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Abstract—In cognitive radio networks, secondary users (SUs)
are allowed to opportunistically exploit the licensed channels
by sensing primary users’ (PUs) activities. Once finding the
spectrum holes, SUs generally need to share the available licensed
channels. Therefore, one of the critical challenges for fully
utilizing the spectrum resources is how the SUs obtain accurate
information about the PUs’ activities and make right decisions of
accessing channels to avoid competition from other SUs. In this
paper, we formulate SUs’ learning and decision making process as
a Chinese Restaurant Game by considering the scenario where
SUs sense channels simultaneously and make access decisions
sequentially. In the proposed game, SUs build the knowledge
of the PUs’ activities by their own sensing and learning the
information from other SUs. They also predict their subsequent
SUs’ decisions to maximize their own utilities. We analyze
the interactions among SUs in the proposed game and study
specifically the impact of SUs’ prior belief and sensing accuracy
on their decisions. We also derive the theoretic results for the two-
user two-channel case. Finally, we demonstrate the effectiveness
and efficiency of the proposed scheme through simulations.

Index Terms—Chinese Restaurant Game, opportunistic spec-
trum access, game theory, social learning

I. INTRODUCTION

In cognitive radio networks, secondary users (SUs) as
unlicensed users are allowed to use licensed spectrum bands
with the constraint that they do not incur harmful interference
to the primary users (PUs) who have the license of the
spectrum bands. One typical cognitive radio technology is the
opportunistic spectrum access, where SUs perform spectrum
sensing, i.e., detect the PUs’ activities, and access the spectrum
once finding spectrum holes.

In the literature, many spectrum sensing approaches have
been proposed to identify the spectrum holes [1] [2]. On the
other hand, spectrum access aims at designing Medium Access
Control (MAC) protocols to efficiently share the available
spectrum resources among SUs [3] [4]. Joint spectrum sensing
and access is also considered in the literature [5] [6]. Most
of the aforementioned approaches assume that the utility of
a specific SU is independent with the actions of other SUs.
However, such an assumption is generally not true in reality,
especially when we consider scenarios where SUs share or
compete for certain resource. In such scenarios, the interac-
tions among rational but selfish SUs need to be taken into

account and game theory has been shown to be an effective
tool to model such complex interactions [7] [8] [9] [10] [11].

Although the existing dynamic spectrum access schemes
have greatly improved the spectrum utilization efficiency, due
to the mobility of nodes and the dynamics of the channel
variation, the accuracy of players’ decisions is limited and
remains a challenge to fully utilize the scarce spectrum re-
sources [12]. Nevertheless, players in a cognitive network are
generally intelligent and able to optimize their performance.
They not only have the ability to recognize the changes of
the surrounding environment by local observations, but also
can collect global information such as signals and decisions
revealed by other nodes. In such a case, the player’s limited
knowledge about the true system state can be expanded. The
information learned by the player can be used to construct a
belief on the unknown system state and improve the accuracy
of the player’s decision and thus the system efficiency.

In cognitive radio networks, the more SUs access the
same channel, the lower rate they can achieve due to the
interference among them. Such a phenomenon is known as the
negative network externality [13] [14] [15]. Therefore, when
making the decision of channel access, SUs should predict
other SUs’ decisions. Chinese Restaurant Game proposed in
[16] provides a general framework for modeling strategic
learning and decision processes in the social learning problem
with negative network externality. The authors also illustrated
three applications of Chinese Restaurant Game in wireless
networking, cloud computing, and online social networking
in [17]. However, since the authors in [16] and [17] mainly
focus on building a general framework, the model and analysis
may be too general to a specific system. Moreover, the authors
only consider the homogeneous players where players have the
same valuation about the resource. To better apply the Chinese
Restaurant Game into cognitive radio networks, we need to
carefully design the utility function of SUs by taking into
account the heterogeneous characteristic of SUs, and detailedly
analyze SUs’ optimal actions under different conditions.

In this paper, we use Chinese Restaurant Game to model
the opportunistic spectrum access problem in a cognitive radio
network with multiple PUs and SUs. In our system, the SUs
sense the channels simultaneously to estimate the channel
state and then decide sequentially which channel to access.
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(b) The slot structure

Fig. 1. The system model.

We assume that each SU can only sense one channel and
access one channel. Note that the channel an SU accesses
may not be the channel he senses. Instead, the SU would
exploit the information he knows or collects to make the
optimal channel access decision. Since there exists a negative
network externality in cognitive radio network, i.e., the more
SUs access the same channel, the lower rate they can achieve,
the SU should also predict other SUs’ decisions to achieve the
maximal payoff.

The rest of the paper is organized as follows. Section II
describes in details our system model for the cognitive radio
networks and formulates the decision making problem as a
Chinese Restaurant Game. In Section III, we analyze the im-
pact of prior belief and sensing accuracy on SUs’ decisions in
the two-user two-channel scenario, and derive some important
theoretic results. Finally, we present the simulation results in
Section IV and draw conclusions in Section V.

II. CHINESE RESTAURANT GAME MODEL OF COGNITIVE
RADIO SYSTEM

A. System Model

In this paper, we consider a primary system with K licensed
channels, Hk, k ∈ K = {1, 2, ...,K}, as shown in Fig. 1.
We assume that the channels are slotted, and each channel is
owned by one PU. Within each slot, according to the activity
of the PU, the state of channel k is θk ∈ {0, 1}, where “0”
stands for the channel being occupied by the PU while “1”
means that the channel is vacant.

Suppose that there are M secondary users (SUs), i.e., SUm,
m ∈M = {1, 2, ...,M}, searching vacant channels for trans-
mission. Since SUs are not licensed users, they can only access
the channel when the PUs are not present. In such a case, SUs
need to perform sensing before accessing the channels. We
assume that each SU will sense one of the channels and make
his own decision on the PUs’ activity individually. The sensing
result, which represents the state of the sensed channel, is a
binary signal {s+, s−}. The positive signal s+ indicates that
the channel is vacant while the negative signal s− stands for
the channel is occupied by the PU.

As shown in Fig. 1 (b), in our model, one slot is further
divided into three sub-slots. In the first sub-slot, M SUs
simultaneously perform sensing. In the second sub-slot, SUs
sequentially make their accessing decisions based on the
information they collected. We assume that SUs report their
decisions as well as their sensing results through a dedicated

common control channel which can be overheard by all other
SUs. In the third sub-slot, SUs transmit their data through the
channels they selected. If more than one SU choose the same
channel, they will share the channel through Time Division
Multiple Access (TDMA) or Code Division Multiple Access
(CDMA).

B. Utility Function

Let g = {gm,k|m ∈ M, k ∈ K} be the channel quality
of the system with gm,k being SUm’s channel gain in Hk.
Here we assume that g is known to every SU . Given g,
let Rm,k(g, n) be the rate that SUm can obtain when it
shares channel Hk with n − 1 other SUs. The exact form
of Rm,k(g, n) is determined by how users share the channel.
For example, if n users access a channel in a TDMA way,
then Rm,k(g, n) = Rm,k(g, 1)/n.

Let Rm,k(g) be the maximal rate SUm can obtain by
accessing channel Hk. Since the SU’s data rate Rm,k(g, n)
is a decreasing function in terms of n, we have Rm,k(g) =

Rm,k(g, 1) = 1
2 log2(1 +

gm,kPm

N2
0

), where Pm is SUm’s
transmission power and N2

0 is the variance of additive white
Gaussain noise. Here we assume that all SUs use the same
power to transmit and all channels have the same noise
variance.

Definition (Preferential Channel): Channel Hk is the pref-
erential channel of SUm if Hk = arg max

Hk∈{H1,...,HK}
Rm,k(g).

We use the transmission throughput as SUs’ utilities. As-
suming the length of one slot is normalized to 1, the utility of
SUm accessing channel Hk can be written as

Um,k(g, θk, Nk) = Rm,k(g,Nk)1(θk = 1), (1)

where 1(Δ) is the indicator function and Nk is the final
number of SUs that choose to access channel Hk.

From the definition of utility we can see that an SU’s utility
is determined by the channel quality, the channel state and the
number of SUs who share this channel. Therefore, to maximize
the utilities, SUs should estimate both the channel state and
the number of users who will eventually share the channel
with them. Such a decision making process can be formulated
as a Chinese Restaurant Game [16].

C. Chinese Restaurant Game

Let As = {1, 2, ...,K} and Aa = {1, 2, ...,K} be the
sensing and access action set that SUs may choose from,
respectively. Let asm ∈ As and aam ∈ Aa be the sensing
and access action of SUm, and as = {as1, as2, ..., asM} be
all the SUs’ sensing actions. We use the concept of belief to
describe the SU’s estimate on the channel state. Specifically,
let the belief bm,k be the probability that channel Hk is
vacant from the perspective of SUm. Moreover, we assume
that all SUs have a common prior belief on the channels as
b = {b0,1, b0,2, ..., b0,K}.

Let sm ∈ {s+, s−} be the signal obtained via SUm’s
sensing and s̄m ∈ {s+, s−}\sm be the complement signal
of sm. Let Sk = {sm|SUm senses Hk, ∀m} and with Sk,
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Pr(vm,k = X|b, p, g, as, nm, hm, sm, aam, θ = l) (3)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
0≤u≤K

∫
s∈Sm+1,u(nm+1,hm+1)

Pr(vm+1,k = X − 1|b, p, g, as, nm+1, hm+1, sm+1 = s, aam+1 = u, θ = l)

f(s|θ = l)ds, aam = k,∑
0≤u≤K

∫
s∈Sm+1,u(nm+1,hm+1)

Pr(vm+1,k = X|b, p, g, as, nm+1, hm+1, sm+1 = s, aam+1 = u, θ = l)

f(s|θ = l)ds, aam �= k.

a∗am = BEm(b, p, g, as, nm, hm, sm),

= arg max
k∈K

∑
l∈Θ

Pr(θ = l|b, p, as, hm, sm)E[Um,k(g, θk, Nk)|b, p, g, as, nm, hm, sm, aam = k, θ = l],

= arg max
k∈K

∑
l∈Θ

M−i+1∑
x=0

Pr(θ = l|b, p, as, hm, sm)Pr(vm,k = x|b, p, g, as, nm, hm, sm, aam = k, θ = l)

Um,k(g, θk, nm,k + x), (4)

SUm can update its belief on Hk by following the Bayesian
rule as

bm,k(b0,k, p, Sk)

=

∏
sm∈Sk

f(sm|θk = 1)b0,k

∏
sm∈Sk

f(sm|θk = 1)b0,k +
∏

sm∈Sk

f(sm|θk = 0)(1− b0,k)
.(2)

Here we assume that all the signals are independent and
f(sm|θk) is a predefined distribution that the signal sm
generated conditioning on the channel state θk. We denote
p = f(sm = s+|θk = 1) = f(sm = s−|θk = 0) be the
sensing accuracy.

Besides the estimate on the channel state, an SU also
needs to predict the decisions of the subsequent SUs due
to the existence of negative network externality. Let hm =
{s1, s2, ..., sm−1} be the signals revealed by the SUs before
SUm and nm = {nm,1, nm,2, ..., nm,K} be the grouping
observed by SUm when making its decision. If we denote
vm,k be the number of SUs choosing Hk after SUm, including
SUm itself, then through backward induction [16], we have (3)
where hm+1 = {hm, sm}, nm+1 = {nm+1,1, ..., nm+1,K},
θ = {θ1, θ2, ..., θK} ∈ Θ is the system state, and Sm+1,u is
the signal space that SUm+1 will access Hu.

Then given b, p, as, hm, nm and sm, SUm’s best response
for maximizing its expected utility can be written as (4) where
Pr(θ = l|b, p, as, hm, sm) = f(b, p, as, hm, sm), a function of
b, p, as, hm and sm, is the probability that the system state θ
is l.

III. ANALYSIS OF THE GAME FOR THE TWO-USER
TWO-CHANNEL SCENARIO

In this section, we analyze the interactions among SUs for
the two-user two-channel scenario, i.e., K = 2 and M = 2.
We first derive SUs’ optimal access actions under different b
and p by assuming the channel quality g, the sensing action
as, and the corresponding sensing results are given. Then, we
discuss the SUs’ expected actions before knowing the sensing

results. Due to page limitation, all the proofs for the Lemmas
and Theorems are shown in the supplementary information
[18].

A. Optimal Actions and Action Regions with Sensing Results

To give more insight of the proposed approach, we first
assume that SUs’ prior belief on both channels are the same,
i.e., b0,1 = b0,2 = b0. As discussed in the previous section,
we use backward induction to derive SUs’ optimal action. In
the following, we first analyze SU2’s strategies and obtain the
corresponding optimal action regions as described in Theorem
1.

Theorem 1: Suppose Hi is the preferential channel of SU2.
When as1 �= as2 and s1 �= s2, or as1 = as2 and s1 = s2, there
are three possible action regions for SU2 on the plane of b0
and p as follows.
• Ψ1 = {(b0, p)| b2,i(b0,p,as,s1,s2)

b2,−i(b0,p,as,s1,s2)
>

R2,−i(g,1)
R2,i(g,2)

} with the
optimal action a∗a2 = i,

• Ψ2 = {(b0, p)|R2,−i(g,2)
R2,i(g,1)

<
b2,i(b0,p,as,s1,s2)
b2,−i(b0,p,as,s1,s2)

<
R2,−i(g,1)
R2,i(g,2)

} with the optimal action a∗a2 = −aa1,

• Ψ3 = {(b0, p)| b2,i(b0,p,as,s1,s2)
b2,−i(b0,p,as,s1,s2)

<
R2,−i(g,2)
R2,i(g,1)

} with the
optimal action a∗a2 = −i,

where −i ∈ K\i, and b2,i(b0, p, as, s1, s2) and
b2,−i(b0, p, as, s1, s2) are given by (2).

On the other hand, when as1 = as2 and s1 �= s2, or as1 �=
as2 and s1 = s2, there will be only one possible optimal action
on the whole plane of b0 and p .

Based on SU2’s optimal action regions, we can analyze
SU1’s strategies and derive the corresponding optimal action
regions as follows.

Theorem 2: Suppose Hj is the preferential channel of SU1.
Then, SU1’s optimal actions and the corresponding action
regions can be written as follows.
• Φ1 = ∪

d
φd with the optimal action a∗a1 = j,

• Φ2 = ∪
d
φ̄d with the optimal action a∗a1 = −j,
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where −j ∈ K\j, d ∈ D = {1, 2, 3}, φd and φ̄d are defined
in (5) and (6), respectively.

φd = {(b0, p)|{ b̄1,j(b0, p, as, s1,Ψd)

b̄1,−j(b0, p, as, s1,Ψd)
>

R1,−j(g)

R1,j(g)
} ∩Ψd},

(5)

φ̄d = Ψd\φd. (6)

From the analysis of SUs’ optimal strategies and the cor-
responding action regions in Theorem 1 and 2, we have the
following observations.
• When SUs have the same preferential channel, they will

share the preferential channel in region φ1 and share the
non-preferential channel in region φ̄3.

• When SUs have their own preferential channel, respec-
tively, they will share SU1’s preferential channel in region
φ3 and share SU2’s preferential channel in region φ̄1.

• Given as and s1, SU1’s action will be independent from
the actual signal SU2 receives.

B. Expected Actions without Sensing Results
In the previous subsection, we derive SUs’ optimal strate-

gies and the corresponding action regions given the sensing
results. In this subsection, we will analyze the symmetric
property of SUs’ expected actions without the sensing results.
Note that the expected action can be served as the SUs’
prior information about their optimal actions before actually
performing sensing.

For any (bx, py) ∈ {(b0, p)}, the expected action of SUi,
i ∈ {1, 2}, is defined as

ϕi(bx, py) =
∑

s∈{hi,si}
Pr(s|bx, py) ∗ aai(s, bx, py), (7)

where s is the signal(s) SUi collected, Pr(s|bx, py) is the
probability of receiving s under bx and py , and aai(s, bx, py)
is SUi’s action when he receives s.

To show the symmetric property of the expected actions, we
first characterize, in Lemma 1 and Lemma 2, the symmetric
property of SUs’ optimal actions and action regions when
receiving opposite sensing results.

Lemma 1: Given as and g, SU2 will choose the same
optimal strategy in the action region Φd(b0, p) with sensing
results (s1, s2) and the action region Φd(b0, 1−p) with sensing
results (s̄1, s̄2).

Lemma 2: Given as and g, SU1 will choose the same
optimal strategy in the action region φd(b0, p) with sensing
results s1 and the action region φd(b0, 1 − p) with sensing
results s̄1.

With the Lemmas above, we are ready to show the sym-
metric property of SUs’ expected actions.

Theorem 3: Given as, the expected actions of SU2 are
symmetrical to p=0.5.

Theorem 4: Given as, the expected actions of SU1 are
symmetrical to p=0.5.

IV. SIMULATION RESULTS

In this section, we evaluate the proposed game theoretic ap-
proach in terms of optimal action, action region, the expected
action, and the system performance.
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Fig. 2. Action regions of SU1 and SU2 with as1 = 2, as2 = 2, g =
[10, 1; 10, 1] and b01 = b02 = b0.

A. Actions with Sensing Results

In the first simulation, we evaluate SUs’ strategies and the
corresponding action regions by assuming that channel H1 is
the preferential channel for both SUs with channel gain 10,
and channel H2 is the non-preferential channel for both SUs
with channel gain 1. Fig. 2 shows the optimal action regions
when both SUs sense channel H2.

Since both SUs sense channel H2, SUs’ believes on channel
H1 remain unchanged while SUs’ believes on channel H2 will
be updated according to the sensing results. From Fig. 2 (b)
and (c), we can see that there are three action regions when
both sensing results are positive, while there is only one action
region when one of the sensing results is positive and the other
is negative. Such phenomenon verifies the theoretical results
in Theorem 1.

As shown in Fig. 2 (b), Ψ1 is the action region where SU2

accesses its preferential channel H1. Such a phenomenon can
be explained as follows. When p < 0.5, SU2’s belief on H1 is
larger than its belief on H2 and accessing H1 can bring a larger
payoff due to the higher channel gain. Therefore, SU2 chooses
H1 when p < 0.5. When p > 0.5, although SU2’s belief on H1

is smaller than its belief on H2, the larger payoff of accessing
H1 in action region Ψ1 can make up the loss caused by the
low belief even considering SU1 may also access the same
channel. Nevertheless, when (b0, p) shifts from region Ψ1 to
Ψ2, the gain of accessing H1 can no longer compensate the
loss of low belief and sharing channel with SU1. Therefore,
the best strategy for SU2 in region Ψ2 is to access the different
channel from SU1. In the region Ψ3, SU2’s belief on H1 is
so low that the payoff of accessing H1 is smaller than that of
accessing H2 even though H2 may be shared by SU1.

The action regions of SU1 are shown in Fig. 2 (a). We
can see that there are two possible action regions for SU1 in
each of SU2’s action region Ψd, which verifies the results in
Theorem 2. The reason that there is only one action region φ1

in Ψ1 is that no (b0, p) in Ψ1 satisfies the condition defined
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Fig. 3. Expected actions of SU1 and SU2 with g=[10,1;1,10].

in (6).

B. Expected Actions without Sensing Results

In this subsection, we evaluate SUs’ expected actions with-
out the sensing results and the outcomes are shown in Fig. 3.
From Fig. 3, we can see that the expected actions of both SU1

and SU2 are symmetrical to p = 0.5, which verify Theorem
3 and Theorem 4.

From Fig. 3, we can also see both SUs deviate from their
preferential channels when (b0, p) lies in the regions marked
with (1) and (2). This is because in these regions, SUs’ belief
on the non-preferential channel can make up the loss of payoff
when switching from the preferential channel. Moreover, when
p becomes larger and b0 becomes smaller, the probability of
deviating becomes larger if they sense the preferential chan-
nels and becomes smaller if they sense the non-preferential
channels. This is because SUs’ expected actions depend on
the signals they received, which is determined by p and b0.
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Fig. 4. Normalized utility of SU2 with g=[10,10;10,10;10,10;10,10].

C. System Performance

In this subsection, we evaluate the proposed approach in
terms of system performance. Since the simulation results are
similar for different channel sharing models, here we only
show those with the TDMA model where the SU’s utility is
defined as

Um,k(g, θk, Nk) = Rm,k(g)1(θk = 1)/Nk. (8)

We compare our approach with four other strategies: ran-
dom, signal, learning, and myopic strategies. In the random
strategy, SUs randomly and uniformly choose to access one of
the channels. In the signal strategy, SUs make their decisions
purely based on their own signal and the goal is to choose the
channel that can maximize their expected utility as follows

asignalam = arg max
k∈K

∑
l∈Θ

Pr(θ = l|b0, p, as, sm)Um,k(g, θk, 1), (9)

The learning strategy is an extension of the signal strategy.
Under this strategy, the SU learns the channel state not only by
his own signal but also by the signals revealed by the previous
SUs. Therefore, the learning strategy can be obtained as

alearnam = arg max
k∈K

bm,kUm,k(g, θk = 1, 1), (10)

In the myopic strategy, a myopic SU makes the decision
according to his own signal, all signals revealed by the
previous SUs, and the current grouping. The objective of the
SU under myopic strategy is maximizing his current expected
utility given by

amyopic
am = arg max

k∈K
bm,kUm,k(g, θk = 1, nm,k + 1), (11)

We first verify that the proposed approach leads to the Nash
equilibrium, i.e., any deviation to other strategies will lead
to a utility loss. We assume that among the SUs, SU2 may
adopt one of the following five strategies: the proposed strategy
denoted as CRG, random, signal, learning, and myopic. The
rest of SUs all use the proposed strategy. We measure the ratio
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(d) CRG/random

Fig. 5. Normalized social welfare with g=[10,7;7,10;10,7;7,10].

between the utility generated by any four other strategies and
the utility generated by CRG, and the results are shown in Fig.
4. From Fig. 4, we can see that the ratio is smaller than or
equal to 1 for any b0, p, and g, which means that the proposed
strategy is indeed a Nash equilibrium.

In the following, we study the system performance in
term of social welfare, i.e., the sum of all SUs’ utilities in
the system. In this simulation, all SUs in the system will
adopt the same strategy. The results are presented in form
of normalized social welfare, i.e., the ratio between the social
welfare generated by CRG and the social welfare generated
by any four other strategies.

Fig. 5 show the results of the scenario where the first and the
third SUs have the same preferential channel and the second
and the fourth SUs have the same preferential channel. In the
preferential channel their channel gain is 10 while in the non-
preferential channel their channel gain is 7. From Fig. 5, we
can see that the social welfare with CRG has been increased
3%, 21%, 10% and 11% compared to that with myopic,
learning, signal and random, respectively. That’s because with
high quality signals, an SU can get accurate information of
the channel state and avoid the conflict with the PU. What’s
more, by observing the actions of previous SUs and estimate
the actions of subsequent SUs, the SU can also avoid sharing
the channel with too many other SUs. Such a mechanism
finally contributes to the SU’s right decision making and better
payoff.

V. CONCLUSION

In this paper, we formulate SUs’ decision making process
problem in opportunistic spectrum access as a Chinese Restau-
rant Game. With the proposed game theoretic approach, SUs
can make better decisions and achieve better performance
through learning from others and estimating others’ decisions.
We theoretically derive SUs’ optimal access actions and the
corresponding action regions under different initial conditions.
We also study some general properties such as symmetric

property of SUs’ expected action under different channel qual-
ities for the two-user two-channel scenario. Simulation results
verify our theoretic results and demonstrate the effectiveness
and efficiency of the proposed scheme.
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