0.0%

4. CONCLUSION

In this paper, we propose DeFall, a novel environment-
independent indoor fall detection system based on com-
mercial WiFi devices. The system utilizes a single pair of
device to detect falls even through the wall. Moreover, a real
prototype is built to validate the feasibility and evaluate the
performance of the proposed system. According to the exper-
imental results for detecting the falls in various environments,
the proposed system can achieve a detection rate of 96.00%
on real falls while maintaining a false alarm rate smaller than
1.5% under both LOS and NLOS scenarios.
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