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Abstract- The least squares (LS) minimization problem con- 
stitutes the core of many real-time signal processing problems, 
such as adaptive filtering, system identification and adaptive 
beamforming. Recently efficient implementations of the recursive 
least squares (IUS) algorithm and the constrained recursive 
least squares (CRLS) algorithm based on the numerically stable 
QR decomposition (QRD) have been of great interest. Several 
papers have proposed modifications to the rotation algorithm 
that circumvent the square root operations and mirtimize the 
number of divisions that are involved in the Givena rotation. 
It has also been shown that all the known square root free 
algorithms are instances of one parametric algorithm. Recently, 
a square root free and division free algorithm has also been 
proposed. In this paper, we propose a family of square root 
and division free algorithms and examine its relationship with 
the square root free parametric family. We choose a specific 
instance for each one of the two parametric algorithms and make 
a comparative study of the systolic structures based on these two 
instances, as well as the standard Givens rotation. We consider the 
architectures for both the optimal residual computation and the 
optimal weight vector extraction. The dynamic range of the newly 
proposed algorithm for QRD-RLS optimal residual computation 
and the wordlength lower bounds that guarantee no overflow 
are presented. The numerical stability of the algorithm is also 
considered. A number of obscure points relevant to the realization 
of the QRD-RLS and the QRD-CRLS algorithms are clarified. 
Some systolic structures that are described in this paper are very 
promising, since they require less computational comlrlexity (in 
various aspects) than the structures known to date and they make 
the VLSI implementation easier. 

I. INTRODUCTION 

HE least squares (LS) minimization problem cGmstitutes T the core of many real-time signal processing problems, 
such as adaptive filtering, system identification and btmnform- 
ing [6]. There are two common variations of the LS problem 
for adaptive signal processing: 

1) Solve the minimization problem 
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where X ( n )  is a matrix of size n x p ,  ~ ( n )  is a 
vector of length p ,  y(n) is a vector of length n and 
P(n) = diag{pn- ' ,~"-Z, . . . , l} ,O < ,L3 < 1, that is, ,L3 
is a forgetting factor. 

2) Solve the minimization problem in (1) subject to the 
linear constraints 

where ci is a vector of length p and ri is a scalar. In this 
paper, we consider only the special case of the minimum 
variance distortionless response (MVDR) beamforming 
problem [I51 for which y(n) = 0 for all n and (1) is 
solved by subjecting to each linear constraint, i.e., there 
are N linear-constrained LS problems. 

There are two different pieces of information that may be 
required as the result of this minimization [6]: 

1) The optimizing weight vector w ( n )  and/or 
2) the optimal residual at the time instant n 

where X ( t n )  is the last row of the matrix X ( n )  and 
y(t,) is the last element of the vector y(n). 

Efficient implementations of the recursive least squares 
(RLS ) algorithms and the constrained recursive least squares 
(CRLS) algorithms based on the QR decomposition (QRD) 
were first introduced by McWhirter [ 141, [ 151. A compre- 
hensive description of the algorithms and the architectural 
implementations of these algorithms is given in [6, chap.141. 
It has been proved that the QRD-based algorithms have 
good numerical properties [6].  However, they are not very 
appropriate for VLSI implementation, because of the square 
root and the division operations that are involved in the Givens 
rotation and the backprintingsubstitution required for the case 
of weight extraction. 

Several papers have proposed modifications in order to 
reduce the computational load involved in the original Givens 
rotation [2], [5], [4], [8]. These rotation-based algorithms 
are not rotations any more, since they do not exhibit the 
normalization property of the Givens rotation. Nevertheless, 
they can substitute for the Givens rotation as the building block 
of the QRD algorithm and thus they can be treated as rotation 
algorithms in a wider sense: 
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Definition 1: A Givens-rotation-based algorithm that can be 
used as the building block of the QRD algorithm will be called 
a Rotation algorithm. 

A number of square-root-free Rotations have appeared in 
the literature [2], [5], [8], [lo]. It has been shown that a 
square-root-free and division-free Rotation does exist [4]. 
Recently, a parametric family of square-root-free !Rotation 
algorithms was proposed in [8]; it was also shown that all 
the known square-root-free Rotation algorithms belong to this 
family, which is called the “pv-family.” In this paper we will 
refer to the pv-family of Rotation algorithms with the name 
parametric pv Rotation. We will also say that a Rotation 
algorithm is apv Rotation if this algorithm belongs to the pv- 
family. Several QRD-based algorithms have made use of these 
Rotation algorithms. McWhirter has been able to compute 
the optimal residual of the RLS algorithm without square 
root operations [14]. He also employed an argument for the 
similarity of the RLS and the CRLS algorithms i o  obtain a 
square-root-free computation for the optimal residual of the 
CRLS algorithm [15]. A fully-pipelined structure for weight 
extraction that circumvents the back-substitution divisions was 
also derived independently in [ 171 and in [ 191. Finally, an 
algorithm for computing the RLS optimal residual based on 
the parametric pv Rotation was derived in [8]. 

In this paper, we introduce a parametric family of square- 
root-free and division-free Rotations. We will refer to this 
family of algorithms with the name parametric K X  Rotation. 
We will also say that a Rotation algorithm is a K A  Rotation 
if this algorithm is obtained by the parametric K A  Rotation 
with a choice of specific values for the parameters K and 
A. We employ the arguments in [8], 1141, [15] and [17] in 
order to design novel architectures for the RLS and the CRLS 
algorithms that have less computation and circuit complexity. 
Some systolic structures that are described here are very 
promising, since they require the minimum computational 
complexity (in various aspects) known to date, and they can 
be easily implemented in VLSI. 

In Section 11, we introduce the parametric K X  !Rotation. In 
Section 111, we derive the RLS algorithms that arc: based on 
the parametric K X  Rotation and we consider the architectural 
implementations for a specific K X  Rotation. In Section IV, we 
follow the same procedure for the CRLS algorithms. In Section 
V, we address the issues of dynamic range, lower bounds 
for the wordlength, stability and error bounds. Wc conclude 
with Section VI. In the Appendix we give the proofs of some 
lemmas that are stated in the course of the paper. 

11. SQUARE ROOT AND DIVISION FREE ALGORITHMS 

In this section, we introduce a new parametric family of 
Givens-rotation-based algorithms that require neither square 
root nor division operations. This modification to the Givens 
rotation provides a better insight on the computational com- 
plexity optimization issues of the QR decomposition and 
makes the VLSI implementation easier. 

A. The Parametric K X  Rotation 

The standard Givens rotation operates (for real-valued data) 
as follows: 

where 

r i = c p r j + s x j ,  j = 1 , 2 , . . . , m  (7) 
x ~ = - s ~ r j + c x j ,  j = 2 , 3 , . . . , m  . (8) 

We introduce the following data transformation 

(9) 

We seek the square root and division-free expressions for the 
transformed data a i ,  j = 1, 2, . . . , m b’. j = 2,3, . . . , m, in 
(6) and solving for a{, we get 

’ 39 

By substituting (5) and (9) in (7) and (8) and solving for U: 

and b;, we get 

where K and X are two parameters. By substituting (12) in 
(lo)-( 1 1) we obtain the expressions 

If the evaluation of the parameters K and X does not involve 
any square root or division operations, the update equations 
(12)-(15) will be square root and division-free. In other words, 
every such choice of the parameters K and X specifies a square 
root and division-free Rotation algorithm. 

Definition 2: Equations (12)-(15) specify the parametric 
K X  Rotation algorithm. Furthermore, a Rotation algorithm will 
be called a K X  Rotation if it is specified by (12)-(15) for 
specific square-root-free and division-free expressions of the 
parameters K and A. 

One can easily verify that the only one square root and 
division-free Rotation in the literature to date [4] is a K X  
Rotation and is obtained by choosing IE = X = 1. 
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Fig. 1 .  
position, a Rotation algorithm, a p v  Rotation, and a td Rotatism. 

The relations among the classes of algorithms based on QR decom- 

B. The Relation between the Parametric K X  
and the Parametric pv Rotation 

Let 

We can express k: and I C ;  in terms of I C ,  and k b  as f.)llows [8] 

If we substitute (16) and (17) in (12) and solve for p and v 
we obtain 

The above provides a proof for the following Lemma: 
Lemma 2.1: For each square root and division-free pair of 

parameters (n, A) that specifies a KX Rotation algorithm Al,  
we can find square-root-free parameters ( p ( ~ ) ,  v(X);  with two 
properties: first, the pair (p(n),  .(A)) specifies a p.1. !Rotation 
algorithm A2 and second, both A1 and A2 are mathtmmatically 

Consequently, the set of nX Rotation algorithms can be 
thought of as a subset of the set of the pv Rotations. Further- 
more, (18) provides a means of mapping a nX Rotation onto 
a pv !Rotation. For example, one can verify that the square 
root and division-free algorithm in [4] is a pv Rotation and 
is obtained for 

equivalent *. 0 

, v = l .  kaP2aT + kbb? 
b k b  

/ I  = 

In Fig. 1, we draw a graph that summarizes the relations 
among the classes of algorithms based on QR deconiposition, 
a Rotation algorithm, a pv Rotation and a KX Rotalion. 

111. ALGORITHM AND ARCHITECTURE 

In this section, we consider the nX Rotation for optimal 
residual and weight extraction using systolic array imple- 
mentation. Detailed comparisons with existing approaches are 
presented. 

A. A Novel Fast Algorithm for the RLS 
Optimal Residual Computation 

follows 
The QR-decomposition of the data at time instant n is as 

where T(n)  is a unitary matrix of size ( p  + 1) x ( p  + 1) 
that performs a sequence of p Givens rotations. This can be 
written symbolically as 

where 

and 

Equations (12)-(15) imply that the ith Rotation is specified 
as follows 

wherei= 1 , 2 , . . . , p , b y ) =  b j , j =  l , . . - , p + l a n d Z ~ ) = l , .  
For the optimal residual we have: ' They evaluate logically equivalent equations. 
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Fig. 2. Sl.1 : Systolic array that computes the RLS optimal residual. It implements the algorithm that is based on the K A  Rotation for which K = A = 1. 

Lemma 3.1: If the parametric KA gotation is used in the 
QRD-RLS algorithm, the optimal residual is given by the 
expression 

0 
The proof is given in the Appendix. 

Here, E ,  is a free variable. If we choose I ,  = 1, we can 
avoid the square root operation. We can see that for a recursive 
computation of (26) only one division operation is needed at 
the last step of the recursion. This compares very favorably 
with the square root free fast algorithms that require one 
division for every recursion step, as well as with the original 
approach (63), which involves one division and one square 
root operation for every recursion step. 

The division operation in (26) cannot be avoided by proper 
choice of expressions for the parameters K and A. This is 
restated by the following Lemma, which is proved in the 
Appendix: 

Lemma 3.2: If a KA !Rotation is used, the U S  optimal 
residual evaluation will require at least one division evaluation. 

0 

Note that the proper choice of the expression for the 
parameter A,, along with the rest of the parameters, is an 
open question, since the minimization of the multiplication 
operations, as well as communication and stability issues have 
to be considered. 

B. A Systolic Architecture for  the Optimal 
RLS Residual Evaluation 

McWhirter has used a systolic architecture for the imple- 
mentation of the QR decomposition [14]. This architecture 
is modified, so that equations (22)-(26) be evaluated for the 
special case of n; = Ai = l,z = 1,2,...,p and 1, = 1. The 
systolic array, as well as the memory and the communication 
links of its components, are depicted in Fig. 2'. The boundary 
cells (cell number 1) are responsible for evaluating (22) and 
(23), as well as the coefficients C; = lg-l'a;; and 3; = 

and the partial products e; = n;=l(Pajj). The 
internal cells (cell number 2) are responsible for evaluating 
(24) and (25). Finally, the output cell (cell number 3) evaluates 
(26). The functionality of each one of the cells is described in 
Fig. 2. We will call this systolic array Sl.1. 
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TABLE I 
RLS RESIDUAL COMPUTATIONAL COMPLEXITY 

I I SI . 1  : KX I S1.2 : UV I S1.3 : Givens rotation I 

sq.rt 
div. 

mult. 
i/o 

- - - - - - 1 
- - 1 1  - - 1 
9 4 1 5 3 1 4 
9 10 4 6  8 3 5 6 

On Table I, we collect some features of the systoliz structure 
Sl.1 and the two structures, S1.2 and S1.3, in [14] that are 
pertinent to the circuit complexity. The S1.2 implements the 
square-root-free QRD-RLS algorithm with p = v := 1, while 
S1.3 is the systolic implementation based on the original 
Givens rotation. In Table I, the complexity per proc'essor cell 
and the number of required processor cells are indicated for 
each one of the three different cells3. One can easi y observe 
that S1.l requires only one division operator and no square 
root operator, S1.2 requires p division operators and no square 
root operator, while 5'1.3 requires p division and p square root 
operators. This reduction of the complexity in terms of division 
and square root operators is penalized with the incrcase of the 
number of the multiplications and the communication links 
that are required. 

Apart from the circuit complexity that is involied in the 
implementation of the systolic structures, another feature of 
the computational complexity is the number of operfitions-per- 
cycle. This number determines the minimum requ red delay 
between two consecutive sets of input data. For the structures 
S1.2 and S1.3 the boundary cell (cell number 1) constitutes 
the bottleneck of the computation and therefore it cetermines 
the operations-per-cycle that are shown on Table 1'. For the 
structure S1.l either the boundary cell or the outpiit cell are 
the bottleneck of the computation. 

C. A Systolic Architecture for  the Optimal 
RLS Weight Extraction 

Shepherd et al. [ 171 and Tang et al. [ 191 have independently 
shown that the optimal weight vector can be evaluated in a 
recursive way. More specifically, one can compute nmrsively 
the term R-T(n) by 

and then use parallel multiplication for computing elT(n)  by 

W y n )  = uT(n)R-T(n). (28) 

The symbol # denotes a term of no interest. The above 
algorithm can be implemented by a fully pipelinetl systolic 
array that can operate in two distinct modes, 0 ard 1. The 
initialization phase consists of 2p steps for each processor. 
During the first p steps the processors operate in nLode 0 in 
order to calculate a full rank matrix R. During the I'ollowing 
p steps, the processors operate in mode 1 in order to compute 
R-T, by performing a task equivalent to forward substitution. 

3The multiplications with the constants 3 and 3' are not encountered. 

After the initialization phase the processors operate in mode 
0. In [17] one can find the systolic array implementations 
based both on the original Givens rotation and the Gentleman's 
variation of the square-root-free Rotation, that is, the pv 
Rotation for ,u = v = 1. We will call these two structures 
S2.3 and S2.2, respectively. 

In Fig. 3, we present the systolic structure 52.1 based on 
the nX !Rotation with 6% = A, = 1,i = 1,2,...,p. This 
is a square-root-free and division-free implementation. The 
boundary cells (cell number 1) are slightly simpler than the 
corresponding ones of the array S1.l. More specifically, they 
do not compute the partial products e,. The internal cells (cell 
number 2), that compute the elements of the matrix R, are 
identical to the corresponding ones of the array S1.l. The 
cells that are responsible for computing the vector U (cell 
number 3) differ from the other internal cells only in the 
fact that they communicate their memory value with their 
right neighbors. The latter (cell number 4) are responsible for 
evaluating (28) and (27). The functionality of the processing 
cells, as well as their communication links and their memory 
contents, are given in Fig. 3. The mode of operation of each 
cell is controlled by the mode bit provided from the input. For 
a more detailed description of the operation of the mode bit 
one can see [I51 and [17]. 

On Tables I1 and V, we collect some computational com- 
plexity metrics for the systolic arrays S2.1, S2.2 and 5'2.3, 
when they operate in mode 04. The conclusions we can draw 
are similar to the ones we had for the circuits that calculate the 
optimal residual: the square root operations and the division 
operations can be eliminated with the cost of an increased 
number of multiplication operations and communication links. 
We should also note that 52.1 does require the implemen- 
tation of division operators in the boundary cells, since these 
operators are used during the initialization phase. Nevertheless, 
after the initialization phase the circuit will not suffer from any 
time delay caused by division operations. The computational 
bottleneck of all three structures, S2.1, S2.2 and S2.3, is 
the boundary cell, thus it determines the operations-per-cycle 
metric. 

As a conclusion for the RLS architectures, we observe that 
the figures on Tables I, 11, and V favor the architectures based 
on the nX Rotation, n = X = 1 versus the ones that are 
based on the pv rotation with p = v = 1 and the standard 
Givens rotation. This claim is clearly substantiated by the delay 
times on Table V, associated to the DSP implementation of the 
QRD-RLS algorithm. These delay times are calculated on the 
basis of the manufacturers benchmark speeds for floating point 
operations [stewart]. Due to the way of updating R-l, such 
a weight extraction scheme will have a numerical stability 
problem if the weight vector at each time instant is required. 

Iv .  CRLS ALGORITHM AND ARCHITECTURE 
The optimal weight vector ~ ' ( n )  and the optimal residual 

ebRLs(tn) that correspond to the ith constraint vector c2 are 
given by the expressions [ 151 

4The multiplications with the constants .3 .  ,3*. 1/,3 and l / J 2 ,  as well as 
the communication links that drive the mode bit. are not encountered. 
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Fig. 3. S2.1 : Systolic array that computes the RLS optimal weight vector. It implements the algorithm that is based on the K X  Xotation for which K = X = 1. 

TABLE 11 
RLS WEIGHT EXTRACTION COMPUTATIONAL COMPLEXITY (MODE 0)  

where 
(29) 

&&) = X(t,)R-l(n)zi(n).  
and 

The term zZ(n) is defined as follows 

z i ( n )  = R-T(n)d 
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and it is computed with the recursion [15] 

(33) 

where the symbol # denotes a term of no intered. In this 
section, we derive a variation of the recursion thai is based 
on the parametric nX gotation. Then, we design tkle systolic 
arrays that implement this recursion for n = X = 1. We 
also make a comparison of these systolic structures (with those 
based on the Givens rotation and the pv sotation introduced 
by Gentleman [6], [2], [IS], [171. 

From (32) and (21) we have ~ ' ( n )  = (L(n)-'/2&'(n))-'c' 
and since L(n)  is a diagonal real valued matrix we g( t ~ ' ( n )  = 
L(n)1/2R(n,)-*cz, where c' is the constraint direct on. If we 
let 

Z"n) = L(n)R(n)-Tc' (34) 

z"n) = L(n)-%"n). (35) 

we obtain 

From (35) we get 11~'(n)1)~ = Z"(n)L-'(n)Z'(n). Also, 
from (21) and (35) we get R-l(n)z'(n) = k 1 ( n ) Z Z ( n ) .  
Consequently, from (29), (30), (31) we have 

and 
rz 

wi(n) = --'T R- 1 (n)  zi (n;' (37) 
zz (n)L-l  (n)Zi (n)  

where 

2 L R L S (  n) = x(7L)R-l (a)+). 

Because of the similarity of (31) with (38) and (29) with (37) 
we are able to use a variation of the systolic arrays that are 
based on the Givens rotation [15], [17] in order to evaluate 
(36)-( 37). 

A. Systolic Architecture for  the Optimal 
CRLS Residual Evaluation 

From (26) and (36), if 1, = 1, we get the optimal residual 

\- I 

(39) 
In Fig. 4, we present the systolic array S3.1, that evaluates 
the optimal residual for n3 = A, = 1, j = 1, 2: . , p ,  and 
the number of constraints is N = 2. This systolic array is 
based on the design proposed by McWhirter [15]. 11 operates 
in two modes and is in a way very similar to the operation 
of the systolic structure S2.1 (see Section 111). The recursive 
equations for the data of the matrix R are given in (22)-(25). 
They are evaluated by the boundary cells (cell number 1 )  
and the internal cells (cell number 2). These intetnal cells 
are identical to the ones of the array S2.1. The boundary 
cells have a very important difference from the corresponding 

ones of S2.1: while they operate in mode 0, they make use 
of their division operators in order to evaluate the elements 
of the diagonal matrix L-'(n),  i.e., the quantities l/Zi,Z = 
1,2, . . . , p .  These quantities are needed for the evaluation of 
the term ~ i ' ( n > ~ - l ( n ) ~ i ( n )  in (39). The elements of the 
vectors Z1 and ,Z2 are updated by a variation of (24) and 
(25), for which the constant /3 is replaced by l/P. The two 
columns of the internal cells (cell number 3) are responsible for 
these computations. They initialize their memory value during 
the second phase of the initialization (mode 1) according to 
(34). While they operate in mode 0, they are responsible for 
evaluating the partial sums 

k 

j = 1  

The output cells (cell number 4) are responsible for the final 
evaluation of the residual5. 

McWhirter has designed the systolic arrays that evaluate the 
optimal residual, based on either the Givens rotation or the 
square-root-free variation that was introduced by Gentleman 
[2], [15]. We will call these systolic arrays S3.3 and S3.2, 
respectively. On Tables I11 and V we collect some computa- 
tional complexity metrics for the systolic arrays S3.1, S3.2 
and S3.3, when they operate in mode 06. We observe that the 
pv Rotation-based 53.2, outperforms the nX !Rotation-based 
53.1. The two structures require the same number of division 
operators, while S3.2 needs less multipliers and also it has 
less communication overhead. 

B. A Systolic Architecture for  the Optimal 
CRLS Weight Vector Extraction 

In Fig. 5, we present the systolic array that evaluates (37) 
for nj = X j  = 1, j = 1,2, . . . , p and the number of constraints 
equal to N = 2. This systolic array operates in two modes, just 
as the arrays S2.1 and 53.1 do. The boundary cell (cell number 
1) is responsible for evaluating the diagonal elements of the 
matrices R and L, the variable Z,, as well as all the coefficients 
that will be needed in the computations of the internal cells. 
In mode 0 its operation is almost identical to the operation of 
the boundary cell in S2.1 (except for t) ,  while in mode 1 it 
behaves like the corresponding cell of S3.1. The internal cells 
in the left triangular part of the systolic structure (cell number 
2) evaluate the nondiagonal elements of the matrix R and they 
are identical to the corresponding cells of S3.1. The remaining 
part of the systolic structure is a 2-layer array. The cells in 
the first column of each layer (cell number 3) are responsible 
for the calculation of the vector zi and the partial summations 
(40). They also communicate their memory values to their right 
neighbors. The latter (cell number 4) evaluate the elements of 
the matrix R-T and they are identical to the corresponding 
elements of S2.1. The output elements (cell number 5) are 
responsible for the normalization of the weight vectors and 
they compute the final result. 

5Note the alias T'  E T. 
6The multiplications with the constants ,P. 9'. 1/:3 and 1/>9', as well as 

the communication links that drive the mode bit, are not encountered. 
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Fig. 4. S3.1 : Systolic array that computes the CRLS optimal residual. It implements the algorithm that is based on the K X  Rotations for which E = X = 1. 

TABLE III 
c m  OPTlMAL RESIDUAL COMPUTATIONAL COMPLEXITY (MODE 0) 

d i V .  

mult. 4 

Shepherd et aZ. [17] and Tang et al. [ 191 have designed similar to the ones we have for the systolic 
systolic structures for the weight vector extraction based the RLS weight vector (see Section 111). 

mays that valuate 

on the Givens rotation and the square-root-free Rotation of 
Gentleman [ 2 ] .  We will call these two arrays 54.3 and 5'4.2, 
respectively. On Tables IV and V, we show the computational 
complexity metrics for the systolic arrays S4.1, 54.2 and S4.3, 
when they operate in mode 0. The observations we make are 

Note that each part of the 2-layer structure computes the 
terms relevant to one of the two constraints. In the same 
way, a problem with N constraints will require an N-layer 
structure. With this arrangement of the multiple layers we 
obtain a unit time delay between the evaluation of the weight 
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W 
00 woo 

w woo 0 0 1  
w 0 0 0 0  0 0 0  1 0  

woo 0 0 0  0 1  0 0  
X W O  0 0  1 0  0 0  

X X 0 0  0 1  0 0  0 0  
X X 1 0 0  1 0  0 0  o w  
x 0 0 0 1  0 0  0 0 0  0 0 0 0  
0 1 0 0 0  o w  woo 0 0 0 0  
0 0 2 l o o  0 0 0 0  woo w 
1 c z  c1 woo aom w 
c2 c1 x w w  00 
c’ x X 00 
x X X 
X X 
X 

modeO: d + a h P z r r + I . b h b h  

in Z c o  r 

I t l * b b  

UOd+ 

x t r  
Y t b h  
I t  l-o,d 
r c d  
t t l l l  

mode 1 :  x t l  
y + b j n / r  
t C 1  

modeO: b o , , t t $ x . b i n - $ y . z  
1- 

.bin Z t  T C  . z + s  

l o m t 4 - l i n + t h Z ’ Z  
t - t  z 

P 

mode 1: if b 11 then r t  y -  tin 
h 

mode 0 : 

mode I :  

I 

mode 1 :  b o m t t x .  b i n - y . r  

Fig. 5. S4.1 : Systolic array that computes the CRLS optimal weight vector. It implements the algorithm that is based on the K A  Rotation for 
which n = X = 1. 

vectors for the different constraints. The price we have to pay 
is the global wiring for some of the communicatioii links of 
cell 3. A different approach can also be considered: we may 
place the multiple layers side by side, one on the right of the 
other. In this way, not only the global wiring will be avoided, 
but also the number of communication links of cell 3, will be 
considerably reduced. The price we will pay with this approach 
is a time delay of p units between consequent evaluations of 
the weight vectors for different constraints. 

As a conclusion for the CRLS architectures, we observe 
that the figures on Tables 111, IV and V favor the architectures 
based on the pv gotation, p = v = 1 versus the ones that are 
based on the nX rotation with n = X = 1. 

v .  DYNAMIC RANGE, STABILITY, AND ERROR BOUNDS 

Both the nX and pv gotation algorithms enjoy computa- 
tional complexity advantages compared to the standard Givens 
rotation with the cost of the denormalization of the latter. 
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S1.l  
S1.2 
S1.3 
S2.1 
S2.2 
S2.3 
S3.1 
S3.2 
S3.3 
S4.1 
S4.2 
S4.3 

TABLE IV 
CRLS WEIGHT VECTOR EXTRACTION COMP COMPLEXITY (MODE 0 )  

operations-per-cycle DSP96000 IMS T800 WEITEK 3164 ADSP-3201/2 
(ns) (ns) (ns) (ns) 

"(1 div. t 1 mult. , 9 mult. } 900 3150 1800 2700 
1 div. + 5 mult. 1020 2300 2700 3675 
1 sq.rt. t 1 div. t 4 mult. 1810 4500 5300 7175 
8 mult. 800 2800 1600 2400 
1 div. + 5 mult. 1020 2300 2700 3675 
1 sq.rt. t 1 div. t 4 mult. 1810 4500 5300 7175 
1 div. t 9 mult. 1420 3700 3500 4875 

1 sq.rt. +- 1 div. + 5 mult. 1810 4500 5300 7175 

1 div. t 5 mult. 1020 2300 2700 3675 
1 sq.rt. t 1 div. i- 4 mult. 1810 4500 5300 7175 

1 div. t 6 mult. 1120 2650 2900 3975 

1 div. t 8 mult. 1320 3350 3300 4575 

j 
mult . 

19 14 4 

3 4 5  
S4.3 : Givens rotation 

number of p p- . v p  Np(zp+ll N P  

1 
mult. 5 5 -  

13 10 4 

N p  +' N P  P-1 P 

b 3 5  4 

6 8 14 10 4 

TABLE V 

Consequently, the numerical stability of the QRD architectures 
based on these algorithms can be questioned. Furthermore, 
a crucial piece of information in the circuit design is the 
wordlength, that is the number of bits per word required to 
ensure correct operations of the algorithm without overflow. 
At the same time, the wordlength has large impact on the 
complexity and the speed of the hardware implementation. In 
this section, we address issues on stability, error bounds and 
lower bounds for the wordlength by means of dynamic range 
analysis. We focus on the algorithm for RLS optimal residual 
extraction based on a K X  Rotation. The dynamic range of the 
variables involved in the other newly introduced algorithms 
can be computed in a similar way. 

In [ 131, Liu et al. study the dynamic range of the QRD-RLS 
algorithm that utilizes the standard Givens rotation. This study 
is based on the fact that the rotation parameters generated 
by the boundary cells of the systolic QRD-RLS structure 
eventually reach a quasi-steady-state regardless of the input 
data statistics, provided that the forgetting factor P is close to 
one. A worst case analysis of the steady state dynamic range 
reveals the bound [13] 

(2P)z-1 A 

j = i , i + l , . . . , p + l  (41) 

lim lrz3(n)1 I ~ d7 1%" I=R: 1 

1 - P  n+cc 

for the contents of the processing elements of the ith row in the 

systolic structure, i = 1,2,  . . . , p ,  where IzCmarl is the largest 
value in the input data. Similarly, at the steady state the output 
o f t h e i t h r o w z ~ ) , j = i , i + l , . . . , p + l  isboundedby [13] 

lim x(z'(n) 5 (2~)~-~1x,, ,  I=RY, A 
n - m l j  I 

j = i + 1, i + 2, . . . , p + 1. (42) 

Furthermore, the optimal residual eRLS is bounded by [ 131 

The latter is a BIB0 stability result that applies also for the 
QRD-IUS algorithm based on a IEX Rotation. Nevertheless, 
the intemal stability is not guaranteed. More concretely, the 
terms involved in the QRD-RLS algorithm may not be upper 
bounded. 

In view of the intemal stability problem, a proper choice of 
the parameters K and X should be made. A correct choice will 
compensate for the denormalization of the type 

where Zi and ZF) are given in (22) and (23), respectively. The 
terms K: and in (22) and (23) can be used as shift operators 
by choosing 

n. - 2 - P t  a nd A .  2 -  - 2-Ti , i = l , 2 , . . . , p  (44) z -  
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1 . 1  

Y 
X Y 

X X Y 
x x .  x Y 
x x  X 

x x  
.o x 

Tho symbol @ denotes 
I unlt tlmr delay e 

e 

Fig. 6. Systolic array that computes the RLS optimal residual based on the scaled square root free and division free Rotation. 

where p, and 7, take integer values. For instance, in (23), if 
7, > 0 the effect of AT on (Z$-')p2a?, + l,b!"-1)2 ~ will be a 
right shift of 27, bits. We can ensure that 

i = 1 , 2 , .  . p (45) 

by forcing the most significant bit (MSB) of the binary 
representation to be either at position 2' or 2-1 after the shift 
operation. This normalization task has been introdLced in [ l ]  
and further used in [4]. It can be described in analytic terms 
by the expression 

0.5 5 1: < 2 and 0.5 5 1:) < 2 ,  

shift -amount (unnormalized-quantity ) 
= [{log, (unnormalized-quantity) + l}/i!] 

In the sequel, we consider the K X  !Rotation by choosing 
and it can be implemented very easily in hardware 

~i = shift-amount [(I!-1)P2a:i + Z.b(i-1)2 , )] (46) 

for i = 1 , 2 , .  . . , p [4]. Note that (46) along with (44) should 
precede (22)-(25) in the rotation algorithm. In conlbrmity to 
[I] and [4] we will refer to the resulting rotation algorithm 
with the name scaled rotation. 

The systolic array that implements the QRD-RLS algorithm 
for the optimal residual extraction is depicted in Fig. 6. A 
comparison of this systolic array with the one in Fig. 2 

is summarized by the following points: The boundary cells 
generate the shift quantities p and 7 associated with the 
parameters K and A, respectively, and they communicate them 
horizontally with the internal cells. This yields two additional 
links for the boundary cells and four additional ones for the 
internal cells. In the dynamic range study that follows, we 
show that the number of bits these links occupy is close to 
the logarithm of the number of bits required by the rest of the 
links. The boundary cells are also responsible for computing 
the quantities nfrl Pazz and nar,' A, in (26). In this case, A, 
is an exponential term according to (44), so the above product 
can be computed as the running sum of the exponents 

2 

g,=& 2 = 1 . 2 ; . . , p - l  (47) 
k=l 

yielding an additional adder for the boundary cells. Finally, as 
far as the boundary cells are concerned, we observe that the 
cell at position ( p , p )  of the systolic array is not identical to 
the rest of the boundary cells. This is a direct consequence of 
(26). On the other hand, the shift operators constitute the only 
overhead of the internal and the output cells compared with 
the corresponding ones in Fig. 2. Overall, the computational 
complexity (in terms of operator counts) is slightly higher than 
that of the systolic array with K. = X = 1. 

Let us focus now on the dynamic range of the variables in 
the systolic array. By solving (43) for atJ and using (41) and 
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(45) one can compute an upper bound for a;j at the steady 
state, thus one can specify the dynamic range of the ith row 
cell content. A similar result can be obtained for the output 
of the ith row by using (42), (43) and (45). The results are 
summarized by the following Lemma: 
Lemma 5.1: The steady state dynamic range of the cell 

content 72: and output range 72; in the ith row are given by 

respectively. 
The lower bounds in the wordlength come as a direct 

consequence of Lemma 4: The wordlength of the cell content 
p,' and output P;b in the ith row must be lower bounded by 

0; 2 [PI + 0.51 and p: 2 [pi" + 0.51 (49) 

respectively, where p[ = [log2 RC1 and P: = [log, R f l  are 
the corresponding wordlength lower bounds for the QRD-IUS 
implementation based on the standard Givens rotation. 

The parameters riir X i  are communicated via their exponents 
pi and T ~ .  The dynamic ranges of these exponents are given 
by Lemma 5 which is proved in the Appendix. 
Lemma5.2: The steady state dynamic range of the terms 

pi and T; at the ith row RC and 72: are given by 

lim p; 5 RPifi: + 2.5 
n-+m 

respectively7, if both pi and ri are nonnegative. 
Obviously, if both p; and ~i take negative values, (50) 

will also satisfy. But there is no guarantee in its dynamic 
bound. Notice that taking negative value means a left shift. 
Uncontrolled arbitrary left shift may end up losing the MSB, 
an equivalence of overflow. Thus, it will be wise to also limit 
the magnitudes of negative pi and ~i to the bounds in (50), i.e. 

Consequently, the lower bounds on the wordlength ,3: and pr 
of pi and r; are 

respectively. 
For the computation of the optimal residual the bound- 

ary cells need to evaluate both the running product e* = n",=, p a k k  and the running sum in (47). The dynamic ranges 
for these terms are given by the following Lemma: 

'For the sake of simplicity in notation we have dropped the time parameter 
R from the expression in the limit argument. 

Lemma 5.3: The steady state dynamic range of the terms 
e; and gi at the ith row Rf and 729 are given by 

(53) 

respectively. 
The proof is given in the Appendix. With simple algebraic 

manipulations one can show that the corresponding lower 
bounds on wordlength p: and of ei and gi are 

i 

k = l  

P: L max{ [log p? + log i + 11, [log i + log(i + 2)1} 
(54) 

respectively. 
Finally, consider the coefficients defined as 

c; = z(i-1) 2 3 .  - l . p - 1 )  
q P a i i  a - a i  

;, - p p '  & = paii a -  7 

that describe the information exchanged by the remaining 
horizontal links in the systolic array (cf. Fig. 6). One can easily 
show that the steady state dynamic range of these coefficients, 
denoted by Rf , Ri, 72: and Rf , respectively are 

(55 )  

The implied wordlength lower bounds are 2 p," + 1, 
@ 2 P;b + l,@ 2 0,' and /3: 2 ,@, respectively. 

In summary, (43 ,  (48), (50), (53), and (55) show that all the 
internal parameters are bounded and therefore the algorithm 
is stable. Furthermore, the lower bounds on the wordlength 
provide the guidelines for an inexpensive, functionally correct 
realization. 

The error bound of the whole QRD to a given matrix 
A E RmXn due to floating point operations is given by [ 11, [4] 

(16All 5 ~ ( m  + 71 - 3)(1+ ~)~+~- '11All  + 0 ( c 2 ) ,  (56) 

where T is the upper bound and E is the largest number such 
that 1 + E is computed as 1. If (44) and (45) are satisfied, for 
K = X = 1, then it follows that T = 6.56 [4]. This is fairly 
close to the standard Givens rotation which has T = 6.06 [4]. 

VI. CONCLUSION 
We introduced the parametric K X  Rotation, which is a 

square-root-free and division-free algorithm, and showed that 
the parametric K X  Rotation describes a subset of the pv 
Rotation algorithms [8]. We then derived novel architectures 
based on the K X  Rotation for K = X = 1 and made a 

. . . .- .- . . .- .. 
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comparative study with the standard Givens rotation and the 
pu Rotation with p = v = 1. Finally, a dynamic range 
study is pursued. It is observed that considerable improvements 
can be obtained for the implementation of some QRD-based 
algorithms. 

We pointed out the tradeoffs between the arc :hitectures 
based on the above Rotations. Our analysis su:;gests the 
following decision rule for selecting between the arc :hitectures 
that are based on the pv Rotation and the r;A Rotation: 
Use the pu Rotation - based architectures, with p = 
v = 1, for the constrained minimization problems and the 

Rotation - based architectures, with tc = X = 1, 
for the unconstrained minimization problems. Table V 
shows the benchmark comparisons of different dgorithms 
using different DSP processors and it confirms the properties 
claimed in this paper. 

A number of obscure points relevant to the realization of the 
QRD-RLS and the QRD-CRLS algorithms are c1ari:ied. Some 
systolic structures that are described in this pape' are very 
promising, since they require less computational complexity 

and by substituting (9) we obtain 

ca = - 

Similarly, from (4) and (9), we get 

i = 1 ,2 . .  . . , p .  (62) 

The optimal residual for the RLS problem is [6] 

The expressions in (20) and (1 9) imply 

v ( tn )  = - 

(in various aspects) from the structures known tc date and 
they make the VLSI implementation easier. If we substitute the above expressions of v ( tn )  and ci in (63) 

we obtain 

APPENDIX 

Proof of Lemma 3.1: First, we derive some equations 
that will be used in the course of the optimal residual com- 

e m s ( t n )  = - fi (2fi) f=$:jl. (64) 
i=l 

From (60) we get putation. 
If we solve (24), case i = j = 1, for lqP2afl  -- lib: and 

substitute in (22) we get 

1'1 = 1114-ti1 4 1  2 

61 

and therefore 

, & I ) *  and Thus, from (64) and (65), for the case of p = 2k, we have 
the first equation at the top of the next page. By doing 
the appropriate term cancelations and by substituting the 
expressions of l ; / l , ,  i = 1 , 2 , .  . . , 2k from (57) and (59) we 
obtain the expression (26) for the optimal residual. Similarly, 

If we solve (24), case j = i ,  for lt-1)P2a:i + lib, 
substitute in (23) we get 

$4 = -. A?& 
tidi 

(58 )  

If we substitute the same expression in (22) we get 
for the case of p = 25 - 1, from (64) and (65) we obtain the 
second equation at the top of the next page and by substituting 

1: = l J~- l )a : t&.  (59), we get (26). 
Proof of Lemma 3.2: The question is whether we can 

avoid the division in the evaluation of the residual. Obviously 
we should Apabp or 

(58) ,  and solve for 1 : / 1 2  to obtain 

(59) 
1: - A:-,& , 
1, & a - 1  X P  = .,/a;, 

a,- I,%-1 a:, . - -  - 

If we solve (22) for 1g-1)~2a: ,  + 1,b:a-1)2 and substitute in 
(23) we get 

holds. But, from (241, for = i, we get 

Also, we note that (4) implies that 

ci = i%ii/r:i 

Therefore, if we choose to avoid the division operation in the 
expression of the residual, we will need to perform another 
division in order to evaluate the parameter A,. 
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Proof of Lemma 5.2: From (45) and the fact that 0 < Equation (41) implies that the wordlength for the variable T 

p < 1 we get should satisfy the inequality 

zt-1)P2a;i + < 2 ~ , ; ; ( n ) ~  + 2b!”-’)’. pr a -  > [(i - 1)(1+ logP) + c1 
Consequently, at the steady state we have 

Also, (41), (42), F d  (48) imply that R4 > Rq. Therefore, we 
obtain the bound 

n-w lim llt-f)P2a?i + l & ~ - l ) z l  < 4(R:)2 

and by utilizing (23) and the fact that 1:) 2 0.5we get 

lim (A;’1 5 2 lim llt-’)P2a?i + l;b!”’)’ 1 
n- x) n-+m 

< 8(R4)2. (66) 

By substituting the expression X i  = 2-7*, using (66) and 
solving the resulting inequality for ~i 

lim 7; 5 log RT + 1.5 
n+w 

if Tiis nonnegative. The expression for the dynamic range of 
7-i in (50) is a direct consequence of the above inequality. 

Similarly, for the computation of the dynamic range of the 
term pi first one can prove that 

. and then compute an upper bound for piat the steady state 
based on (22), (44) and the fact that 1: 2 0.5. 

Proof of Lemma 5.3: Since 0 < P < 1, for the term e; 
we have 

a 

k = 1  k=l 
Similarly, for the term giwe have 

i 

and from (50) 

k=l k = l  

where C is constant with respect to i. Since p < 1, it is 
sufficient to have 

or 

p,T 2 i - 1 + p;. (68) 

A similar formula can be derived for the wordlength of the 
contents of the the array that utilizes the scaled rotation, based 
on (49) and (68). More specifically, we have 

p; 2 p l ” + i - 1 .  

From this inequality and (67) we get 

i(i - 1) 
lim 19;) 5 ZPg + - + 1.52. 

n+w 2 

The dynamic range expression in (53) follows directly. 
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