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Abstract—The problem of representing timing information
associated with functions in a dataflow graph is considered. This
information is used for constraint analysis during behavioral
synthesis of appropriate architectures for implementing the graph.
Conventional models for timing suffer from shortcomings that
make it difficult to represent timing information in a hierarchical
manner for sequential and multirate systems. Some of these
shortcomings are identified, and an alternate timing model that
does not have these problems for hardware implementations is
provided.

We introduce the concept of timing pairs to model delay elements
in sequential and multirate circuits and show how this allows us to
derive hierarchical timing information for complex circuits. The
resulting compact representation of the timing information can be
used to streamline system performance analysis. In addition, sev-
eral analytical results that previously applied only to single rate
systems can now be extended to multirate systems.

We present an algorithm to compute the timing parameters
and have used this to compute timing parameters for a number
of benchmark circuits. The results obtained on several ISCAS
benchmark circuits as well as several multirate dataflow graphs
corresponding to useful signal processing applications are pre-
sented. These results show that the new representation model can
result in large reductions in the amount of information required
to represent timing for hierarchical systems.

Index Terms—Hierarchical dataflow graphs, high-level design,
iteration period, multirate DSP, timing analysis.

I. INTRODUCTION

EHAVIORAL synthesis refers to the task of constructing

an architecture and binding and scheduling an algorithm

that has been described in terms of the behavior of its constituent

elements at a high level of abstraction. It is part of the broader

field of high-level synthesis (HLS) and is often used to imple-
ment digital signal processing (DSP) applications.

DSP applications can be classified as single rate and multi-

rate, based on the sample rates of data flowing between the dif-
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ferent functional elements. For the purpose of analysis and mod-
eling, they are often represented using dataflow computation
models such as synchronous dataflow (SDF) [1]. This model
uses the concepts of consumption and production parameters,
which allow convenient representation of multiple sample rates.
A special case of SDF is the case of homogeneous graphs, where
production and consumption parameters on all edges are equal
to 1. This model has been widely used to study DSP graphs,
and several techniques have been developed for mapping graphs
represented in this model to both hardware and software ar-
chitectures [1]-[4]. Most analytical results that are known for
graph performance metrics have been derived for homogeneous
graphs.

For the purpose of system synthesis, we need to first ascer-
tain the functionality of the system, followed by timing and per-
formance analysis. For this timing analysis, it is necessary to
use a timing model to indicate how long the different compu-
tations will take. The conventional model for describing timing
in dataflow systems is derived from the method used in combi-
national logic analysis. Here, each vertex is assigned a “propa-
gation delay” value that is treated as the execution time of the
associated subsystem. That is, once all the inputs are provided
to the system, this propagation delay is the minimum amount of
time required to guarantee stable outputs.

An important requirement of a timing description is the
ability to represent systems hierarchically. For example, Fig. 1
shows the circuit of a full adder. By using the block model on
the right, we obtain a huge reduction in the size of the graph
representing a circuit containing full adders. In large systems,
the savings offered by using hierarchical representations are
essential to retaining tractability.

A major disadvantage of the conventional timing model is
that it does not allow a hierarchical description of iterative sys-
tems (containing delay elements) and multirate systems. Most
approaches to analyzing multirate SDF systems require trans-
forming them to the equivalent expanded homogeneous graph,
which is a potentially huge size increase.

Other models also exist that deal with the problem of synthesis
for multirate systems. Synchronous reactive systems [5] and
cyclostatic dataflow (CSDF) [6] provide more of a front-end
view of the problem: They deal with logical modeling of the
timing and are more concerned with verifying the functionality.
The RT-level model proposed in [3] provides an interesting
approach to the problem of multirate timing and interfacing
but requires a master clock that is potentially much faster than
any of the data rates in the system in order to synchronize the
interfaces. Models such as the processor timing data used in
[7] capture the effects of real system parameters and latency
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Fig. 1. (a) Full adder circuit. (b) Hierarchical block view.

for single rate systems, but they do not provide ways to take
advantage of skewed clock phases or multirate graphs directly.
The discrete-time domain in Ptolemy II [8] introduces the
concept of token time-lines, which helps to achieve greater
understandability and analyzability of SDF graphs but does not
provide the complete hierarchical timing analysis for which
we aim.

In this paper, we propose a different timing model that over-
comes these difficulties for dedicated hardware implementa-
tions of the dataflow graph. By introducing a slightly more com-
plex data structure that allows for multiple input—output paths
with differing numbers of delay elements, we are able to provide
a single timing model that can describe both purely combina-
tional and iterative systems. For purely combinational systems,
the model reduces to the existing combinational logic timing
model. For multirate systems, the new model allows a treatment
that is very similar to that for normal homogeneous systems,
while still allowing most important features of the multirate ex-
ecution to be represented. The model also allows analytical re-
sults for homogeneous systems to be applied to multirate sys-
tems. As an example, we derive an expression for the iteration
period bound of a multirate graph.

We have used our hierarchical timing model to compute
timing parameters of the ISCAS benchmarks, which are ho-
mogeneous systems. We have also used the model to compute
timing parameters of a number of multirate graphs used in
signal processing applications. The results show that the new
model can result in compact representations of fairly large
systems that can then be used as hierarchical subsystems of
larger graphs. These results show a large savings in complexity
by using the new approach.

In the next section, we discuss the requirements that a timing
model for dataflow systems must meet and examine some of
the shortcomings of the conventional model. Section III then
presents a new model that overcomes these defects and shows
how to compute the timing parameters according to our model.
Section IV describes the requirements of timing models for
multirate systems and shows how our model can be extended to
these systems. Section V presents results of applying the model
to several examples from signal processing and the ISCAS
benchmark circuits. Finally, we present our conclusions and
some interesting directions for further work.

Preliminary versions of the results in this paper were pub-
lished in [9] and [10] for the timing pair model and its extension
to multirate systems, respectively.
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II. REQUIREMENTS OF A TIMING MODEL FOR
HIERARCHICAL SYSTEMS

We focus on single-input single-output (SISO) systems. For
general multiple-input multiple-output (MIMO) systems, each
input/output pair can have different path lengths, resulting in dif-
ferent values for the longest combinational path between them.
We assume, as is common in models of timing, that buses and
other wide datapaths can be treated as single edges collapsed
into relatively few timing parameters. However, this assump-
tion is not fundamentally necessary, as we could equally well
consider a system where the timing pairs are computed for each
input—output pair. More accurate “bit-level” timing models can,
if necessary, be implemented with the same basic constructs we
propose.

One major difference between the model used in dataflow
scheduling and in circuit level timing regards the treatment of
delays on edges. In sequential circuits, the most common policy
is to treat all delays as flip-flops that are triggered on a common
clock edge. In high-level scheduling, we assume no such restric-
tion on the timing of delays [11]-[14]. Each functional unit can
be started at any time and signals its completion using some
means. Because of this, as shown in Fig. 2, a signal applied to
a dataflow graph can ripple through the graph much faster if
appropriate phase shifts are used to trigger the flip-flops on the
edges. This is because, in general, the propagation times through
different elements can differ quite a bit from one another, but a
single-phase clock has to take into account the worst-case value.
As mentioned before, this assumption is common in high-level
synthesis.

A. Timing Equivalence

We now try to clarify what is implied when we say that two
descriptions of a system are equivalent for timing. Note that
we are not trying to define the equivalence of circuits in the
general case, as this is a considerably more complex problem.
Our model also does not provide a general way to compute the
timing behavior of a circuit: It assumes that there is some known
way of computing the timing information for basic blocks and
provides a way to combine these to get the timing information
for hierarchical blocks (that may contain sequential elements).

The timing information associated with a block is used pri-
marily for the purpose of establishing constraints on the earliest
time that the successors of the block can start operating (i.e.,
when its outputs are ready and stable), that is, the edges of the
dataflow graph imply the existence of constraints on the earliest
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Fig. 3. Timing of complex blocks.
time that a given vertex can obtain all its inputs and start exe-
cuting its function.

Using these constraints, additional metrics can be obtained
relating to the throughput and latency of the system. These con-
straints are used to determine the feasibility of different sched-
ules of the system, where a schedule consists of an ordering of
the vertices on processing resources. An important metric of this
kind is the iteration period bound [15], which is the minimum
time within which the graph can complete a full cycle of exe-
cution. For homogeneous SDF graphs, this bound is known to
be equal to the maximum cycle mean (MCM) of the graph (the
maximum over all cycles of the sum of execution times of the
vertices divided by the total number of delays on the cycle).

III. HIERARCHICAL TIMING PAIR MODEL

Having identified the requirements of a timing model and the
shortcomings of the existing model, we can now use Fig. 3 to il-
lustrate the ideas behind the new model for timing. In this figure,
we use t; to refer to the propagation delay of block ¢ and z; to
refer to the start time of the block. We use 71" to denote the iter-
ation interval (clock period for the delay elements).

To provide timing information for a complex block, we
should be able to emulate the timing characteristics that this
block would imply between its input and output. To clarify
this idea, consider the block in Fig. 3. If we were to write the
constraints in terms of the internal blocks z; and xz,, we would
obtain

r; — I Zth (1)
J?o—JZiZti—lXT (2)
T2 — To Zto- (3)

Note that the second constraint equation in the list above has
the term (—1 x 7T') because of the delay element on the edge.
Because of this delay, the actor at the output of the edge actu-
ally has a dependency on the sample produced in the previous
iteration period rather than the current one. This fact is captured
by the constraint as shown.

We can combine and rewrite these constraints as follows:

LL’b—LL’thl, (4)
To—xp 2t +t, —1xT. 5)

In other words, if we assume that the execution time of the block
B is given by the expression t; +t, — 1 X T, we can formulate
constraints that exactly simulate the effect of the complex block
B.

In general, consider a path from input v; = v; to output v, =

vy, through vertices {vy,..., v} given by p : v1 — vo —
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Fig. 4. Second-order filter section.

- — v, with edges e; : v; — wv;y1. Let ¢; be the execution
time (propagation delay assuming it is a simple combinational
block) of v;, and let d; be the number of delays on edge e;. Now,
we can define the constraint time of this path as

k k—1
tc(p)zzti—TXZdj. (6)
1=1 Jj=1

We use the term “constraint time” to refer to this quantity
because it is in some sense very similar to the notion of the
execution time of the entire path but at the same time is relevant
only within the context of the constraint system it is used to
build. The term c,, is used to refer to the sum Zle t;, and m,,
refers to the sum Zf;ll d;. The ordered pair (m, ¢p) is referred
to as a timing pair.

We therefore see that by using the pair (m,, c,) (in the ex-
ample of Fig. 3, ¢, = t; +t, and m, = 1), we can derive the
constraints for the system without needing to know the internal
construction of B. The constraint time associated with the com-
plex block B is now given by

te(B) =cp —mp x T. @)

The intuition behind constraint time is that if we have a SISO
system with an input data stream 2:(n) and an output data stream
y(n) = 0.5 x x(n — 1), the constraint time through the system
is the time difference between the arrival of 2:(0) on the input
edge and the appearance of y(0) on the corresponding output
edge. This is very similar to the definition of pairwise latencies
in [16]. It is obvious that y(0) can appear on its edge before
x(0) since y(0) depends only on z(—1), which (if we assume
that the periodicity of the data extends backward as well as for-
ward) would have appeared exactly 7' time-units before (0).
Therefore, the constraint time through this system is (¢, — 1),
where t,,, is the propagation delay of the unit doing the multi-
plication by 0.5, and T’ is the iteration period of the data on the
system.

We now need to extend the timing pair model to handle mul-
tiple input-output (I-O) paths, as seen in Fig. 4, which shows
a second-order filter section [12]. Here, P; and P» are distinct
I-O paths. Let the execution time for all multipliers be two time
units and, for adders, one time unit, except for Az, which has
an execution time of two time units. In this case, for an itera-
tion period T € [3,4], P is the dominant path, whereas for
T > 4, P is the dominant path. Therefore, we now need to
store both these (1m,,, ¢, ) values. We therefore end up with a list
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Fig. 5. Constraint time as a function of the system clock is governed by the
timing pair list.

of timing pairs. The actual constraint time of the overall system
can then be readily computed by traversing this list to find the
maximum path constraint time. The size of the list is bounded
above by the number of delays in the system (| D]).

Fig. 5 shows an example of how the constraint time of a
system with multiple paths between input and output varies as a
function of the system clock. The final constraint time, which is
the only relevant figure as far as constraint analysis of the block
is concerned, is given by the piecewise linear function indicated
by the solid line in the figure.

Note that in addition to the timing pairs, we also need to
specify a minimum clock period for which the system is valid,
that is, just specifying the timing pairs could result in the erro-
neous impression that the system can execute at any clock pe-
riod. In reality, the minimum period for the system depends on
the internal minimum iteration bound of the hierarchical sub-
system, or it could be set even higher by the designer to take
into account safety margins or other constraints that do not de-
rive directly from the dataflow representation.

We now have a model where the timing pairs that we defined
above can be used to compute a constraint time on a system,
which can be used in place of the execution time of the system
in any calculations. This model is now capable of handling both
combinational and iterative systems and can capture the hierar-
chical nature of these systems easily. We therefore refer to it as
the hierarchical timing pair (HTP) model. The constraint time
that is derived from the timing pairs can now be used in place
of the execution time of the block. Note that the actual value of
the constraint time will still need to be obtained by other means,
such as profiling the individual elements of the block.

This definition of constraint time also results in a simple
method for determining the iteration period or maximum cycle
mean of the graph. It is obvious that the constraint time around
a cycle must be negative to avoid unsatisfiable dependencies.
In addition, note that for a fixed value of 7T, the constraint
time of each subsystem becomes a fixed number rather than
a list of timing pairs. Because of this, any algorithm that
iterates over different values of 7" in order to determine the
best value that is feasible for the graph will only have to deal
with the final constraint time values and not the timing pair
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TABLE 1
TESTS FOR DOMINANCE OF A PATH

Condition Dominant path
L mpy, =mp,, cp, <cp, | P
Cp; —C
2. | mp, > My, Cpy >Cp, | To ST < ﬁ:ﬂ
T>-2n"% _p
Z gy —mp, = I3

3. | My, > My, Cpy < Cpy | Po

lists. Lawler’s method [17] provides an efficient way of doing
this. It performs a sequence of successive approximations to
find a close approximation to the iteration period 7. Since
we have shown [18] the efficiency of Lawler’s algorithm on
graphs of bounded degree, this algorithm provides an effective
way of computing the iteration period for graphs described
using the hierarchical model. It may be possible to find other
algorithms that can operate directly on the timing pair lists and
compute a closed-form analytical expression for the maximum
cycle mean of the system. However, since Lawler’s method
is already known to be efficient in practice, this is not a very
urgent requirement.

A. Computation of HTP Parameters

As seen in the previous section, it is possible to have multiple
I-O paths in the system, each with different numbers of delay el-
ements. When two paths differ in the number of delay elements,
the actual constraint time due to them depends on the iteration
period T'. For a given value of the delay count, however, only
one path can dominate (the one with the longest execution time).
The overall timing of the system is therefore best represented
by a list of timing pairs, which have the property that for certain
values of 7', one or other of the pairs will dominate the timing
of the system. Since each I-O path corresponds to one timing
pair, we can compute a reduced set of these pairs by checking
which of them are “dominant.” The criteria for dominance are
shown in Table I and correspond to the different possibilities of
the relative values of 7T'.

For the example of Fig. 4, P, has the timing pair (0, 3),
whereas P» has (1, 7) with timing as assumed in Section III.
Thus, from condition 2 above, P> will dominate for 3 < 7T’ < 4,
and P; will dominate for T" > 4.

By combining these conditions with the Bellman—Ford algo-
rithm for shortest paths through a circuit [19], it is possible to
derive a simple algorithm that can compute the timing pairs be-
tween any two I-O points in the circuit. As we have already
shown, as long as we restrict our attention to 7" in the valid range
(namely T > T,in), we will not encounter positive weight cy-
cles in the graph. Recall that a positive constraint time around
a cycle corresponds to an unsatisfiable constraint set, which in
turn would correspond to a choice of 7" that is outside the fea-
sible range for the system.

Using the above algorithm, the timing pairs for a single rate
graph are easily computed. The complexity of the overall algo-
rithm is O(|D||V'||E|), where |D| is the number of delay ele-
ments in the graph (a bound on the length of a timing pair list of
a vertex), | V| is the number of vertices, and | E| is the number of
edges in the graph. Note that | D| is quite a pessimistic estimate
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since it is very rare for all the delays in a circuit to be on any
single dominant path from input to output.

IV. MULTIRATE SYSTEMS

In this section, we consider some problems that arise in the
treatment of multirate systems. We examine some examples to
see how these difficulties can be overcome and motivate new
assumptions that make it easier to handle these systems mathe-
matically.

Conventionally, multirate SDF semantics imply that tokens
are produced and consumed in “bursts,” with the number of to-
kens being given by the production and consumption parameters
on the edges. This is useful for analyzing certain properties of
the system but is unsatisfactory from the viewpoint of a hard-
ware implementation. In fact, in most DSP applications, it is
reasonable to consider the samples as occurring at a fixed rate
in a periodic manner. Exceptions include block operations such
as the discrete cosine transform (DCT) or block coders. Even in
these cases, by treating a whole block of data as a token, we find
that it is possible to treat the system as having periodic token
flow.

A more important problem is with regard to the criterion used
for firing vertices. Consider the example of the 3 : 5 rate changer
shown in Fig. 6. According to the SDF interpretation, this vertex
can only fire after five tokens are queued on its input and will
then instantaneously produce three tokens on its output. How-
ever, a real rate changer need not actually wait for five tokens
before producing its first output. In fact, in cases where such
rate changers form part of a cycle in the graph, the conventional
interpretation can lead to deadlocked graphs due to insufficient
initial tokens on some edge or even due to the distribution of to-
kens among edges. The cyclostatic dataflow (CSDF) [6] model
mentioned in the introduction provides a way around this by in-
troducing the concept of execution phases.

Fig. 6 illustrates the above ideas. This is an implementation
of a 3 : 5 fractional rate conversion that is implemented using
an efficient multirate filtering technique (as used in the finite
impulse response (FIR) filter implementation provided with
Ptolemy [20]). We have assumed a seven-tap filter (H(z)) used
for the interpolation, which results in the I-O dependencies,
as shown in the figure. It is clear from the filter length and
interpolation rate that the first output in each iteration (an
iteration ends when the system returns to its original state)
depends on the first two inputs only, the second depends on
inputs two to four, and the third depends on inputs four and
five. Therefore, the delay pattern shown in the figure is valid

1213

10
(e
3
Fig. 7. Deadlock in multirate SDF system: If n < 10, the graph deadlocks.

as long as there is sufficient time for the filters to act on their
corresponding inputs. In other words, it is not necessary to wait
for five inputs to be consumed before starting to produce the
outputs. One point to note is that because of the time-varying
nature of the underlying implementation, we need to exercise
care in deriving the timing for a multirate system.

The implementation we considered avoids unnecessary com-
putations; therefore, it is possible to save power by either turning
off the filters when they are not needed (using the clock inputs)
or by using an appropriate buffering and delayed multiplica-
tion that will allow the multipliers to operate at 1/5th of the
rate of the input stream, using the observation that only one of
the polyphase components [21] needs to operate for each output
sample. This tradeoff would depend on whether we are consid-
ering an implementation with dedicated multipliers for each co-
efficient or shared multipliers. Real hardware implementations
of multirate systems must resort to such efficient realizations as
the performance penalties can otherwise be large.

An important effect of this alternate interpretation is that it
changes the criteria for deadlock in a graph. Under normal SDF
semantics, the graph in Fig. 7 would be deadlocked if the edge
AB has less than ten delays on it. On the other hand, six de-
lays are sufficient on edge BC, whereas 16 delays are required
on edge C'A in order to prevent deadlock. The CSDF interpre-
tation tries to avoid these difficulties by prescribing different
token consumption and production phases but introduces fur-
ther complexity and does not provide a complete solution to the
timing problem. However, under our new interpretation, as long
as each cycle in the graph contains at least one token, deadlock
is broken, and the system can execute. This is the same condi-
tion that applies to homogeneous graphs.

It is important to understand that this interpretation of multi-
rate SDF execution is useful because dedicated hardware imple-
mentations of real multirate DSP systems rarely require the in-
terpretation in terms of token consumption of the conventional
SDF model. Typical multirate blocks in DSP applications are
decimators and interpolators (rate changers), multirate filters
(very similar to rate changers), serial-to-parallel converters and
vice versa, block coders and decoders, etc. A notable feature of
these applications is that few of the applications actually require
a consumption of ¢ tokens before starting to produce p tokens.
Even for block coders, in most implementations, for interoper-
ating with the rest of the system, the data are produced in a peri-
odic stream at a constant sample rate rather than in large bursts.
As aresult, the alternative interpretation of SDF execution sug-
gested above is acceptable in most cases, especially when tar-
geting fixed hardware architectures.
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A. HTP Model for Multirate Systems

Given a multirate system represented as an SDF graph, we
follow the usual technique [1] to compute the repetitions vector
for the graph. The balance equation on each edge e : u — v in
the graph is given by

Pe X qu = Ce X Qy ®)

where p. is the production parameter on e, c. is the consump-
tion parameter, and ¢, and g, are the repetition counts for the
source and sink of the edge. Let T' denote the overall iteration
period of the graph. This is the time required for each actor z to
execute g, times (g is the repetition count of the actor). There-
fore, the sample period on edge e is given by

T T

T, = - . 9)
Qu * Pe Qv -~ Ce

Now, extending the analogy of the homogeneous case, we
define the constraint time on a path as

k k—1
te(p) =Y ti— Y (dj x T) (10)
i=1 j=1

where T} is the sample period on edge j. By noting that the
effect of a delay on any edge (in both the homogeneous and
multirate cases) is to give an offset of —7 to the constraint time
of any path through that edge, we can see that this gives the
correct set of constraints. In addition, the values of the starting
times for the different vertices that are obtained as a solution to
the set of constraints will give a valid schedule for the multirate
system.

Fig. 8 gives an example that may help to illustrate the ideas
here. The consumption and production parameters help to es-
tablish the relative sample rates on the different edges so that
the period between samples on edge AB is half that on edge BC.
Based on our model, actor B can begin execution immediately,
based on the initial token on edge AB, which is shown by the
dotted arrow on the timeline for edge AB. The time intervals
ta,tp, and to are the delays experienced by each respective el-
ement before it starts generating outputs. We can therefore com-
pute the overall period by inspecting the token flow timelines,
and we obtain

Tge T
tattp+tc =Tap=Tca= - =3
where T is the overall iteration period required to return the
system to its initial state; in this case, it is the same as T'zc. We
can obtain the value of 7" by using the mathematical formulation
discussed below as well.

The above example illustrates the ideas behind the new inter-
pretation of execution time and fractional delays based on the
clock used on the edge and shows how a multirate system can be
treated consistently in a similar manner to a single rate system.

It is possible to view the constraint times in terms of “normal-
ized delays.” Here, the delays on each edge are normalized to a
value of

(1)
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Fig. 8. Timing patterns for a multirate graph.

In terms of the normalized delays, the expression for constraint
time becomes the same as that for the homogeneous case.

For homogeneous graphs, the minimum iteration period that
can be attained by the system is known as the iteration period
bound and is known to be equal to the maximum cycle-mean
(MCM) [15], [22]. Thus far, no such tight bound is known for
multirate SDF graphs that does not require the costly conversion
to an expanded homogeneous equivalent graph. However, some
good approximations for multirate graphs have been proposed
[23]. Under our model, it is easy to determine an exact bound
that is similar to the bound for homogeneous graphs but does not
require the conversion to a homogeneous equivalent expanded
graph. By considering the cumulative constraints around a loop
for the single rate case, we can easily obtain the iteration period
bound

t’lt

Tnin = Iglaé( %
where C'is the set of all directed cycles in the graph.
Similarly, for the multirate case, we can obtain the result

Z c tu

b T S ()
where T},;, is the minimum admissible iteration period of the
overall system, as discussed above. In addition, the start times
for each operation are directly obtained as a solution to the con-
straint system that is set up using the timing information.

Note that to bound the number of timing pairs, we can no
longer just count the number of delay elements in the circuit.
Instead, the number of timing pairs is only bounded by the least
common multiple of the denominators of the normalized delays
on the edges.

One possible source of misunderstanding in this context is the
use of fractional normalized delays in the computation. It may
appear at first sight that the HTP model allows fractional delays
to be used in the graph, even though such delays have no phys-
ical meaning in the context of signal processing. In this context,

12)

13)
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Fig. 9. Multirate FIR filter structure.
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Fig. 10. Binary tree structured QMF bank.
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it is important to remember that the HTP model only specifies
information about the timing parameters of the graph. The func-
tional correctness of the graph must be verified by other means.
In particular, any fractional normalized delays only refer to the
fact that the resulting timing shift is a fraction of an iteration
period interval and does not indicate the use of actual fractional
delays in a logical sense.

V. EXAMPLES AND RESULTS
A. Multirate Systems

The basic unit in several of these examples is the multirate
FIR filter that is capable of performing rate conversion, as de-
scribed in Section IV. As noted there, this must be treated as a
primitive element of multirate systems. As shown in Fig. 9, the
implementation uses a certain number of internal filters corre-
sponding to the polyphase decomposition of the interpolating
filter. We assume that these are implemented in a manner sim-
ilar to the filter shown on the left of Fig. 9 and that the overall
rate converting filter also therefore has similar timing parame-
ters. In particular, we assume, for the sake of the other multirate
examples, that any rate conversion is performed using a filter
that has the timing parameters {(1,5), (0,4)}.

We have applied the HTP model to the SDF graphs repre-
senting typical multirate signal processing applications. The
examples we have taken are from the Ptolemy system [20]
(CD-DAT, DAT-CD converters and two channel nonuniform
filterbank) and from [21, p. 256] [tree-structured quadrature
mirror filter (QMF) bank; see Fig. 10].

The rate conversions result in several I-O paths with different
numbers of delays at different rates. The resulting timing pairs
that are obtained for these systems are summarized in Table II.

B. Single-Rate Systems

We have run the algorithm described in Section III.A on the
ISCAS 89/93 benchmarks. A total of 44 benchmark graphs
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TABLE 1I
TIMING PAIRS FOR MULTIRATE SYSTEMS
Benchmark Timing pairs
Multirate FIR {(1,5),(0,4)}
QMF bank (input to y3) 7,15), (3 14),(1,13),(0,12)}

{
CD-DAT (160:147) {
DAT-CD (147:160) {
2 ch. Non.Unif. FB {

15/7,15), (0,12)}
5/2,10),(1,9),(0,8)}

(1,
(
(93/32,20), (0,16)}
(
(

TABLE III
NUMBER OF DOMINANT TIMING PAIRS COMPUTED FOR ISCAS
BENCHMARK CIRCUITS

# timing pairs | 1 2 3 4 5
# circuits 21 13 5 4 1
TABLE 1V
HTP PARAMETERS FOR TEN LARGEST ISCAS BENCHMARK CIRCUITS

Benchmark | #HTP #outs w/ | #outs w/ | #Vertices

list elts. | (mp,cp) diff. m,, diff.
838417 1 16 1 23843
$38584 1 88 1 20717
835932 1 2 1 17828
s15850 2 36 2 10383
$13207 1 90 1 8651
$9234 1 13 1 5844
$6669 3 22 2 3402
s4863 2 11 2 2495
83330 3 29 2 1961
$1423 1 5 2 748

were considered. For this set, the average number of vertices
is 3649.86, and the average number of output vertices in these
circuits is 39.36.

First, we consider the case where synchronizing nodes were
used to convert the circuit into an SISO system. We are inter-
ested in the number of elements that the final timing list contains
since this is the amount of information that needs to be stored.
Table III shows the breakup of the number of list elements. We
find that the average number of list elements is 1.89.

Table IV shows some parameters obtained for the ten largest
ISCAS benchmark circuits. The column “#HTP elements”
refers to the number of dominating paths in the circuit. To
understand these numbers, it is important to have in mind the
goal of the HTP model, which is to represent a large circuit by
a small number of parameters for the purpose of performance
evaluation. The HTP parameters aim to provide a replacement
for all the detail implied by the overall circuit.

Next, instead of assuming complete synchronization, we con-
sidered the case where inputs are synchronized and measured
the number of list elements at each output. The number of dis-
tinct values obtained for this was an average of 14.73. Again,
from Table IV, we see that for the circuit s15850, the number
of distinct output elements is 36.

If we make an additional assumption that two listelements with
the same m,, are the same, this number drops to 3.68 on average
(two for the example s15850). This assumption makes sense
when we consider that several outputs in a circuit pass through es-
sentially the same path structures and delays but may have one or
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two additional gates in their path that creates a slight and usually
ignorable difference in the path length. For example, the circuit
s386 has six outputs. When we compute the timing pairs, we find
that three have an element with one delay, and the corresponding
pairsare (1,53), (1,53),and (1,57). Thus, instead of three pairs, it
is reasonable to combine the outputs into one with the timing pair
(1, 57) corresponding to the longest path.

In order to compare these results, note that if we did not use
this condensed information structure, we would need to include
information about each vertex in the graph. In other words, in the
best case, if we accept the (in most cases justifiable) penalty for
synchronizing inputs and outputs, we need to store an average
of 1.89 terms instead of 3649.86.

We have not considered the case of relaxing the assumptions on
the inputs as well. This would obviously increase the amount of
data to be stored, but as we have argued, our assumption of syn-
chronized inputs and outputs has a very strong case in its favor.

We have also computed the timing parameters for HLS
benchmarks such as the elliptic filter and 16-point FIR filter
from [12]. These are naturally SISO systems, which makes
the synchronizing assumptions unnecessary. If we allow the
execution times of adders and multipliers to vary randomly, we
find that the FIR filter has a number of different paths that can
dominate at different times. The elliptic filter tends to have a
single dominant path, but even this information is useful since
it can still be used to represent the filter as a single block.

A general observation we can make about the timing model
is that systems that have delay elements in the feed-forward sec-
tion, such as FIR filters and filters with both forward and back-
ward delays, tend to have more timing pairs than systems where
the delay elements are restricted to a relatively small amount of
feedback. This is because feedback delay elements must neces-
sarily exist in a loop that has a total negative constraint time,
which means they will not contribute toward a dominant con-
straint time in the forward direction.

VI. CONCLUSION

We have presented a timing model for dataflow graphs (the hi-
erarchical timing pair model) and associated data structures and
algorithms to provide timing information for use in the analysis
and scheduling of dataflow graphs.

For homogeneous graphs, the HTP model allows hierarchical
representations of graphs. This results in reducing the amount of
information to be processed in analyzing a graph. Alternately,
by using this hierarchical representation, the size of the graph
that can be analyzed with a given amount of computing power
is greatly increased.

The HTP model is able to efficiently store information about
multirate graphs and allows the computation of important
system parameters such as the iteration period bound easily.
Exact schedules for multirate systems can also be obtained
as a solution to the constraints that can be set up using this
model. We have shown that the HTP model overcomes many
limitations of the conventional timing models while incurring a
negligible complexity increase.

We have considered several typical multirate DSP applica-
tions and computed timing pairs for these models. The results
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demonstrate the power of our approach. We have also consid-
ered several homogeneous graphs and shown that the hierar-
chical aspects of the model can be used to obtain large reduc-
tions in the amount of information about the circuit that we need
to store in order to use its timing information in the context of
a larger system.

The model as it exists now requires the ability to choose the
start times of operations (variable phase clocking). We are cur-
rently examining ways of extending the model to more general
kinds of circuits, which include some fixed phase registers along
with other nodes, where the delay can be adjusted.
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