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Abstract—This paper considers the cooperative maximization
of mutual information in the MIMO Gaussian interference chan-
nel in a fully distributed manner via game theory. Null shaping
constraints are enforced in the design of transmit covariance
matrices to enable interference mitigation among links. The
transmit covariance matrices leading to the Nash Equilibrium
(NE) are derived, and the existence and uniqueness of the NE is
analyzed. The formation of the cooperative sets, that represent the
cooperation relationship among links, is considered as network
formation games. We prove that the proposed network formation
(NF) algorithm converges to a Nash Equilibrium. Simulation
results show that the proposed NF algorithm enhances the sum
rate of the system apparently even at low signal-to-noise ratio
region and/or with small number of transmit antennas.

I. INTRODUCTION

The multiple-input multiple-out (MIMO) interference chan-
nel [1] is a mathematical model applicable to many com-
munication systems where multiple links share the same
communication medium. Two typical examples are the MIMO
cellular systems and the MIMO ad hoc network. In this model,
cross link interference greatly impacts the transmission rate,
and thus, how to suppress/cancel it is crucial.

Recently, distributed precoding matrix design in the MIMO
interference systems has drawn great attentions. One way
to deal with this problem is to employ interference align-
ment (IA) [2-4]. However, IA-based approach requires global
channel state information (CSI), which is hard to acquire
in practice. Another avenue to deal with the problem is the
game-theoretic approach [5-12]. Scutari et al [5][6] formulated
the problem as a non-cooperative game, designed an iterative
waterfilling (IWF) algorithm, and analyzed the existence and
uniqueness of the Nash Equilibrium (NE). This IWF algorithm
requires no cross-link CSI and is easy to implement, but the
efficiency of the NE is restricted due to the selfishness of the
players and the lack of interference coordination. A simple
way to improve the efficiency of the NE is to introduce pricing
[7] for interference management[8][9]. Cooperative games can
also be used to formulate interference coordination. Ye et al
[10] designed a practical suboptimal algorithm for finding
the Nash Bargaining (NB) solution in MIMO interference
system. In [11], Ho et al designed the precoding vectors by
combining egostic and altruistic beamforming vectors. This
idea has been shown to achieve pareto boundary in two-player
MISO interference systems [12]. The Pareto boundary for

multi-player MIMO interference channels was characterized
in [13].

Unlike the above works, we consider a new approach of
interference coordination, where null shaping constraints are
enforced in the design of transmit covariance matrices to
enable interference mitigation among different links. In [14],
the null shaping constraints are used in cognitive radio scenario
to limit the interference of secondary users to the primary users
unrequitedly, without cooperation among themselves. In our
work, the null shaping constraints are imposed multilaterally.
For each transceiver, there is a pair of outgoing cooperative
set and incoming cooperative set, which stands for the links
alleviating interference to this link and the links profiting from
null shaping constraints enforced on this link, respectively.

In this paper, we first formulate the rate maximization prob-
lem as a cooperative game by fixing the outgoing cooperative
set and incoming cooperative set. Then the solution leading to
the NE is derived, and the uniqueness and existence of the NE
is analyzed. Thirdly, we formulate the formation of cooperative
sets as network formation games [15], provide correspond-
ing algorithm and investigate the stability of the proposed
algorithm. Simulation results show that the game with null
shaping constraints among links improves the probability of
uniqueness of the NE, compared to the non-cooperative game.
The proposed network formation algorithm improves the sum
rate of the system significantly even at low SNR region and/or
with small number of transmit antennas.

The rest of this paper is outlined as follows. Section II
reviews the noncooperative rate maximization game in MIMO
interference systems. In Section III, we present the cooperative
multi-link MIMO transmission with transmitter null shaping,
derive the solution leading to NE, and investigate the condition
of the uniqueness and existence of the NE. In Section IV, we
model the problem of cooperative sets formation as network
formation games, and propose distributed algorithm for it.
Simulation results are demonstrated and analyzed in Section
V. Finally, concluding remarks are given in Section VI.

II. NONCOOPERATIVE RATE MAXIMIZATION
GAME

We consider a vector Gaussian interference channel com-
prising K MIMO links that share the same physical resources.
In link q, the transmitter and receiver are equipped with nTq
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and nRq
antennas respectively. The transmission over link q

can be described by the baseband signal model

yq = Hqqxq +
∑
r �=q

Hrqxr + nq, (1)

where xq ∈ C
nTq×1 is the transmitted signal vector by

source q, nq ∈ C
nRq×1 is a zero-mean circularly symmetric

complex Gaussian noise vector with nonsingular covariance
matrix Rnq

. Hqq ∈ C
nRq×nTq is the channel matrix of link q,

Hrq ∈ C
nRq×nTr is the cross-channel matrix between source

r and destination q. We assume that Hrq ∼ CN (0, η2
rqI)

(r, q ∈ {1, 2, .., K}) with ηrq =
√

κ/dα
rq, where κ is the

path loss constant, drq is the distance between transmitter r
and receiver q, and α is the path loss exponent.

The second term in the right handside of (1),
∑
r �=q

Hrqxr,

represents the co-channel interference received by qth des-
tination. We assume that the co-channel interference from
other links to destination q is unknown and treated as noise.
We assume the slow fading channels, i.e., the channels are
fixed during a symbol transmission. Moreover, we assume
perfect CSI at both transmitter and receiver sides, and each
receiver can perfectly measure the covariance matrix of the
noise together with co-channel interference generated by other
links.

With the above assumption, the maximum information rate
on link q can be expressed as [1]:

Rq(Qq,Q−q) = log det(I + HH
qqR

−1
−q(Q−q)HqqQq), (2)

where Qq = E[xqx
H
q ] is the Hermitian positive semi-definite

(PSD) transmit covariance matrix of the transmitted vector xq ,
i.e. Qq � 0, and

R−q(Q−q) = Rnq
+

∑
r �=q

HrqQrH
H
rq (3)

is the interference-plus-noise covariance matrix observed by
user q, Q−q � (Qr)r �=q is the set of all links’ covariance
matrices by removing the link q. The transmission of each
link is power limited, i.e.,

Tr(Qq) � Pq. (4)

Given the above setup, the problem can be formulated as a
strategic noncooperative game:

(G) :
max
Qq

Rq(Qq,Q−q)

s.t. Qq ∈ Qq

∀q ∈ Ω (5)

where Ω � {1, .., K} is the set of players (i.e., the links),
Rq(Qq,Q−q) is the payoff function of play q defined in (2),
and Qq is the set of valid strategies (the covariance matrices)
of player q, defined as

Qq � {Q ∈ C
nTq×nTq : Q � 0, Tr(Q) � Pq}. (6)

In the non-cooperative game G, each player competes with
each other selfishly by choosing his strategy, the transmit
covariance matrix Qq, to maximize his own information rate

Rq(Qq,Q−q) defined in (2), subject to the average transmit
power constraint in (4). A Nash Equilibrium is reached when
each user, given the strategy profiles of others, does not get
any rate increase by unilaterally changing his own strategy[7].
The transmit covariance matrix leading to the NE can be found
via IWF as [5][6]:

Q�
q = Uq(μqI − D−1

q )+UH
q , (7)

where UqDqU
H
q = HH

qqR
−1
−q(Q−q)Hqq is the eigenvalue de-

composition (EVD) of HH
qqR

−1
−q(Q−q)Hqq , Uq is the unitary

matrix of eigenvectors, Dq is a diagonal matrix of eigenvalues,
and μq denotes the power level given by IWF.

III. MULTI-LINK MIMO TRANSMISSION WITH
TRANSMITTER NULL SHAPING

The strength of desired signal and noise plus cross-link
interference are the two main factors affacting the transmission
rate. In the non-cooperative game G, players choose their
strategies by maximizing the useful signal power, without
considering the cross-link interference, due to which the trans-
mission rate is impaired. To further improve the performance
in MIMO interference channel system, we propose a new
cooperative game based approach in this paper, where null
shaping constraints are enforced in the design of transmit
covariance matrices.

A. Problem Formulation
Let Cq be the incoming cooperative set of links that elimi-

nate co-channel interference to link q, and Nq be the outgoing
cooperative set of links that profit from null shaping constraints
imposed on link q. To enable the interference cancelation at
the transmitter q, the number of antennas should satisfy∑

r∈Nq

nRr
+ nRq

� nTq
. (8)

Given the cooperative sets Cq and Nq for each player, the
maximum information rate on link q can be expressed as

Rc
q(Qq(Nq),Q−Cq

) =

log det(I + HH
qqR

−1
−Cq

(Q−Cq
)HqqQq(Nq)),

(9)

where

R−Cq
(Q−Cq

) = Rnq
+

∑
r �∈Cq

HrqQrH
H
rq (10)

is the interference-plus-noise covariance matrix observed by
user q, Q−Cq

� (Qr)r �∈Cq
is the set of covariance matrices

of links that is not in Cq. Compared to (2), the source of
interferers diminishes with cost of sacrificing spatial degrees
of freedom to help others.

The valid strategies set of player q through cooperation is
defined as

Qc
q � {Q ∈ C

nTq×nTq : Q � 0, Tr(Q) � Pq,

HqrQHH
qr = 0, ∀r ∈ Nq}.

(11)

Compared to the valid strategies set of non-cooperative game
in (6), additional null constraints corresponding to set Nq are
enforced in (11).
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Given the rate function in (9) and the constraints in (11),
the cooperative transmission problem can be formulated as a
cooperative game:

(Gc) :
max
Qq

Rc
q(Qq(Nq),Q−Cq

)

s.t. Qq ∈ Qc
q

∀q ∈ Ω (12)

In the cooperative game Gc, the player cooperates with
each other by canceling the interference to other links, due to
which all players benefit from interference mitigation among
links. The player chooses the transmit covariance matrix Qq

by maximizing his own information rate Rc
q(Qq,Q−q) with

the null shaping constraints.

B. NE of the Cooperative Game Gc

To investigate the Nash equilibria of the proposed coop-
erative game Gc, we first introduce some notations. Let U⊥

r

be the semi-unitary matrix generated from the null shaping
constraint at transmitter r, and H̃rq = HrqU

⊥
r be the modified

channel from transmitter r to receiver q. The Nash equilibria
of the proposed cooperative game Gc is shown in the following
theorem.
Theorem 1 : All the Nash equilibria of the cooperative game

Gc are the solutions to the following fixed-point equations:

Qc�
q = U⊥

q Ũq(μ̃qI − D̃−1
q )+ŨH

q U⊥H
q , ∀q ∈ Ω (13)

where ŨqD̃qŨ
H
q = H̃H

qqR
−1
−Cq

(Q−Cq
)H̃qq is the eigenvalue

decomposition. Ũq is the unitary matrix of eigenvectors, D̃q

is a diagonal matrix of eigenvalues, and μ̃q denotes the power
level given by IWF.

Proof: Denote HqNq
= [HT

ql1
, ..,HT

ql|Nq|
]T , li ∈ Nq as

the aggregated channel matrix of links in set Nq . Transmitter q
does not cause interference to the links in set Nq , which means
that Qq lies in the null space of HqNq

, i.e., HqNq
Qq = 0.

Thus all the solutions to (12) can be written as

Qc�
q = U⊥

q Q̃c�
q U⊥H

q , (14)

where U⊥
q ∈ C

nTq×r
U⊥

q is the semi-unitary matrix orthogonal
to HqNq

, with rU⊥
q

� rank(U⊥
q ) = nTq

− r(HqNq
), {Q̃c�

q ∈

C
r
U⊥

q
×r

U⊥
q } are the Nash Equilibria of the following lower-

dimensional game

max
Q̃q�0

log det(I + U⊥H
q HH

qqR̃
−1
−Cq

(Q̃−Cq
)HqqU

⊥
q Q̃q(Nq))

s.t. Tr(Q̃q) � Pq

(15)
for all q ∈ Ω, where

R̃−Cq
(Q̃−Cq

) = R−Cq
(Q−Cq

)

= Rnq
+

∑
r �∈Cq

HrqU
⊥
r Q̃rU

⊥H
r HH

rq.
(16)

The solutions to (15) are the fixed-points of the following
nonlinear equations[5][6]:

Q̃c�
q = Ũq(μ̃qI− D̃−1

q )+ŨH
q , ∀q ∈ Ω (17)

where ŨqD̃qŨ
H
q = U⊥H

q HH
qqR̃

−1
−Cq

(Q̃−Cq
)HqqU

⊥
q is the

eigenvalue decomposition. Ũq is the unitary matrix of eigen-
vectors, D̃q is a diagonal matrix of eigenvalues, and μ̃ denotes
the power level given by IWF. Substituting (17) into (14), leads
to the desired structure in (13).

Here, we show an approach to obtain U⊥
q . Perform singular

value decomposition of HqNq
= UqNq

DqNq
VH

qNq
. Since

HqNq
is a fat matrix, there are at least (nTq

−
∑

li∈Nq
nRli

)
zero singular values. The right singular matrix VqNq

is com-
posed of two parts VqNq

= [Ve
qNq

,V0
qNq

], where Ve
qNq

∈

C
nTq×r(HqNq ) is made up of the right singular vectors as-

sociated with non-zero singular values. Denote H⊥
qNq

=

I−Ve
qNq

VeH
qNq

as the orthogonal projection of matrix HqNq
,

i.e. its column vectors spans the null space of HqNq
. To

obtain the unitary matrix associated with H⊥
qNq

, eigenvalue
decomposition is performed

UqGDqGUH
qG = (I − Ve

qNq
VeH

qNq
)H(I− Ve

qNq
VeH

qNq
), (18)

where UqG is the unitary matrix associated with H⊥
qNq

, and
U⊥

q is composed of eigenvectors corresponding to the largest
nRq

eigenvalues, i.e., the first nRq
columns of unitary matrix

UqG.

C. Conditions for the Existence and Uniqueness of the NE

In this subsection, we analyze the existence and uniqueness
of the NE of the cooperative game Gc.
Theorem 2 (Existence): In the cooperative game Gc, there

always exists a NE, for any given cooperative sets, channel
matrices and power constraints.

Proof: In game Gc, the payoff functions is quasi-concave
and the valid strategy sets are convex compact, thus there
always exists a NE for any modified channel matrices and
power constraints [6].

To analyze the condition for the uniqueness of the NE of
the cooperative game Gc, we introduce a nonnegative matrix
Sc ∈ CK×K as follows

[Sc]qr �

{
ρ(H̃H

rqH̃
−H
qq H̃−1

qq H̃rq),

0,

if r �= q

otherwise
(19)

where ρ(A) is the spectral radius of a matrix A. With the
matrix Sc in (19), we can obtain sufficient conditions for the
uniqueness of the NE of the proposed cooperative game Gc as
shown in the following theorem.
Theorem 3 (Uniqueness): The NE of the cooperative game

Gc is unique if
ρ(Sc) < 1 (20)

Proof: A sufficient condition for the uniqueness of the
NE is that the mapping is contraction with regards to some
norm [16, Prop.1.1(a)]. Applying the Theorem 5-6 in [6], we
can obtain the sufficient conditions for the uniqueness of NE
of Gc as in (20).
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IV. COOPERATIVE SETS FORMATION USING
NETWORK FORMATION GAMES

In previous section, we discuss the formulation and prop-
erties of the proposed cooperative game when the cooperative
sets are given. However, how to acquire the cooperative set is
very important. In this section, we formulate the cooperative
set formation as network formation games, and design the
corresponding distributed algorithm.

We first introduce some basic concepts of network formation
games. A directed graph GD(S) is defined to be a pair
(S, AD), where S is a non-empty finite set of vertices, and
AD is a collection of directed arcs of the graph. Let aqr be a
directed arc from vertex q to vertex r. The set of incoming arcs
of vertex q is defined as Ain

q = {arq ∈ AD|r ∈ S, q ∈ S},
and the set of outing arcs of vertex q is defined as Aout

q =
{aqr ∈ AD|r ∈ S, q ∈ S}. Denote AD

q = Ain
q ∪ Aout

q as
the directed arcs of vertex q. The set of vertices that are
origins/destinations of the incoming/outgoing arcs of vertex
q is denoted as vtx(Ain

q ) and vtx(Aout
q ) respectively.

The set of possible outgoing arcs from vertex q to other
vertices is denoted as Āout

q = {aqr|r ∈ S, q ∈ S}, while the
set of possible incoming arcs from other vertices to vertex q is
denoted as Āin

q = {arq|r ∈ S, q ∈ S}. The set of all possible
directed arcs between vertex q and other vertices is denoted
as ĀD

q = Āin
q ∪ Āq .

Given a directed graph GD = (Ω, AD), we denote xq(G
D)

as the payoff that player q ∈ Ω can receive when graph GD

is in place. The value set, i.e., the mapping V , can be defined
as follows:

V (GD) = {x(GD) ∈ R
|Ω| | ∀q ∈ Ω, xq(G

D) = vq(A
D)}

(21)
where vq(A

D) is given by

vq(A
D) = Rc

q(Qq(vtx(Aout
q )),Q−vtx(Ain

q )) (22)

Using (21), the cooperative set formation can be modeled
as a (Ω, AD, V ) network formation game. With such a formu-
lation, the outgoing cooperative set Nq = vtx(Aout

q ), and the
incoming cooperative set Cq = vtx(Ain

q ).
In order to present a network formation algorithm, we

borrow the concept of potential function from [17]: An exact
potential function Φ is a function that maps every strategy
vector s = (s1, s2, .., sM ) to some real value and satisfies the
following conditions: If s′q �= sq is an alternate strategy for
player q, and s′ = (s−q, s

′
q), then φ(s)−φ(s′) = vq(s)−vq(s

′).
This definition implies that each player’s individual interest

is aligned with the group’s interest, since each change in the
utility function of each player directly represents the same
change in the potential function. If players act sequentially,
and choose best response strategies or at least improve their
utilities (better response strategies), given the most recent
actions of the other players, then the game will converge to a
NE regardless of the order of players and the initial condition
of the game [17].

Algorithm 1
The proposed NF algorithm
Initial State

At the beginning, the network starts with noncooperative
state, AD

init = ∅.
Phase 1 Neighbor Discovery:

Each player detects its strongest interferers and marks them.
Phase 2 Network Formation:
repeat

Each player q investigates potential change of incoming
arcs by checking the value of potential function in (23).
Once the value is improved:

a) Player q updates its set of incoming arcs Ain
q .

b) Related players update their sets of outgoing
arcs Aout

r .
until converges to a Nash Equilibrium.
{Nq} = {vtx(Aout

q )}, {Cq} = {vtx(Ain
q )}.

Phase 3 MIMO Transmission with Transmitter Null
Shaping:

Transmit covariance matrices are designed by the
cooperative game Gc with the cooperative sets {Nq} and
{Cq} formed in Phase 2.

Define the potential function φq as

φq(A
′D
q , A′D

−q) = vq(A
′D
q , A′D

−q)

−
∑
r �=q

(
vr(A

D
q , AD

−q) − vr(A
′D
q , A′D

−q)
)
.

(23)
This expression reflects the intention to maximize the player’s
own payoff, but subtracting the potential negative effect over
other players.

Now, we propose a network formation (NF) algorithm
composed of three phases: neighbor discovery, network for-
mation with potential function, and MIMO transmission with
transmitter null shaping. In Phase 1, each player discovers its
strongest interferers who it may send interference mitigation
requests to. Then in Phase 2, each player investigates the
possibility of changing its set of directed arcs by pairwise
negotiation with the rest of players. Once its potential function
in (23) is improved (better response strategy), a distributed
decision is made to update its set of directed arcs with the
consent of the related players. We assume that players perform
directed arcs modification sequentially with random orders.
For simplicity and without loss of generality, we assume that
each player only investigates the possibility of changing its
incoming arcs in its turn. Finally, in Phase 3, players transmit
data cooperatively in MIMO interference channel, imposing
null shaping constraints formed in Phase 2 on the transmitters.

According to the conclusion of potential game in [18, Th
19.11-19.12], the proposed network formation algorithm is
guaranteed to converge as shown in the following theorem.
Theorem 4: The proposed network formation algorithm

always converges to a pure Nash Equilibrium with any initial
graph and operation order.
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Fig. 1. Snapshot of cooperative sets formation resulting from GCG and pro-
posed NF algorithms with (nTq

, nRq
) = (6, 2), d = 0.8 and P/σ2 = 10dB.

TABLE I
AVERAGE LINK RATE

Algorithm NF GCG IWF
Rate Per Link 3.9175 3.8707 3.1962

V. SIMULATION RESULTS AND ANALYSIS
For simulation, we consider a MIMO mutil-cell cellular

network, consisting seven hexagonal cells, with full frequency
reuse. In each cell, there is one base station (BS) and one
user equipment (UE). Each UE is randomly distributed with
the normalized distance d ∈ [0.2, 1) to its serving BS. The
distance between two adjacent BS is 1km. The elements of
the channel matrix Hrq are generated as circularly symmet-
ric complex Gaussian variable. Hrq ∼ CN (0, η2

rqI), with
ηrq =

√
1/dα

rq, and the path loss exponent α = 3.
In Fig. 1, we randomly deploy the users with the normalized

distance d = 0.8, the number of transmit/receiver antennas is
(nTq

, nRq
) = (6, 2) and P/σ2 = 10dB. Fig. 1 shows the

features of the proposed NF algorithms. The cooperative sets
generated from the proposed NF algorithm can be interpreted
as a directed graph. Grand cooperative graph (GCG) repre-
sents the most altruistic cooperation, where players accept as
many interference mitigation requests as they can support,
i.e. condition (8) is satisfied. The GCG is shown here as a
reference, since the cooperative sets formed by the proposed
NF algorithm are a subset of that of GCG. Table 1 displays
the average transmission rates using different algorithms. The
proposed NF algorithm achieves higher average rate than that
of IWF, since interference mitigation are performed in the
network.

In Fig. 2, we compare the probability of the uniqueness of
the NE of noncooperative game G and cooperative game Gc.
We simulate different numbers of the transmit/receiver anten-
nas (nTq

, nRq
) = {(4, 2), (6, 2), (8, 2)}, with P/σ2 = 5dB.

Here, we use the simplest GCG to represent the cooperative
game. As shown in Fig. 2, the probability of uniqueness of
the NE of both games G and Gc with GCG decreases as UE
are away from the BS, corresponding to an increase of inter-
cell interference. This confirms to the definition of matrix S

in (19) and the sufficient condition for the uniqueness of the
NE given in Theorem 3. Fig. 2 also shows that, increasing the
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Fig. 2. Probability of uniqueness of the NE of noncooperative G and cooper-
ative Gc with grand cooperative graph, (nTq

, nRq
) = {(4, 2), (6, 2), (8, 2)}

and P/σ2 = 5dB.
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Fig. 3. Average rate of the IWF, GCG and NF algorithms with regard to
different P/σ2. (nTq

, nRq
) = {(4, 2), (8, 2)} and d = 0.7.

antennas at the transmitter side leads to a grow of uniqueness.
The cooperative game Gc with GCG has higher probability of
uniqueness of NE, compared to the noncooperative game G,
since the power of interference channels are weakened due to
cross-link cooperation. The probability difference grows with
the number of antennas at the transmitter, since more spatial
degrees of freedom are available for interference mitigation.

In Fig. 3, we show the average rate achieved per link
with regard to different SNR (P/σ2) levels. The results are
averaged over random positions of UEs with normalized
distance d = 0.7 and random realization of the channel matrix.
As seen from Fig. 3, the average rates of all the proposed
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Fig. 4. Average rate of IWF, GCG and NF algorithms with regard to d
(inter-cell interference). (nTq

, nRq
) = {(8, 2), (4, 2)}, and P/σ2 = 5dB.

algorithms and IWF algorithm increase as P/σ2 grows and
finally reach their upper bounds. Increasing the antennas at
the transmitter leads to higher average rate for all algorithms.
When the number of antennas at the transmitter is 8, the simple
GCG scheme achieves almost the same rate as the proposed
NF algorithm. When the number of antennas at the transmitter
is 4, GCG scheme performs worse than IWF at low SNR
region. Fortunately, the proposed NF algorithm is apparently
superior to the IWF with the different SNR and numbers of
antennas at the transmit side.

In Fig. 4, we simulate the influence of strength of inter-
cell interference to the proposed algorithms at low SNR
(P/σ2 = 5dB). The results are averaged over random positions
of UEs with the normalized distance d varying form 0.6 to 1,
and random realization of the channel matrix. It is observed
that, the average transmission rate of IWF, GCG and NF
algorithms generally decrease as users are away from their
serving BSs. For the NF algorithm, there is an apparent rise
around d = 0.66, since cross-link cooperation is started. Then
the curves gradually go down but always have higher rate than
other algorithms. The GCG scheme approaches NF when the
antennas at the transmitter is 8, but is no superior to IWF when
the antennas at the transmitter is 4, and there is a sudden drop
near d = 1, due to excessive cooperation.

VI. CONCLUSION

In this paper, we consider the cooperative maximization
of mutual information in the MIMO Gaussian interference
channel via game theory. Null shaping constraints are en-
forced in the design of transmit covariance matrices to enable
interference mitigation among links. The transmit covariance
matrices leading to the NE are derived, and the existence and
uniqueness of the NE is analyzed. We define cooperative sets
to stand for the cooperation relationship among links, and the

formation of the cooperative sets is formulated as network
formation games. The proposed NF algorithm converges to a
Nash Equilibrium. Simulation results show that the proposed
NF algorithm enhances the sum rate of the system apparently
even at low SNR region and/or with small number of transmit
antennas.
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