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ABSTRACT 
Digital fingerprinting is a technology for tracing the distribution of 
multimedia content and protecting them from unauthorized redis- 
tribution. Collusion attack is a cost effective attack against digi- 
tal fingerprinting where several copies with the same content but 
different fingerprints are combined to remove the original finger- 
prints. In this paper, we investigate average and nonlinear collu- 
sion attacks of independent Gaussian fingerprints and study both 
their effectiveness and the perceptual quality. We also Q~OPOSC the 
bounded Gaussian fingerprints to improve the perceptual quality of 
the fingerprinted copies. We further discuss the tradeoff between 
the robustness against collusion attacks and the perceptual quality 
of a fingerprinting system. 

1. INTRODUCTION 

With the rapid development of multimedia and communication 
technologies, an increasing amount of multimedia data are dis- 
tributed through networks. This introduces an urgent demand to 
insure the proper distribution and usage of content, especially con- 
sidering the ease of manipulating digital multimedia data. 

To prevent illegal duplication and redistribution of the content, 
a digital fingerprinting system embeds unique identification infor- 
mation into each distributed copy to trace customers who use their 
copies inappropriately. There is a cost effective attack against digi- 
tal fingerprinting, known as collusion. In collusion attacks, several 
users (colluders) get together, combine information from different 
fingerprinted copies of the same host signal and generate a new 
copy where the original fingerprints are removed or attenuated 111. 
Digital fingerprinting should be resistant to collusion attacks as 
well as to common signal processings. 

An early work on digital fingerprint code and collusion attacks 
assumed that colluders can detect and change a specific fingerprint 
code bit if it has different values between several fingerprinted 
copies [Z]. Unlike generic data, fingerprints can be seamlessly em- 
bedded into the multimedia data [3, 41 and each fingerprint code 
bit can be spread over the entire multimedia content. Thus, the 
difference between each fingerprint code bit is not easily identified 
and changed. Therefore, the assumption of the collusion attack in 
[2] is suitable mostly for generic data and the attacks in [ I ]  are 
more feasible for multimedia data. 

In Ill,  several types of collusion attacks were studied and non- 
linear attacks were shown to be more effective than the average 
attack in removing uniformly distributed fingerprints. Simulation 
results in [ I ]  also show that Gaussian fingerprints arc more resis- 
tant to nonlinear collusion attacks than uniform fingerprints but 
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analysis of the Gaussian fingerprint's performance has not been 
provided. In this paper, we focus on independent Gaussian finger- 
prints and analyze both the effectiveness and the perceptual quality 
of different collusion attacks. We use digital image as example, but 
our results are applicable to other types of multimedia data. 

The paper is organized as follows. Section 2 introduces the 
fingerprinting and collusion attack system model. In Section 3, 
we analyze the detection statistic under different collusion attacks. 
In Section 4, we study the resistance of unbounded Gaussian fin- 
gerprints. Section 5 proposes bounded Gaussian fingerprints to 
improve the perceptual quality of fingerprinted copies. We then 
discuss the tradeoff between the robustness against collusion at- 
tacks and the perceptual quality that a designer of a fingerprinting 
system has to address. Conclusions are drawn in Section 6. 

2. SYSTEM MODEL 

We consider a system that consists of three parts: fingerprint em- 
bedding, collusion attacks, and fingerprint detection. Spread spec- 
trum watermark embedding 13.41 is widely used in watermark ap- 
plications where the robustness of the watermark is required. As- 
sume that there are a total of M users in the system. Given a host 
signal represented by a vector S with length "I the owner chooses 
a unique fingerprint W' of length N for user i = 1,. . . , M ,  and 
generates the fingerprinted copy X' by Xi = S + aW'. a is 
the Just-Noticeable-Difference (JND) from human visual models 
[4] to guarantee the imperceptibility of W' and control the energy 
of the embedded fingerprints. We assume that the M fingerprints' 
{W'} a e  chosen independently. 

Assume that K users collude and Sc is the set containing the 
indices of the colluders. We further assume that the collusion at- 
tack is in the same domain as the fingerprint embedding. With K 
different copies { X k } k ~ s C ,  the colluders generate the j t h  (j = 
1, . . . , N )  component of the attacked copy V = [V, , V2, . . . , V N ] ~  
using one of the following collusion functions: 

Minimum: V;."' = min {Xt}, 
ktSc  

Maximum: V;--% = max { X ; } ,  
4 t S c  

Median: Vjmed = mediankesc{X;}, 

MinMan: yminmaZ = ( V y -  + v;""")/2, 
Modified Negative: I/;lodneg = ym'n f - YFed, 

v.m'"" with prob. p ,  
with prob. 1 - p .  4*a* Randomized Negative: l/IPundneg 
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Note that for our model, applying the collusion attacks to the fin- 
gerprinted copies is equivalent io ?pplying the collusion attacks to 
the fingerprints. For example, V"'" = minrts ,  [S + aWk} = 
s + cy mink,s, [U''}. 

In the detection process, the detector removes the host signal 
from V and extracts the fingelprint Y = g ( [ W k } k € S c ) .  where 
g ( . )  is one of the collusion functions defined in (I) .  The detecror 
measures the similarity between Y and each of the M fingerprints 
[W'}, compares with a threshold, and outputs the estimated col- 
luder set. In this paper, we use,the Z statistic [ I ]  to calculate the 
similarity between Y and {W'} because the 2 statistic is found 
to be more robust against nonlinear collusion attacks than other 
commonly used statistics 151. The Z statistic is defined as: 

(2) 
1 1 + p' 
2 1 - @ '  

Z' = - m 1 0 g -  

is the estimated correlation coefficient between Y and W', N is 
t h e l e n g t h o f t h e w a t = ~ a r k , & ~ ~  = &E, (Wj - 
and &$ = &E3 (Yj - f Cj=, q)' are the unbiased esti- 
mates of the original fingerprint's variance and the extracted fin- 
gerprint's variance, respectively. z' approximately follows Gaus- 
siandisvibutionN(p', 1 )  withpi = +-log where 
E[p'] is the mean of p'. If i E Sc, then 1'" > 0. Otherwise, 
p' = 0. (Note that (E[p']} are the same for all i E Sc, so we will 
drop the superscript i for simplicity.) 

We use the commonly used criteria to measure the effective- 
ness of different attacks: the probability of capturing at least one 
colluder ( P d )  and the probability of falsely accusing at least one 
innocent user (Pfp ) .  We also considered other measurements like 
the fraction of colluders that are successfully captured and the frac- 
tion of users that are innocently accused. From the analysis in [SI, 
they have the same tendency as Pd and P f p ,  and therefore are not 
included in this paper. 

When considering the perceptual quality of different attacks, 
among all components of the noise (which is (nj = J N D j  . 
Y,}::, in our problem), only those that exceed JND result in 
perceptually distinguishable distonion. The mean square error 
(MSE) uses the total energy of the noise, so it is not an appro- 
priate measurement of the perceptual distortion. We redefine MSE 
by M S E J N D =  E,",, n. , where 

W,)' 
N 

A 

n, t J N D ,  

nj - J N D ,  

i fn ,  < -JND,, 
if - J N D j  5 n; 5 J N D ; ,  
if n, > J N D ,  

(3) 

3. ANALYSIS OF DIFFERENT COLLUSION ATTACKS 

3.1. Analysis of E[p] under Different Attacks 

From the analysis in the previous section, in order to analyze the 
effectiveness of different collusion attacks, we first need to study 
E[p] f o r i  E Sc. Under the assumption that [Wj} are i.i.d. dis- 
tributed with zero mean and variance uf, {y ( {W~}k , s , )W;}~=,  
are also i.i.d. distributed. Recall that E[p] is the correlation coeffi- 
cient between Y and W (we will drop the subscript j for simpli- 

fication), since E[W'] = 0, we have 

Therefore, E [g ( [wk)k~S , )W' ]  and U$ are needed for the sta- 
tistical analysis of Z statistic under each attack. 

For the average attack, if i E Sc ,  then 

For the minimum attack. if {W'} has the pdf f(z) and the cdf 
F ( x ) ,  and if the number of colluders is K ,  the pdf of W'"" = 
minkcs, {!AJk} is [61: 

fwmin(w) = K f ( ~ ) [ l  ~ F(w)IK- ' .  (4) 

U: can be calculated from the definition of variance. In order to 
calculate the correlation between W"'" and W' for i t Sc ,  we 
can express the joint pdf of W"'" and W" as follows: 

fw-.-.wi(", w) ( 5 )  

if W'"'" == wa, = {  ( K  - ~) f (w ' ) f (w) [ l  - F ( w ' ) ] ~ - ~  if w"'" < w'. 
f (w')[ l  - F(w')]K-' 

From (5)  and the definition of correlation, f o r i  E Sc, we have 

E[WminW'] = E [ W m ' n W i ] ~  + E[W"'""W']z, 
w 

where E(W"'"W']I = w"f(w')[l - F(w')IK-' dw' 1, L and E[Wmi"W']z = w'(K - l ) f ( w ' ) x  

[ l  - F ( w y - 2  ( L y w f ( w )  dw ) dw'. (6) 

For the maximum and median attacks , the analysis is similar 
and detailed derivation is available in [SI. 

Forthe MinMax attack with W"""""" - - I(W""'"+W"*=), ' 
uar[W""""'""] = - 1 (uav[w"im] + var[Wm*"]) (7) 

E[W"""""W'] = - 1 (E[W""'Wi] + E[W"""W']) , 

4 
1 
2 

+ -cov[W"n, W""'], 

2 

where the covariance of W""" and W""' can be calculated from 
the joint pdf of W?'% and W""', which is 

fwmin ,wmoi  (w', w") 
= K ( K  - l)f(w')f(w")[P(w") - F(w')IK-'. (8) 

The analysis of the modified negative attack (ModNeg) is sim- 
ilar to the MinMax attack and can he found in [ 5 ] .  

For the randomized negative attack (RandNeg), we assume 
that p is independent of ( W'}. The colluded fingerprint can he 
rewritten as W'""d"eg - - W""'B,+W"""(l-B,), where& 
is a Bernoulli random variable with parameterp and is independent 
of { Wi]. Thus the mth moment (m = 1 , 2 ,  . . . ) of W'""d""9 W' 
and of W'""d"" are 

E[(W'Y"dne'W')m] = E I E [ ( W ~ ~ " d - ~ g W i ) m I ~ ~ ] ]  
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= 

= p ~ E [ ( W m i n ) ' " ] + ( l - p ) ~ E [ ( W m o Z ) " ' ] ~  (9) 

p .  E[(W'""W')'"] + (1 - p )  . E[(W"""W')*], 
and E[(WTa'-d-% ) ,* ] = E[E((W'"''d"'g 1 1&11 

from which we can calculate E [g({Wk}k,~,)Wi] and U $ .  

3.2. Analysis of P d  and Pfp 

From the analysis of E [ p ]  in the previous section, Z' can be ap- 
proximated with the following distribution: 

if i SC, 
N (  f LV?3 log w c f  i E Sc, 

where E[p] = E[s({Wk}i,sC)Wi]/Ju$u$. (101 

Let us define f i z a f m l o g  m. Among the M statistics 
{Z'}:',. K of them are normally distributed with N ( p z .  1) and 
the others are normally distributed with N(0,l). If they are un- 
correlated with each other or the correlation is very small, for a 
given threshold h, P d  and Pfp can be approximated with 

K 
P d  = P[max Zi > h] zz 1 - (1 - Q(h ~ p z ) )  

% t S C  

4 S C  
and Pfp = P [ m a x Z Z > h ] z z l - ( l - & ( h ) ) M - K ~ I l j  

where Q(c)  = Jzm & e - i t 2 d t  is the Gaussian tail function 

Our numerical results show that for a given number ofcollud- 
ers K ,  E[g({W'}~,s,)CV'] of different collusion attacks are the 
same and equal to u & / K .  Different collusion attacks have dif- 
ferent U $ ,  as shown in Figure 1: the randomized negative attack 
has much larger variance than the other attacks, especially when 
the number of colluders is large; the modified negative attack has 
the second largest variance followed by the minimum and max- 
imum attacks; the variances of the average, median and MinMax 
attacks are similar and the smallest. Consequently, from our analy- 
sis on E [ p ] ,  p d  and Pfp, the average, median and MinMax attacks 
are the least efficient attacks followed by the minimum, maximum 
and modified negative attacks. The randomized negative attack is 
the most effective attack. Our simulation results shown in Figure 
2(a) agree with the analysis. Therefore, from the colluder's point 
of view, the best strategy for them is to choose the randomized 
negative attack. 

So far we have studied the detection performance of the Z 
statistic under different collusion attacks. As to the perceptual 
quality, Figure 3 shows MSEJNDIN of different collusion at- 
tacks with i.i.d. N(0, $) fingerprints. We can show that the min- 
imum. maximum and randomized negative attacks yield the same 
M S E J N D .  As we can see from Figure 3, although the random- 
ized negative attacks is more effective than other attacks studied, it 
also introduces much larger distortion than JND, which is propor- 
tional to the number of colluders. This is because the fingerprinted 
signal is not bounded and in fact, such unbounded fingerprint can 
introduce noticeable distortions even without collusion. 

3.3. Analysis of M S E J N D  

For our digital fingerprinting and collusion attack model, given 
the collusion attack q ( . )  and the number of colluders K ,  if the col- 

5. BOUNDED GAUSSIAN FINGERPRINTS 

In order to achieve both robustness and imperceptibility ofthe fin- 
~~ 

gerprints, one possible solution for designers is to decrease U$.  
luded fingerprintg(jWk}kts,) has the pdf fP,K(W),  then M S E J N D  However. decreasing uf means reducing the energy of the embed- 
can be simplified as: 

4. UNBOUNDED GAUSSIAN FINGERPRINTS 

It was shown in [ I ]  that uniformly distributed fingerprints can be 
easily defeated by nonlinear collusion attacks. The simulation re- 
sults showed that Gaussian fingerprints are more resistant to non- 
linear collusion attacks than uniform fingerprints. However, anal- 
ysis on the resistance of Gaussian fingerprints to nonlinear col- 
lusion attacks was not provided. In this section, we study the 
performance of unbounded Gaussian fingerprints. Assume that 
fingerprints {W;} are generated from i.i.d. normal distribution 
N(0, U&). Usually we take uw zz 5 because it is required that 
almost all fingerprints (e.g., 2 99.9%) are in the range of [-I, I] 
and do not introduce perceptual distortion. For the randomized 
negative attack, we take p = 0.5 for the Bernoulli random variable 
B, and assume that it is independent of { W;}. 

Given the analysis in the previous section, we first calculate 
E[g({W'}rSs,)W'J and U$ for Gaussian fingerprints. Since 
there are terms of Q (.) in the pdf (4) and the joint pdfs (5)(8j, 
analytical expressions are not available for the integration. We use 
recursive adaptive Simpson quadrature [71 to numerically evaluate 
the integrals with an absolute error tolerance of 

- - .. I. 
ded fingerprints, so the fingerprints are more vulnerable to attacks. 
In order to remove the perceptual distortion without reducing the 
energy of the embedded fingerprints, we introduce the bounded 
Gaussian fingerprints and study their performance under collusion. 

Assume that fx (.) and F,y(.) are the pdf and cdf of a Faus- 
sian random variable with zero mean and variance OF,, respec- 
tively. The pdf of a hounded Gaussian distribution f; (.) is: 

It is easy to show that fingerprints following pdf ( I  3 )  has zero mean 
and variance U&. and &fSE.i,vD = 0 for fingerprinted copies, 
i.e., the fingerprints introduce no perceptual distortion. By bound- 
ing the fingerprints in the range of [-1, I ] ,  we maintain the energy 
of the embedded fingerprints while achieving the imperceptibility, 

For the bounded Gaussian fingerprints having distribution (l3), 
the analysis of the Z statistics under different attacks is similar to 
the unbounded Gaussian case and is not repeated here. The simu- 
lation results for bounded Gaussian fingerprints are shown in Fig- 
ure 2(bj. From Figure 2(bj, we find that the randomized negative 
attack is still the most effective attack followed by the modified 
negative attack; all the other attacks have similar performance. 

Since the original fingerprints are bounded by JND, all attacks 
have M S E J N D  = 0. As a consequence, none of the attacks stud- 
ied introduce perceptual distortion in the case of bounded finger- 
prints. Therefore, the colluders can choose the most effective at- 
tack without worrying about the perceptual quality. 
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6. CONCLUSIONS 

In this paper, we have studied the resistance of independent Gaus- 
sian fingerprints to both average and nonlinear collusion attacks. 
We have also introduced the bounded Gaussian fingerprints to re- 
move the perceptual distortion introduced by the unbounded Gaus- 
sian fingerprints. Based on both our analytical and simulation re- 
sults, we have found that the randomired negative attack is the 
most efficient attack against both unbounded and bounded Gaus- 
sian fingerprints. In the former case, perceivable distortion may 
exist in the fingerprinted signals even when without collusion, and 
the randomized negative attack can introduce larger distortion, thus 
the colluders may prefer not to choose the randomized negative 
attack if imperceptibility is required. In the latter case, both the 
designers and the attackers do not introduce perceptual distortion, 
and the attackers can choose the most effective attack without per- 
ceptual concerns. Therefore, designers of fingerprinting systems 
should address the tradeoff between the robustness against collu- 
sion attacks and the perceptual quality of the fingerprinted copies. 
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Fig. 1. a$ of different attacks on unbounded Gaussian fingerprints 
with a?, = 119. 

"te5ldCdWS 

(a) Unbounded Gaussian fingerprints 
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(b) Bounded Gaussian fingerprints 

Fig. 2. P d  of different attacks with U& = 1/9 and fixed Pip = 
lor3.  Assume that there are a total of M = 100 users and the host 
image has N = lo4 emheddable coefficients. Results are based 
on 2000 simulations. Simulation results on real images have the 
same tendency and therefore are not shown here. 
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Fig. 3. M S E J N D  of different attacks on unbounded Gaussian 
fingerprints with U& = 119. 
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