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Abstract

Real-world networks are often cluttered and hard to organize. Recent studies show that most networks have the
community structure, i.e., nodes with similar attributes form a certain community, which enables people to better
understand the constitution of the networks and thus gain more insights into the complicated networks. Strategic
nodes belonging to different communities interact with each other to decide mutual links in the networks. Hitherto,
various community detection methods have been proposed in the literature, yet none of them takes the strategic
interactions among nodes into consideration. Additionally, many real-world observations of networks are noisy and
incomplete, i.e., with some missing links or fake links, due to either technology constraints or privacy regulations. In
this work, a game-theoretic framework of community detection is established, where nodes interact and produce
links with each other in a rational way based on mutual benefits, i.e., maximizing their own utility functions when
forming a community. Given the proposed game-theoretic generative models for communities, we present a general
community detection algorithm based on expectation maximization (EM). Simulations on synthetic networks and
experiments on real-world networks demonstrate that the proposed detection method outperforms the state of the
art.

Keywords: Community detection, Game theory, Noisy networks, EM algorithm

1 Introduction
1Nowadays, networks are ubiquitous and often cluttered,
leading to difficulties for recognizing patterns and mining
knowledge from them. The first step to the understand-
ing of the network structures is to arrange the networks
in an organized manner: identifying nodes with similar
attributes or functions and combining them together as
a group or cluster. In fact, most real-world networks are
empirically observed to possess the community structure
[2–4], where nodes with analogous properties compose
functional modules in networks. For instance, in online
social networks, users form groups according to com-
mon experiences, affiliations, or hobbies; in biological
networks, cells with similar functions constitute tissues; in
research networks, researchers with similar interests com-
prise research fields or disciplines. Revealing the hidden
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community structure can significantly simplify the repre-
sentations of networks and facilitate the comprehension
of networks.
Given the importance of community structure, various

community detection approaches have been proposed in
the literature to identify meaningful communities in net-
works [2]. Existing community detection methods can be
categorized into two classes: graph-theoretic approaches
and probabilistic generative models. In traditional graph-
theoretic approaches, general clustering methods such
as hierarchy clustering [5], k-means clustering [6], and
spectral clustering [7] are applied to detect communities
in networks. In the recent decade, various novel graph-
theoretic methods were proposed. Divisive methods (e.g.,
Newman and Girvan [8]) iteratively deleted the identified
inter-community links to separate the entire network into
isolated communities. Newman [9] initiated the concept
of modularity to assess the quality of the detected com-
munities while the optimization of modularity led to a
series of detection algorithms. Clique percolation method
by Palla et al. [10] detected overlapping cohesive clusters,
or cliques in networks. The graph-theoretic community
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detection methods utilize various graph-theoretic mea-
sures to identify cohesive groups of nodes in the networks.
Additionally, the performance limits of community detec-
tion in various random graph models are investigated in
[11–13].
In probabilistic generative models, the observed net-

work is regarded as the ramification of a community
structure-related probabilistic generative process and the
community detection problem is posed as a statistical
inference problem. Among this category, Airoldi et al. pre-
sented the mixed membership stochastic blockmodel in
[14], where each node’s community affiliation strengths
among all the communities are regarded as a probabil-
ity distribution. A variational EM algorithm was proposed
to infer the community affiliations efficiently. Yang and
Leskovec proposed the affiliated graph model (AGM) in
[15]. In AGM, total community affiliation strengths are
allowed to vary from node to node, leading to more
degrees of freedom in modeling overlapping commu-
nities. Sun et al. investigated community detection in
heterogeneous information networks [16], where differ-
ent types of nodes, e.g., authors, papers, and venues for
citation networks, are present.
In real-life networks such as the Facebook friendship

network and the DBLP collaboration network, nodes form
links with each other through intelligent interactions. For
example, in a social network, users interact with each
other on common hobbies, experiences, affiliations, and
finally decide whether to make connections (friends), i.e.,
to form a link, or not. Our hypothesis is that users are
rational in forming their social networks, in other words,
when deciding whether to form a link or not, a user will
judge if the benefit of this link is worthy of its cost (efforts
and time spent in the relation). Hitherto, such strategic
interactions among nodes have not been considered in
community detection yet. On the other hand, game the-
ory, originating from microeconomics, is a mathematical
tool that has been applied to various engineering prob-
lems to model the strategic interactions among rational
players [17–22]. The outcome of the mutual interactions
between rational players can be predicted by using game
theory. This motivates us to resort to game theory to
investigate the interactions among nodes in a network
with community structure.
Most real-world observations of networks are noisy and

incomplete, i.e., there are missing links and fake links in
the observed graph, due to technological constraints or
privacy regulations. For instance, observations in social
networks are often incomplete because of the privacy pol-
icy of social websites and the flaws of the acquisition
approaches, not to mention the social network data can-
not track all the interactions among users. So far, no exist-
ing work has studied the behavior of community detection
algorithms under a generative model of noise in observed

networks. This motivates us to consider the community
detection problem in both noiseless networks and noisy
networks. We find that the link errors or noise can be well
absorbed into the proposed game theoretic framework.
The main contributions of this paper are summarized as
follows.

• We propose a game-theoretic framework to model
the interactions among strategic nodes in a network
with community structure. The network can be
either noiseless or noisy. The proposed link
formation game connects the observed network
structure with the hidden community structure.

• The Nash equilibrium (NE) of the noiseless network
game and the subgame perfect equilibrium (SPE) of
the noisy network game are derived. With these
equilibria, a game-theoretic generative model of
networks is obtained, which enables community
detection in both noiseless networks and noisy
networks.

• According to the proposed game-theoretic generative
model, we derive a general community detection
algorithm based on expectation maximization (EM)
for both noiseless networks and noisy networks. The
effectiveness of the proposed detection algorithm is
validated through simulations on synthetic networks
and experiments on real-world networks.

The roadmap of the rest of this paper is as follows. In
Section 2, we elaborate the game-theoretic model and
present the equilibrium analyses. In Section 3, an EM-
based general community detection algorithm is pre-
sented according to the proposed game-theoretic model.
In Section 4, simulations as well as real-world dataset
experiments are conducted. In Section 5, we conclude this
work.

2 Game-theoretic generativemodel of the
networks

Game theory is a mathematical tool used to study the
strategic interactions among multiple rational decision
makers [23] . A game consists of (i) a set of players, (ii) a set
of actions for each player, and (iii) a set of utilities for each
player given the actions of all the players. Outcomes of the
games can be obtained by resorting to solution concepts
such as Nash equilibrium and subgame perfect equilib-
rium, which will be discussed later. In a network, each
node (e.g., users in a social network) can be modeled as a
rational player. The nodes interact with each other to form
links, generating the graph structure that we observe. The
interactions can be illustrated as in Fig. 1. The utilities
of the interactions depend on the community affiliations
of the nodes. The fundamental hypothesis of this work is
that, for two users in a social network, if they both belong
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Fig. 1 Graphical illustration of the interactions of nodes to form links.
Each circle corresponds to a community in the network. Each pair of
nodes interacts to decide whether to form a link with each other or
not. The utility function of the interactions depends on the
community affiliations of the nodes

to a certain group, then they prefer to be friends, because
forming a link will result in higher utilities for both parties.
The interactions among nodes in a network can be
analogous to the interactions among players in a game.
Therefore, game theory is indeed an ideal tool to model
and understand the community detection problem.More-
over, due to the acquisition errors, the networks acquired
from the real-world datamay be noisy and incomplete, i.e.,
many true links can be missed and lots of spurious links
may be formed. In this paper, we will show that the pro-
posed game theoretic framework can tackle such an issue,
and therefore, we will consider community detection over
both noiseless networks and noisy networks.
In the following, we first present our proposed game-

theoretic generative models for both noiseless networks
and noisy networks. Specifically, given the nodes’ utility
functions, which depend on their community affiliations,
we derive the equilibrium of the pairwise link probability
and based on which we propose generative models of the
networks.
Consider a network with N nodes and K communities.

For each user u ∈ {1, 2, . . . ,N}, we denote the nonnega-
tive vector xu ∈ R

K as its community affiliation strength
vector, whose kth component represents the strength of
node u’s affiliation to community k. The larger a certain
entry of xu, the stronger the affiliation of node u to the
corresponding community.

2.1 Game for noiseless networks
Each pair of nodes interacts with each other to decide
whether to form a link or not. Specifically, when two
nodes u, v interact, they play the following game:

• Pure strategies: {Link, Not Link}.
• Mixed strategies: [0, 1], the probability of Link.
• Utility functions:

1. If both nodes choose Link, then each one gets
utility 1.

2. If both nodes choose Not Link, then each one
gets utility 0.

3. From node u’s perspective, (i) if it chooses Not
Link but its opponent v chooses Link, then it
may get some one-shot information sharing or
benefits from v and thus gets utility f1(xu, xv); (ii)
if it chooses Link but its opponent v chooses
Not Link, then it may have spent some efforts
on trying to make this connection and thus gets
(possibly negative) utility f2(xu, xv). We assume
that f1 and f2 are symmetric functions, i.e.,
fi(xu, xv) = fi(xv, xu), i ∈ {1, 2} so that the utility
structure of the pair {u, v} is symmetric. The
utility functions are summarized in Table 1.

We note that the above proposed game contains two
general functions f1 and f2. Different choices for these
two functions lead to different games, and hence differ-
ent game-theoretic generative models of the networks.
For general f1, f2, the Nash equilibrium (NE) of the pro-
posed game is identified in the following proposition.
We consider two regions for the utility function f1 and
f2: f1(xu, xv) < 1, f2(xu, xv) < 0 and f1(xu, xv) >

1, f2(xu, xv) > 0. We explain these two regions of utilities
from node u’s perspective as follows. In the first region,
if it selects Not Link while the opponent node v selects
Link, then it gets some one-shot benefits from v such
as sharing of information but loses long-term potential
benefits from the potential connection so that its utility
f1(xu, xv) is smaller than 1. If it selects Link while node v
selects Not Link, then it may have spent some efforts on
trying to establish the connection and therefore lose some
utility, i.e., its utility f2(xu, xv) is less than 0. In the second
region, if it selects Not Link while the node v selects
Link, then it gets a one-shot benefit f1(xu, xv) larger than 1
since it does not need to pay any efforts on establishing
the connection. If it selects Linkwhile node v selects Not
Link, then though the connection is not established, it
canmake node v to know better about it or advertise itself.
Hence, it still gets some positive utility.

Proposition 1 In the proposed game for noiseless net-
works, suppose f1(xu, xv) < 1, f2(xu, xv) < 0 or f1(xu, xv) >

1, f2(xu, xv) > 0, then choosing the strategy Link with
probability:

Table 1 The utility table of the game for noiseless networks

u v Link Not link

Link 1, 1 f2(xu , xv), f1(xu , xv)

Not link f1(xu , xv), f2(xu , xv) 0, 0
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p�(xu, xv) = f2(xu, xv)
f1(xu, xv) + f2(xu, xv) − 1

(1)

is a symmetric mixed-strategy NE.

Proof It is conspicuous that p�(xu, xv) ∈ (0, 1), i.e.,
p�(xu, xv) is a proper probability. Suppose node v selects
the strategy Link with probability p�(xu, xv). Then, if
node u selects Link, its utility is p�(xu, xv) + (1 −
p�(xu, xv))f2(xu, xv) = f1(xu, xv)f2(xu, xv)/(f1(xu, xv) +
f2(xu, xv) − 1). If node u selects Not Link, its utility is
p�f1(xu, xv) = f1(xu, xv)f2(xu, xv)/(f1(xu, xv) + f2(xu, xv) −
1). Consequently, node u is indifferent between the two
strategies. Due to the symmetric structure of the game,
node v is also indifferent as long as node u is playing the
mixed strategy p�(xu, xv). Hence, p�(xu, xv) is a symmetric
mixed-strategy NE.

Remarks 1 We note that, besides the mixed-strategy NE
mentioned in Proposition 1, there also exist other pure
strategy NEs. For instance, (Link,Link) and (Not Link,
Not Link) are NEs when f1(xu, xv) < 1, f2(xu, xv) < 0,
while (Link,Not Link) and (Not Link,Link) are NEs
when f1(xu, xv) > 1, f2(xu, xv) > 0. However, since our
aim is to obtain a non-degenerated link probability for the
generative model, we only focus on the mixed-strategy NE.

We assume that two nodes will link with each other if
and only if both of them choose the strategy Link. Hence,
at the NE, the link probability of the node pair (u, v) is:

H(xu, xv) � p�(xu, xv)2 =
(

f2(xu, xv)
f1(xu, xv) + f2(xu, xv) − 1

)2
.

(2)

Different utility functions f1() and f2() lead to different
link probability function H(). Two examples of such func-
tions that satisfy the assumption of Proposition 1 are listed
as follows.

• When f1(xu, xv) = √
1 − exp(−xTuxv) and

f2(xu, xv) = −f1(xu, xv), the link probability function
is H(xu, xv) = 1 − exp(−xTuxv), which coincides with
the affiliated graph model (AGM) proposed in
[15, 24]. The AGM becomes a special case of our
game-theoretic model if we choose the link
probability function H is in this form.

• When f1(xu, xv) =
√

xTuxv
1+xTuxv

and
f2(xu, xv) = −f1(xu, xv), the link probability function
is H(xu, xv) = xTuxv

1+xTuxv
.

The above two link probability functions are intuitively
reasonable: if nodes u, v share a lot of community affilia-
tions in common, the inner product xTuxv is large, and so
is the link probability H(xu, xv). The differences of these

two link probability functions lie in their increasing speed
with respect to xTuxv. Different networks may be suitable
for different link probability functions. After every pair of
nodes finishes the game and decides whether to form a
link or not, the entire network is constructed. Hence, the
proposed game-theoretic model is a generative model of
the networks.

2.2 Game for noisy networks
The game-theoretic generative process of the noisy net-
works consists of two stages since, in addition to the
generative process for the noiseless networks, we need
another stage to take the generation of noise into consid-
eration. The first stage is to determine whether to form a
link or not while the second stage is to decide whether to
report the truth about the link state. The overall utility is
the sum of the utilities obtained in the two stage games.
The first stage is the same as the game for the noiseless
networks. Thus, we just focus on the second stage, which
is specified for a node pair (u, v) as follows.

• Pure strategies: Truth-telling and Not
Truth-telling

• Mixed strategies: [0, 1], the probability of
Truth-telling

• Outcome: The true linking state is reported if and
only if both nodes adopt strategy Truth-telling.

• Utility functions: If u, v are linked in the first stage,
the utility functions of all possible circumstances are
listed in Table 2 (a). Similarly, if u, v are not linked in
the first stage, the utility functions are listed in Table 2
(b). The utility functions gi() are all symmetric
functions, i.e., gi(xu, xv) = gi(xv, xu), i ∈ {1, 2, 3, 4}.

We denote the overall strategy of the formulated two-
stage dynamic game as

〈
p, (q1, q2)

〉
where p is probability

of the strategy Link in the first stage and (q1, q2) are the
probability of the strategy Truth-telling in the sec-
ond stage given that a link between u, v is formed or not
formed in the first stage, respectively.

Table 2 Utility table of the second stage in the game for noisy
networks

u v Truth-telling Not
Truth-telling

(a) When u, v are linked in the first stage.

Truth-telling 1, 1 g2(xu , xv), g1(xu , xv)

Not Truth-telling g1(xu , xv), g2(xu , xv) 0, 0

(b) When u, v are not linked in the first stage.

Truth-telling 1, 1 g4(xu , xv), g3(xu , xv)

Not Truth-telling g3(xu , xv), g4(xu , xv) 0, 0
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Proposition 2 In the proposed dynamic game for noisy
networks,

〈
p�, (q�

1, q�
2)

〉
given in (3), (4), and (5) is a symmet-

ric mixed-strategy subgame perfect equilibrium (SPE)

q�
1(xu , xv) = g2(xu , xv)

g1(xu , xv) + g2(xu , xv) − 1
(3)

q�
2(xu , xv) = g4(xu , xv)

g3(xu , xv) + g4(xu , xv) − 1
(4)

p�(xu , xv)= f2(xu , xv)
f1(xu , xv)+f2(xu , xv)−1−g1(xu , xv)q�

1(xu , xv)+g3(xu , xv)q�
2(xu , xv)

(5)

provided that 0 ≤ p�(xu, xv), q�
1(xu, xv), q�

2(xu, xv) ≤ 1.

Proof According to Proposition 1, the mixed-strategy in
the second stage, i.e., q�

1 and q�
2, is an NE at the second

stage. To show that
〈
p�, (q�

1, q�
2)

〉
is also a NE at the first

stage, we assume that node v uses the strategy
〈
p�, (q�

1, q�
2)

〉
.

Thus, if node u chooses Link in the first stage, regardless
of its strategy in the second stage, its total utility is given
in (6).

p�(xu, xv) + (1 − p�(xu, xv))f2(xu, xv) + p�(xu, xv)g1(xu, xv)q�
1(xu, xv)

+ (1 − p�(xu, xv))g3(xu, xv)q�
2(xu, xv)

= g3(xu, xv)q�
2(xu, xv)

+ f1(xu, xv)f2(xu, xv)
f1(xu, xv) + f2(xu, xv) − 1 − g1(xu, xv)q�

1(xu, xv) + g3(xu, xv)q�
2(xu, xv)

.

(6)

If node u chooses Not Link in the first stage, regard-
less of its strategy in the second stage, its total utility is
given in (7).

p�(xu, xv)f1(xu, xv) + g3(xu, xv)q�
2(xu, xv)

= g3(xu, xv)q�
2(xu, xv)

+ f1(xu, xv)f2(xu, xv)
f1(xu, xv) + f2(xu, xv) − 1 − g1(xu, xv)q�

1(xu, xv) + g3(xu, xv)q�
2(xu, xv)

.

(7)

Thus, at first stage, node u is indifferent among all the
pure strategies. We see that

〈
p�, (q�

1, q�
2)

〉
is also an NE at

the first stage and hence a SPE of the entire dynamic game.

Denote Y (u, v), Ŷ (u, v) the binary variable represent-
ing the true link state and the observed noisy link state
between nodes u, v respectively, i.e., “1” represents the
presence of a link while “0” represents no link. Then, at
the SPE

〈
p�, (q�

1, q�
2)

〉
, the link probability of nodes u, v is

H(xu, xv) = p∗(xu, xv)2 while the fake link and missing
link probabilities are:

ε1(xu, xv) � P

(
Ŷ (u, v) = 1|Y (u, v) = 0

)

= 1 − q∗
2(xu, xv)2,

ε2(xu, xv) � P

(
Ŷ (u, v) = 0|Y (u, v) = 1

)

= 1 − q∗
1(xu, xv)2.

Thus, different utility functions lead to different link
probabilities and link error probabilities. Specifically, for
any link probability function H(), any fake link probabil-
ity ε1 and any missing link probability ε2, we can achieve
them by setting the utility functions in the game model as
follows:

f1(xu, xv) = (1 + ε1 − ε2)
√
H(xu, xv), (8)

g1(xu, xv) = √
1 − ε2, g3(xu, xv) = √

1 − ε1, (9)
f2(xu, xv) = −f1(xu, xv), (10)
g2(xu, xv) = −g1(xu, xv), (11)
g4(xu, xv) = −g3(xu, xv). (12)

Thus, by properly tuning the utility functions as above,
the game-theoretic framework can model a general class
of generative processes of networks with community
structure. In the game-theoretic model, each node pair
links with each other with probability H(xu, xv) and then
each link state Y (u, v) flips with probability ε1 and ε2,
producing the observed networks Ŷ (u, v).

3 A general community detection algorithm for
noisy networks

In this section, a community detection algorithm for the
game-theoretic generative model is derived. Since noise-
less networks simply correspond to noisy networks with
ε1 = ε2 = 0, we only focus on community detection in
noisy networks from now on in this section. The game-
theoretic model of noisy networks can be represented by
three elements: the link probability functionH(xu, xv), the
fake link probability ε1, and themissing link probability ε2,
i.e., a triple < H(xu, xv), ε1, ε2 >. We assume that the link
error probabilities ε1 and ε2 are constants independent of
the affiliation strength xu. The reason of this assumption is
that the link error probabilities are related to the accuracy
of the data acquisition technology, which is independent
of the community structure of the networks.
A graphical representation of the proposed game-

theoretic generative model for noisy networks is shown in
Fig. 2. For each pair of users u, v with community affilia-
tion strength xu, xv, a link between them is formed with
probability H(xu, xv). The link state Y (u, v) can be either
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Fig. 2 Graphical illustration of the proposed game-theoretic
generative model

“1” (linking) or “0” (not linking), with linking probability
H(xu, xv), i.e.,

Y (u, v) ∼ Bernoulli(H(xu, xv)). (13)

Afterwards, noise is added in so that the link state
Y (u, v) is flipped with fake link probability ε1 and miss-
ing link probability ε2 to generate the observed link state
Ŷ (u, v), i.e.,

Ŷ (u, v) ∼ Bernoulli
(
ε
1−Y (u,v)
1 (1 − ε2)

Y (u,v)
)
.

(14)

We assume that the link error probabilities ε1, ε2 are
known. Our goal is to infer the unknown community affil-
iation strength X � {xu}Nu=1, based on which we can do
community detection.
According to the generative model, the joint probabil-

ity distribution function (PDF) of the true network Y �
{Y (u, v)}Nu,v=1,u<v and the observed noisy network Ŷ �
{Ŷ (u, v)}Nu,v=1,u<v is:

p
(
Y, Ŷ

∣∣∣X)
=

∏
u<v

[
p

(
Ŷ (u, v)

∣∣∣Y (u, v)
)
p (Y (u, v)|xu, xv)

]
,

(15)

while the marginal PDF of the observation Ŷ:

Fig. 3 Synthetic network with missing link probability ε2 = 0.3: comparison of the two detected communities with the ground-truth by using the
proposed noise-aware game-theoretic algorithm and the AGM in [15], respectively. Red nodes: belonging to the community and detected as in the
community; blue nodes: not belonging to the community and detected as not in the community; green nodes: belonging to the community but
detected as not in the community; black nodes: not belonging to the community but detected as in the community. There happens to be no black
node in this network instance. a Detection of community 1 with AGM; b Detection of community 1 with the proposed noise-aware game-theoretic
algorithm; c Detection of community 2 with AGM; d Detection of community 2 with the proposed noise-aware game-theoretic algorithm
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p
(
Ŷ
∣∣∣X)

=
∏
u<v

∑
Y (u,v)∈{0,1}

p
(
Ŷ (u, v)

∣∣∣Y (u, v)
)
p(Y (u, v)|xu, xv).

(16)

Hence, the maximum likelihood estimate (MLE) of the
community affiliation strength parameter X can be calcu-
lated as:

XML = argmax
X

log p
(
Ŷ
∣∣∣X)

. (17)

However, due to the existence of the latent variables
Y (the true network), the maximization problem for the
MLE is hard to solve: there is summation (marginal-
ization) inside the logarithm, which cannot be operated
directly onto the joint distribution. We thus resort to
the expectation maximization (EM) algorithm [25], an
efficient algorithm iterating between two steps, i.e., the
expectation step (E-step) and the maximization step (M-
step). Now, we proceed to derive an EM algorithm for the
proposed generative model.

3.1 Derivation of the e-step
The joint PDF of the true link state Y (u, v) and the
observed noisy link state Ŷ (u, v) is:

p
(
Y (u, v), Ŷ (u, v)

∣∣∣ xu, xv
)

= p (Y (u, v)|xu, xv) p
(
Ŷ (u, v)

∣∣∣Y (u, v)
)

= ε
(1−Y (u,v))Ŷ (u,v)
1 (1 − ε1)

(1−Y (u,v))(1−Ŷ (u,v))

ε
Y (u,v)(1−Ŷ (u,v))
2 (1 − ε2)

Y (u,v)Ŷ (u,v)

H(xu, xv)Y (u,v)(1 − H(xu, xv))1−Y (u,v)

(18)

Suppose we have an estimate of the community affilia-
tion strength matrix Xold which we would like to update.
Based on (18), the posterior distribution of the latent
variable Y (u, v) is given as (19).

quv � p
(
Y (u, v) = 1

∣∣∣Ŷ (u, v), xoldu , xoldv

)

=
p

(
Y (u, v) = 1, Ŷ (u, v)

∣∣xoldu , xoldv

)

p
(
Y (u, v) = 1, Ŷ (u, v)

∣∣∣xoldu , xoldv

)
+ p

(
Y (u, v) = 0, Ŷ (u, v)

∣∣∣ xoldu , xoldv

)

(19)

Fig. 4 Comparison between the proposed noise-aware game-theoretic community detection algorithm and the AGMmethod in [15]. a
η = 0.1, K = 2; b η = 0.2, K = 2; c η = 0.3, K = 2; d η = 0.1, K = 3; e η = 0.2, K = 3; f η = 0.3, K = 3
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Thus, we can derive the objective function in the M-
step, i.e., the expected complete data log-likelihood, as
follows:

Q(X,Xold) = EY|Ŷ,Xold

[
log p

(
Y, Ŷ

∣∣∣X)]

=
∑

1≤u<v≤N
EY|Ŷ,Xold

[
log p

(
Y (u, v), Ŷ (u, v) |xu, xv

)]

=
∑

1≤u<v≤N

{
quv

[(
1−Ŷ (u, v)

)
log ε2+Ŷ (u, v) log(1 − ε2)

+ logH(xu, xv)
] + (1 − quv)

[
Ŷ (u, v) log ε1

+
(
1 − Ŷ (u, v)

)
log(1 − ε1) + log(1 − H(xu, xv))

]}
.

(20)

3.2 Derivation of the m-step
In the M-step, we maximize the expected complete-data
log likelihood. In other words, we want to solve the fol-
lowing optimization problem:

maximize Q(X,Xold)

s.t. X ≥ 0,
(21)

where the matrix inequality stands for componentwise
inequalities. We note that only two terms in the objective
function (20) depend on the optimization variable X. So,
the problem can be equivalently written as:

maximize J(X) �
∑

1≤u<v≤N

[
quv logH(xu, xv)

+(1 − quv) log(1 − H(xu, xv))
]

s.t. X ≥ 0.

(22)

The gradient of J with respect to xu is:

∇xu J =
∑
v�=u

quv − H(xu, xv)
H(xu, xv)(1 − H(xu, xv))

∇xuH(xu, xv).

(23)

A projected coordinate ascent algorithm is utilized to
solve the optimization problem (22). Each time we only
optimize J with respect to one single vector xu using gra-
dient ascent while keeping other vectors xv (v �= u) fixed.
After each iteration, we project the updated xu onto the
nonnegative orthant to meet the nonnegative constraint.
The EM iterations are known to converge to some

locally maximum point of the likelihood function [25]. As
such, we iterate between the E-step and the M-step until
convergence. After the estimate of the community affil-
iation strength X is obtained, a threshold is needed to
decide the hard community affiliation, i.e., whether a node
belongs to a community or not. Denote Z ∈ {0, 1}K×N

the community affiliation matrix, whose (k, n) entry is 1
if node n belongs to community k. Denote e1 ∈ R

K the
vector with first entry equal to 1 and remaining entries

equal to 0. One reasonable threshold is the solution t of
the equation H(te1, te1) = α, where α is the background
edge probability, i.e., the total number of links in the graph
divided by the total number of links in a complete graph
with N nodes. We judge that node u belongs to com-
munity k, i.e., z(k, n) = 1, if xu(k) is larger than t. The
overall community detection algorithm is summarized in
Algorithm 1. From Algorithm 1, we can see that the com-
putational complexity of the E-step and M-step is O(N2).
We note that the proposed algorithm is general in the
sense that we have not specified the concrete form of the
link probability function H(xu, xv) yet. Several possible
forms of the link probability function are listed as follows:

H(xu, xv) = 1 − exp
{
− (

xTuxv
)θ

}
, θ > 0, (24)

H(xu, xv) = 1 − exp
(−xTuRxv

)
, (25)

H(xu, xv) = xTuxv
1 + xTuxv

, (26)

where R is some symmetric and nonnegative matrix.
Both (24) and (26) are to detect cohesive communities,
where intra-community link density is much higher than
the inter-community one. The link probability function
(25) can model more flexible community structures, e.g.,

Algorithm 1 A general community detection
algorithm for the proposed game-theoretic
generative model for noisy networks
Inputs:

The observed noisy network Ŷ ∈
{0, 1}N×N.
The number of communities K.
The link probability function H().

Outputs:
The community affiliation matrix Z ∈

{0, 1}K×N

1: Initialize Xold ∈ R
K×N+ .

2: repeat
3: E-step: Based on the old estimate

Xold, compute the posterior
distributions quv according to (18)
and (19), ∀ 1 ≤ u < v ≤ N.

4: M-step: Solve the optimization
problem (22) using projected
coordinate ascent to obtain the new
estimate Xnew.

5: Xold ← Xnew.
6: until convergence.
7: Solve the equation H(te1, te1) = α for

the threshold t.
8: ∀ 1 ≤ k ≤ K , 1 ≤ n ≤ N, set z(k, n) = 1, if

xu(k) > t, and 0 otherwise.
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intra-community link density is lower than the inter-
community one or some communities link with each other
more often while some not. The shortcoming of (25) is
we need a priori knowledge about the community struc-
ture in order to determine the structure of the matrix
R in (25).

4 Simulations and real-data experiments
In this section, synthetic data-based simulations as well as
real-data-based experiments are conducted to validate the
proposed community detection algorithm for the game-
theoretic generative model.

4.1 Simulations
To implement simulations, we synthesize networks with
N nodes and K communities according to the following
procedure:

1. Partition all nodes into K non-overlapping equal
groups of nodes so that each group has N/K nodes.

2. For each group, randomly pick ηN/K nodes outside
of the group and add these nodes into the group,
where 0 < η < 1 is a user-defined parameter.

3. Each group is defined to be a community. Choose
some community affiliation strength for nodes in the
community. This strength will influence the edge
density of the networks.

4. Generate the links according to the chosen link
probability function H(xu, xv).

5. Add noise into the network according to the link
error probabilities ε1, ε2.

The networks generated in this way have overlapping
community structure. Actually, on average, for each com-
munity, a proportion of 2η/(1 + η) nodes in the com-
munity also belong to other communities. The parameter
setup for the simulation is as follows. We set N = 100,
K = 2, 3, η = 0.1, 0.2, 0.3. For link error probabilities,
we select ε1 = 0.005 and ε2 = 0.1, 0.2, 0.3. The reason
is that in practical networks, most of the link errors are
missing links (incomplete graphs) instead of fake links.
For link probability function, we choose H(xu, xv) = 1 −
exp(−xTuxv) and compare the performance with that of the
affiliated graph model (AGM) proposed in [15]. A visu-
alization of the community detection results of the pro-
posed method and AGM, a state-of-the-art community

Fig. 5 Facebook ego-network with missing link probability ε2 = 0.3: comparison of the two detected communities with the ground-truth by using
the proposed noise-aware game-theoretic algorithm and the AGM in [15], respectively. The nodes’ colors have the same meaning as in Fig. 3. a
Detection of community 1 with AGM; b Detection of community 1 with the proposed noise-aware game-theoretic algorithm; c Detection of
community 2 with AGM; d Detection of community 2 with the proposed noise-aware game-theoretic algorithm
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Fig. 6 DBLP network with missing link probability ε2 = 0.3: comparison of the two detected communities with the ground-truth by using the
proposed noise-aware game-theoretic algorithm and the AGM in [15], respectively. The nodes’ colors have the same meaning as in Fig. 3. a
Detection of community 1 with AGM; b Detection of community 1 with the proposed noise-aware game-theoretic algorithm; c Detection of
community 2 with AGM; d Detection of community 2 with the proposed noise-aware game-theoretic algorithm

detection algorithm with brilliant performance, for a
synthetic network is presented in Fig. 3. There are two
communities in the network, i.e., community 1 and com-
munity 2, whose detection results are shown respectively.
We observe that the proposedmethod outperforms AGM,
especially in community 2 where many undetected nodes
(green nodes) of AGM becomes detected (red nodes) in
the proposed approach.
For a detected community C and a ground-truth

community C̄, the Balanced Error Rate (BER)
between the two communities is defined to be:

BER(C, C̄) = 1
2

(
|C\C̄|
|C| + |C̄\C|

|C̄|

)
. (27)

For every detected community C, we calculate
minC̄ BER(C, C̄). For every ground-truth community C̄,
we calculate minC BER(C, C̄). Then, the performance
metric is the average of all these minimum BER’s. The
simulation results for different number of communities
and different community overlapping extent are shown
in Fig. 4, where we compare the proposed noise-aware
game-theoretic algorithm with the AGM in [15]. We
find that the proposed algorithm always outperforms the

AGM, and the performance enhancement increases with
the noise level ε2 (except for networks in Fig. 4f ).

4.2 Real-data experiments
For real-data experiments, we consider two datasets:
the Facebook ego-networks dataset [26] and the DBLP
collaboration network dataset [27]. Both networks have
well-defined ground-truth communities. The detailed
statistics about the datasets are listed as follows.

• Facebook ego-networks: number of nodes = 4039,
number of edges = 88234. Each node is a Facebook
user. Two users are linked if they are Facebook
friends. The ground-truth communities are identified
by humans manually.

Table 3 Relative enhancement of the proposed noise-aware
game-theoretic algorithm over the AGM on real-world datasets

Dataset Noise level ε2 0.1 0.2 0.3 0.4

Facebook ego-network dataset 4.08% 7.09% 9.42% 16.93%

DBLP dataset 3.90% 7.55% 11.49% 14.07%
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Table 4 Relative improvement of the community detection accuracy with different link probability functions H(xu , xv)

Dataset Link Prob. function 1 − exp
{
− (

xTuxv
)1.2} xTuxv/(1 + xTuxv) 1 − exp

(−xTuRxv
)

Facebook ego-network dataset 0.42% 0.49% – 13.69%

DBLP dataset 2.13% – 1.31% – 35.34%

• DBLP collaboration network: number of nodes =
31708, number of edges = 1049866. Each node is an
author. Two authors are linked if they have co-
authored at least one paper together. The publication
venue defines the ground-truth communities.

To control the size of the input network to the commu-
nity detection algorithm, we sample the original network
to obtain smaller subnetworks, on which we perform
the community detection [15]. Specifically, we randomly
select one node belonging to at least two communities
and the subnetwork consists of all nodes with at least
one common community with the selected node. Fur-
thermore, we add noise onto the networks with ε1 =
0.005, ε2 = 0.1, 0.2, 0.3, 0.4. For link probability func-
tion, we still choose H(xu, xv) = 1 − exp(−xTuxv).
Visualizations of the detection results of a Facebook ego-
network and a DBLP network are shown in Figs. 5 and 6,
respectively. Both networks have two communities. Simi-
lar to the synthetic network in Fig. 3, we remark that the
proposed approach still outperforms AGM especially for
the community 1 in Facebook and DBLP networks. The
relative improvement of the proposed noise-aware game-
theoretic algorithm over the AGM is listed in Table 3.
Again, the proposed algorithm always outperforms the
AGM and the performance improvement increases with
the noise level ε2.
We further investigate the impact of the selection of

link probability function H(xu, xv) on the performance.
The performance of the function H(xu, xv) = 1 −
exp(−xTuxv) serves as a benchmark. Additionally, we select
three different link probability functions and study their
relative community detection accuracy improvements on
the Facebook and DBLP datasets. The results are shown
in Table 4, where the matrix R in the last function is the
block diagonal matrix R = diag(R0,R0, . . . ,R0), with

R0 =
[
0 1
1 0

]
. (28)

We note this link probability function is suitable for
detecting community structure with inter-community
links denser than intra-community links. The results indi-
cate that different choices of link probability function
lead to different performances and the performance vari-
ations depend on the datasets. Specifically, the perfor-
mance degradation of using the link probability function
(25) suggests that in Facebook and DBLP dataset, the

intra-community links are denser than inter-community
links. We also study the Chesapeake and Florida Bay food-
web network [28], where the inter-community links are
denser than intra-community links (there are lots of links
between a group of predators and the corresponding prey
group). Thus, we utilize the link probability function in
(25), where the matrix R is set to be R0. Then, the link
density between the two detected communities, i.e., the
ratio between the number of links and the number of pos-
sible links in a complete graph, is 0.590, while that of the
entire graph is only 0.223. The two detected communities
are depicted in Fig. 7. We observe that there are lots of
links between the two communities while only few links
exist within each community. So, the detected commu-
nity structure correctly characterizes the predator-prey
relationship in the network.

5 Conclusion
A game-theoretic analysis of the community detection
problem in both noiseless networks and noisy networks
has been presented, which takes nodes’ rational deci-
sion making into account. The equilibria of the for-
mulated game lead to a probabilistic generative model

Fig. 7 The detected two communities in the Chesapeake and Florida
Bay foodweb network. Blue nodes and green nodes represent two
communities, respectively. The red nodes correspond to the
intersection of the two communities
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of networks with community structure. Based on the
game-theoretic model, we propose a general community
detection algorithm by using an EM algorithm. The effec-
tiveness of the proposed algorithm is validated by simula-
tions as well as real-data experiments. We hope that this
paper can open a new direction to look at the community
detection problem from the microeconomic perspective.
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