2018 52nd Annual Conference on Information Sciences and Systems (CISS)

Generic Network Cost Minimization: A
Decentralized Newton’s Method

Xuanyu Cao and K. J. Ray Liu

Abstract—In this work, we examine a generic network cost
minimization problem, in which every node has a local decision
vector to optimize. Each node incurs a cost associated with its
decision vector while each link incurs a cost related to the
decision vectors of its two end nodes. All nodes collaborate
to minimize the overall network cost. The formulated network
cost minimization problem has broad applications in distributed
signal processing and control, in which the notion of link costs
often arises. To solve this problem in a decentralized manner,
we develop a distributed variant of the Newton’s method. The
proposed method is based on an appropriate splitting of the
Hessian matrix and an approximation of its inverse, which is used
to determine the Newton step. Global linear convergence of the
proposed algorithm is established and a quadratic convergence
phase of the algorithm over a certain time interval is identified.
Finally, numerical simulations are conducted to validate the
effectiveness of the proposed algorithm and its superiority over
other first order methods, especially when the cost functions are
ill-conditioned.

Index Terms—Decentralized optimization, Newton’s method,
network cost minimization

I. INTRODUCTION

The advancement of decentralized signal processing and
control in multi-agent systems relies on the development
of various distributed optimization methods. Owing to its
importance, distributed optimization over networks has been
extensively studied in the literature. One important category of
distributed optimization problems is consensus optimization,
in which all agents share the same decision variables but
have different local cost functions. The goal of consensus
optimization is to maximize the total costs of the whole
network collaboratively. To this end, Nedic and Ozdaglar
propose a decentralized subgradient method for consensus
optimization in their seminal work [1]. Moreover, consensus
optimization has been studied by using the distributed Nes-
terov gradient algorithm in [2] and the distributed alternating
direction method of multipliers (ADMM) in [3]. Later, variants
of the distributed ADMM have been proposed for consensus
optimization [4]-[7]. In addition, second order optimization
algorithm based on Newton’s method has been proposed for
consensus optimization in [8].

In the aforementioned works, only costs or utilities at nodes
are taken into account while the costs or gains of links are
ignored. For instance, in consensus optimization, the network
cost, i.e., the objective function, is only comprised of local cost
at each node while the effect of the link is not incorporated.
Nevertheless, the notion of link costs or link utilities may
arise in many practical signal processing and control problems.
For example, in distributed multitask adaptive learning [9],

978-1-5386-0579-0/18/$31.00 ©2018 IEEE

[10], each node ¢ aims at estimating its own weight vector
w;, which, unlike consensus optimization, is different from
other nodes’ weight vectors. In most cases, neighboring nodes
incline to have similar weight vectors. To incorporate this prior
information into the estimator, the objective function to be
minimized should include terms promoting proximity between
neighbors such as ||w; —w;||3, where i, j are connected by an
edge. This term is tantamount to a link cost of the link (i, j).

Despite its usefulness, the notion of link costs (or utilities)
is not well studied except for some specific applications
such as multitask adaptive estimation [9], [10]. Therefore,
we are motivated to examine the network cost minimization
problem in which both node costs and link costs take place.
Inspired by the recent work on network Newton algorithm
for decentralized consensus optimization [8], we develop a
distributed variant of Newton’s method for the generic net-
work cost minimization problem in this paper. The proposed
algorithm is based on appropriate splitting of the Hessian
matrix and a corresponding approximation of its inverse so
that the computation of the Newton step can be distributed to
each node in parallel. Performance analysis of the proposed
distributed Newton’s method is presented. In particular, global
linear convergence of the algorithm is guaranteed under some
standard assumptions on the local cost functions (Theorem
1). Moreover, analogous to the classical centralized Newton’s
method [11], [12], a quadratic convergence phase of the
algorithm over a certain time interval is identified (Theorem
2). Numerical experiments on quadratic programming are
implemented to corroborate the effectiveness of the proposed
algorithm, which outperforms alternative first order optimiza-
tion methods significantly in terms of both convergence time
and number of per-node information exchanges.

The organization of the rest of this paper is as follows. In
Section II, the network cost minimization problem is formally
formulated and a distributed Newton’s method is developed
to solve it. Convergence analysis of the proposed algorithm is
conducted in Section III while numerical results are presented
in Section IV. We conclude this work in Section V.

Notations: Denote {1,2,...,n} as [n]. ||x||2 means the
Euclidean norm of vector x while ||A|2 means the spectral
norm (maximum singular value) of matrix A. p(A) is the
spectral radius of A € R"*", i.e., p(A) = max;epy |A:(A)],
where \;(A)’s are the eigenvalues of A. Denote the sets of
n X n symmetric matrices, positive semidefinite matrices and
positive definite matrices as S™, S’} and S} |, respectively. For
two symmetric matrices A, B € S, A < B means B — A is
positive semidefinite.

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

II. PROBLEM FORMULATION AND ALGORITHM
DEVELOPMENT

In this section, the network cost minimization problem
is formulated formally and its applications are discussed.
Afterwards, by appropriate splitting and approximation of
the Hessian matrix of the objective function, we develop a
distributed variant of Newton’s method for the formulated
network cost minimization problem.

A. Problem Formulation

Consider a network of n nodes. Assume the network is
a simple graph, i.e., the network is undirected with no self-
loop and there is at most one edge between any pair of
nodes. Denote the set of neighbors of node ¢ (those who are
linked with node 7 with an edge) as €2;. The network can be
either connected or disconnected (there does not necessarily
exist a path connecting every pair of nodes). Each node i
has a p-dimensional local decision variable x; € RP. Given
x;, the cost of node i is f;(x;), where f; is the node cost
function of node 7. Furthermore, for two linked nodes 7 and
J and their decision variables x; and x;, there is a cost of
9ij(xi,x;) associated with the link (¢, 7), where g;; is the
link cost function of the link (4, 7). The goal of the network
is to solve the following network cost minimization problem
in a decentralized manner:

Minimize ZfZ (x;) + Z Z 95 (%i,%5). (D

i=1j€Q;

We note that the consensus optimization problems in [1]-
[8], [13] are special cases of the network cost minimization
problem (1) here. In fact, by setting the link costs g;;(x;,x;)
to be the weighted distance between x; and x; and letting the
weights of link costs go to infinity, we recover the consensus
constraints provided that the network is connected. The prob-
lem formulation (1) has broad applications. For instance, in
distributed estimation over (sensor) networks, each node ¢ has
a local unknown vector x; to be estimated. The cost at node 7,
i.e., fi(x;), may be some squared error or more generally the
negative log-likelihood with respect to the local data observed
by node i. The link cost g;;(x;,x;) for a link (7,7) can be
used to enforce proximity between neighboring nodes, e.g.,
lx; — x;]|3 in multitask adaptive networks in [9], [10].
Inspired by the recent work [8] on network Newton algo-
rithm for consensus optimization, we develop a distributed
variant of Newton’s method for the generic network cost
minimization problem (1), which takes link costs into account
and encompasses consensus optimization as a special case.
We make the following two technical assumptions which are
standard in the literature of numerical optimization [11], [12].

Assumption 1. There exist two positive constants 0 < m <
M such that, for any i € [n],j € ; and x;,x; € RP:
ml = V2 f;(x;) < ML,)
ml j V2gij(x,~,xj) j MT. (3)

Assumption 2. There exists a positive constant L > 0 such

that the Hessian matrices of all f;’s and g;;’s are L-Lipschitz

continuous, i.e., for any i € [n],j € Q; and x;,X},x;,%X:

J
V2 fi(x:) —

V%9 (xi,%;) —

V2fi(x)ll2 < Lllx; — %j]2, 4)

9 X; x!
i ze]|][
B. Algorithm Development

Define x € R™P as the concatenation of all the x;’s. Denote
the objective function of (1) as F(x) := Y., fi(x;) +
PEDYD 12 jeq, Jii x,,xj) Denote the unique minimizer of F’
as x* wﬁere the uniqueness results from the strong convexity
assumptlon i.e., Assumption 1. In the rest of the paper, unless
explicitly speciﬁed, we use [-]; to denote the i-th p-dimensional
subvector of a vector and use [];; to denote the (i,7)-th
p X p block of a matrix. To apply Newton’s method to (1), we
compute the gradient of F' as follows:

[VEX)]i = Vi(xi) + D [V 965 (%0, %5) + Vi, 956 (%5, %0)].
JEQ;
(6)

(x) the Hessian matrix of F’, which is

)z < L’

2
(&)

Denote H(x) := V2F

computed as:

[H(x)]r
V2 fi(xi) + 3 ca, Vi 9i5 (%0, %5) + Vi, g5 (x5, %3)],
- it i =k,
) V2, gin (i %) + V2 gri(xk, %), if k€ Q
0, otherwise.
@)

We note that H(x) is positive definite (according to As-
sumption 1) and block sparse with the sparsity pattern of the
network. We further define a block diagonal matrix D(x):

D))k
V2 fi(xi) + 2300, [Va, 005 (%is x5) + Vi, g5 (x5, %),
= if i=k,
0, otherwise,
(®)
and a block sparse matrix B(x):
[B(x)]ix
Y iea [V, 9i (xix5) + V3, g (x5, %)), if i =k,
=0 Vi, x Ok (X, Xk) = Vi o gri(xp,%i), if ke Q,
0, otherwise.
)

Thus, we obtain a splitting of the Hessian matrix as
H(x) = D(x) — B(x). According to Assumption 1, it is
easy to see that D(x) is positive definite. So, we can write
H(x) = D(x)? [I—D(x)_%B(x)D(x)_%] D(x). To

invoke Newton’s method, we need to calculate H(x) ' =

1 1 171 1
D(x)? [I—D(x)_§B(x)D(x)_5] D(x) ?.

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

Unfortunately, H(x)71 is not necessarily block sparse so that
the exact Newton’s method for minimizing F(x) cannot be
implemented in a distributed fashion. Therefore, to obtain a
distributed algorithm, we resort to some approximated version
of H(x) ™. To this end, if p (D(x)*%B(x)D(x)*%) <1
(which will be shown later in Section IIl), we can rewrite
H(x) ' as:

[N

H(x)' =D(x) ¢} [D(x)—%B(x)D(x)—%]kD(x)—%.
k=0

(10)
Truncating the first K + 1 (K > 0) terms of the summation
in (10), we note that .
D(x) K, [D(x)—%B(x)D(x)—hJ D(x)"? is still
positive definite. As such, we can define a positive definite
approximated Hessian H(x):

Nl

H(x)

= {D(X)_
(1m)

Denote the iterate at time ¢t as x;. Define hy = VF(x;)
and H, = H(x,). Thus, the approximated Newton direction
isd; = —fI; 'h, and the approximated Newton update is
X¢+1 = X; + ed;, where € > 0 is the step size. Next, we
demonstrate that the approximated Newton direction d; can be
computed in a distributed and recursive manner. To this end,
define the k-th (k > 0) order approximated Hessian matrix
Hy (x):

ﬂk(x)

-1

Nl=

i [D(x)—%B(x)D(x)—érD(x)—é}

k=0

—1

SIS

i _1 _17! 1
— {D(x) 5 [D(x) B (x)D(x)] D(x) }
1=0

12)
Furthermore, define D; = D(x;), B; = B(x:), H; = H(x;),
H;.;, = Hy(x;) and dy; = —H, ;h;. Thus, d; = d;. The
approximated Newton direction can be calculated recursively
as:

_1 ktl _1 1N\ _1
dk:+1,t = _Dt 2|1 + Z (Dt QBtDt 2) Dt th. (13)
1=1
= -D; 'hy + D; 'Bydy (14)
=Dy ' (Bidy, — hy) (15)
Noting that D, is block diagonal, we have:
dyi1,0i = Dp Z Biijdge; —he (16)

JEQ; U{l}

Equation (16) indicates that the approximated Newton di-
rection d; can be computed in a distributed and recursive
way. Thus, a distributed Newton’s method for the network cost
minimization problem (1) can be developed and the proposed

algorithm is detailed in Algorithm 1 from the perspective of
node i.

Algorithm 1 Distributed Newton’s method for network cost
minimization: procedures at node %

1: Initialize x¢,; and step size €

2: fort =0,1,2,... do

3: Exchange the iterate x; ; with neighbors j € €2;.
4: Compute:

D¢ = Vin(Xt,i)
+2 > [V i (X0 %e5) + Vi, 95i (Ko, Xe,0)]

JEQ;
17
B = Z (V2. 965 (Xe,i, Xe,5) + Vi, g5i(Xe,5, %e,1)], (18)
JEQ;
Biij = — Vi, e, 9is (Xt,i: Xt.5) = Ve, i, 951 (Xt X1,
Vj €, (19)
h; = Vfi(xt,:)
+ Z [V, Gig (X6, %Xt,5) + Vi, 95i (X5, Xe,1)] 5
JeQ;
(20)
do,t;i = —D;iliht,i. (21)
5: for k=0,1,.... K — 1 do
6: Exchange the iterate dy ¢ ; with neighbors j € Q;.
7: Compute:
dipi =D [Y Burajdie; —hei | (22)
JEQU{i}
8: end for

9: Set d¢s = dit,i.
10: Update X¢t+1,i = Xe,i + €dz7i.
11: end for

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of
the proposed distributed Newton’s method for network cost
minimization, i.e., Algorithm 1. Specifically, we demonstrate
global linear convergence of the objective function value
F(x;) to the optimal value F'(x*). Furthermore, we show that
Algorithm 1 possesses a quadratic convergence phase, which
is a generic theoretical advantage of second order optimization
methods over first order ones [11], [12], [14].

A. The Global Linear Convergence

In this subsection, we demonstrate global linear convergence
of Algorithm 1. We first establish bounds on the matrices
B(x),H(x),D(x) in the following lemma, which will be
frequently used in the development of later results. Define
C = max;e[, |2 to be the maximum node degree.

Lemma 1. For any x € R"P:

0 < B(x) < 2MCT, (23)
mI < H(x) = M(1+ 20, (24)
mI < D(x) < (1 + 4C)ML (25)

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

The proof is Lemma 1 is omitted. In order to ensure that
the series in (10) are convergent, we neeq to guarantee that
the spectral radius of D(x)™ 2B(x)D(x) ™ 2 is strictly smaller
than 1, as shown in the following lemma, whose proof is also
omitted.

Lemma 2. For any x € R"P:

0= D(x) *B(x)D(x)"* <1l (26)
where n =1 — W € (0,1) is a constant. Therefore, we

have:

p (D(X)féB(x)D(x)f%> <n<l. 27

Lemma 2 guarantees the convergence of the series in (10)
and justifies the truncated approximation of Hessian in (11).
Then, a natural question is about the approximation accuracy
of the approximated Hessian I:I(x) To quantify this accuracy,
we define the error matrix E(x) € S™ as:

L1 . 1
E(x):=I1-H(x) *H(x)H(x) Z. (28)
Define E; = E(x;). Then, we have the following bound for
the error matrix E(x).

Lemma 3. For any x € R":

0 < E(x) < nfFL. (29)

In accordance with one’s intuition, Lemma 3 indicates that
the larger the order of approximation K, the smaller the
approximation error of the Hessian matrix. This benefit comes
at the expense of higher communication and computation over-
head of Algorithm 1 when calculating the approximated New-
ton step d; recursively by (22), i.e., there exists an accuracy-
complexity tradeoff. Furthermore, analogous to Lemma 1, we
can also bound the inverse of the approximated Hessian matrix

H(x) " as follows.

Lemma 4. For any x € R":

I < H(x) <l (30)

where the two positive constants 1 and o are given as 1 =
K+1
-1

m(1-n)"

Moreover, we can translate the Lipschitz continuity of the
Hessian matrices of the local functions in Assumption 2 to
Lipschitz continuity of the global Hessian matrix H(x).

1 —
Tracyr and 72 =

Lemma 5. For any x,x’ € R":
H(x) - H(X)[2 < L(1+20)[x = x'[l2., 31
i.e., H(-) is Lipschitz continuous with modulus L(1 4 2C).

Based on Lemmas 3, 4 and 5, we are able to show the
first main theorem regarding the global linear convergence of
Algorithm 1, whose proof is omitted due to space limitation.

Theorem 1. If the step size € of Algorithm 1 is chosen such

that:
0<e
< min« 1, - 2mm 3 R
L(14+2C)y3(2M(1+2C))2/F(x0) — F(x*)

(32)

then F(x), ie., the objective function values generated
by Algorithm 1, converges linearly to the optimal objective
function value F(x*), or more specifically, for any t € N:

0 < F(x¢) — F(x*) < €'[F(x0) — F(x*)], (33)
where 0 < & < 1 is some constant specified as:

E=1—my (2 —€?)

3 .
+ %L(l +20)3(2M(1 +2C))3 \/F(xo) — F(x*). (34)
B. The Quadratic Convergence Phase

A classical theoretical explanation of the advantage of
second order optimization methods (e.g., Newton’s method)
over first order alternatives (e.g., gradient descent method) is
that the former possesses a quadratic convergence region [11],
[12], [14], in which the algorithms converge very fast. In this
subsection, we also identify a quadratic convergence phase of
Algorithm 1 as a theoretical justification of its superioritx. .

Define a sequence 1; = (1 — e + en® 1) (1 + p&7).
Suppose ¢ satisfies the condition (32) in Theorem 1. Then, we
have 0 < £ < 1 and thus v, is a decreasing sequence with limit
lim; ooty = 1 — e+ en®+1 € (0,1). So, for ¢ large enough,
we have i, < 1. Define ¢y := arg min{¢|¢)y < 1}. We can
state our main theorem regarding the quadratic convergence
phase of Algorithm 1 as follows.

Theorem 2. Let ¢ be chosen in accordance with the condition
(32). Suppose there exists a time interval [ty,ta] with t; > tg
such that, for any t € [tq, t2]:

Vb (1 = V) < HDZ_%lhtH < 1= Vi 35)
12 2 12
Then, for t € [t1,ty + 1], we have:
ot—t1
F(x) = F(x") < [l — x|z, (36)

H2y/M1
1
" 1
el e
x*||2 = 0. In other words, Algorithm 1 converges quadrati-
cally over the fime interval [ty,to + 1]. Furthermore, we have

im, o HDjlhTH =0
2

where § 1= €[0,1) and lim, o ||x,—
2

_1
Remark 1. From limy. HDt_ZlhtHz E—_—
limy o0 YEOVT) \/1*6+677K“(L;\/1*6+6n"“) > 0

_ 1—4/1— K+1
1-vPe _ cren > 0, we know that

1 H2 M2
HDt_thtH will eventually be smaller than both bounds in
2

_1
‘Dt_zlhtHz

and lim;_,

(35) for large enough t. Typically, as t increases,

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

will first become smaller than the right bound of (35), but
still remain larger than the left bound of (35), i.e., (35) holds.
Theorem (2) says, in such a case, Algorithm I converges
quadratically. After that, as t further increases, ’Dt_}lhtH

becomes even smaller than the left bound of (35) so that (35?5
does not hold any more and the quadratic convergence phase
is terminated. In such a case, we can only guarantee linear

convergence rate, which is a global property of Algorithm 1
(Theorem 1).

IV. NUMERICAL TESTS

In this section, we empirically investigate the performance
of the proposed distributed Newton’s method (DNM, i.e.,
Algorithm 1) on the following quadratic program:

Minimizey Z (x{ Aix; +2b] x;) + Z Z Bisllxi — %3,
i=1 i=1 e,
(37

where A; € S¥ | is some positive definite matrix and b; € RP.
Bi; > 0 is some positive constant controlling the proximity
between neighbors’ variables. Problem (37) has broad appli-
cations in many signal processing scenarios, such as multitask
adaptive signal processing [9], [10].

Problem (37) is in the form of generic network cost min-
imization problem (1) by setting fi(x;) = x] A;x; + 2b/x;
and gij(xiyxj) = BZJHXl — Xj||%7v2,] € ;. In the following
experiments, we set A; to be a diagonal matrix with the
first £ diagonal entries uniformly and randomly chosen from
{1,1071,...,107} and the last £ diagonal entries uniformly
and randomly chosen from {1,10,...,10?}. Here, d is a
positive integer controlling the condition number of the node
cost function f;: the larger the d, the more ill-conditioned
the cost functions. In addition, entries of b; are uniformly
and randomly chosen from the interval [0,1] while 3;; are
uniformly and randomly selected from the interval [0.5,1.5].
We set the network topology to be a random graph (links are
uniformly and randomly generated) with n = 100 nodes and
average degree of 4. The dimension of the decision variables
is p = 20. For comparison purposes, we also apply the dis-
tributed gradient descent (DGD) [1], [15] and the distributed
alternating direction method of multipliers (DADMM) [16],
[17] to the quadratic program (37). The performance of the
proposed DNM-K (K = 0,1,2), the DGD and the DADMM
is shown in Fig. 1 for d = 2. The relative errors W
versus the number of iterations and the number of per-node
information exchanges are shown in Fig. 1-(a) and Fig. 1-
(b), respectively. Here, one unit of information exchange is
the transmission of one p-dimensional vector. The numbers
of per-node (node ¢) information exchanges for the proposed
DNM, the DGD and the DADMM are K +1, 1 and 2|;|+1,
respectively. In our network topology, the average node degree
is 4 so that the average number of per-node information
exchanges for the DADMM is 9.

From the results in Fig. 1, we can first see the effect of
K, i.e., the approximation order of the Hessian matrix, on

[©DNM-0
EDNM-1
ODNM-2

DGD
|ADADMM|

e R
400 600 " 7800 1000
Number of iterations

(a) Relative error versus number of iterations

(©DNM-0

DGD
|ADADMM|

000 000 F006 >~ > %000
Number of per-node information exchanges

(b) Relative error versus number of per-node informa-
tion exchanges

Fig. 1: Comparison between the proposed distributed
Newton’s method (K = 0, 1, 2), the distributed gradient
descent and the distributed ADMM (d = 2).

the performance of the DNM. From Fig. 1-(a), we observe
that the DNM converges faster with respect to the number
of iterations for larger values of K. This is reasonable as
larger K implies more accurate approximation of the Hessian
matrix in the DNM (c.f. Lemma 3). From Fig. 1-(b), an
interesting observation is that DNM-K’s (K = 0,1,2) have
virtually the same convergence curve with respect to the
number of per-node information exchanges. This suggests
that K does not affect the performance of DNM much as
far as communication complexity is concerned. Second, we
remark that the DNM outperforms the DGD significantly
in terms of both the number of iterations and the number
of information exchanges. Specifically, to achieve the same
relative error, the number of iterations and the number of
information exchanges needed by the DGD is larger than those
needed by the DNM-2 by an order of magnitude. Third, the
DNM also outperforms the DADMM remarkably, especially
in terms of number of information exchanges. In particular,
to achieve the same relative error, the number of per-node
information exchanges needed by the DADMM is larger than
those needed by the DNM by almost two orders of magnitude.
These comparisons demonstrate the advantage of the DNM, a
second order optimization method, over other first order primal
or primal/dual optimization methods such as the DGD and the
DADMM.

Next, we examine the impact of the condition number
(controlled by d) on the performance of the DNM, the DGD
and the DADMM. The performance of these algorithms with
respect to the number of iterations and the number of per-node
information exchanges are shown in Fig. 2 for both d = 1 and
d = 3. First, we remark that for either value of d, the DNM
always remarkably outperforms the DGD and the DADMM
in terms of both the number of iterations and the number of

2018 52nd Annual Conference on Information Sciences and Systems (CISS)

300 © 400 00
Number of iterations
(a) Relative error versus number of iterations for d =
1

[©DNM-0

ZDNM-1

ODNM-2
DGD

[ADADMM

) I 008 & 2850 & %Bo00
Number of per-node information exchanges

(b) Relative error versus number of per-node informa-

tion exchanges for d = 1

400 ¥ 600
. Number of iterations) .
(¢) Relative error versus number of iterations for d =

3
: ODNM-0
09 BDNM-1
0.8F: (ODNM-2
So07 DGD
2o /ADADMM
B 06k
Sost
T o4

2360 4000 P800 8000 o000
Number of per-node information exchanges

(d) Relative error versus number of per-node informa-

tion exchanges for d = 3

Fig. 2: Impact of the condition number on the performance of
the proposed distributed Newton’s method (K = 0,1, 2), the
distributed gradient descent and the distributed ADMM.

information exchanges. Second, we observe that the DNM is
much more robust to large condition number than the DGD.
In particular, when the condition number increases, i.e., when
d increases from 1 to 3, to achieve the same relative error,
the number of iterations or information exchanges needed by
the DNM increases by twice while that needed by the DGD
increases by around 15 times. This obervation is analogous to
the classical one for centralized Newton’s method and gradient
descent stating that the latter is much more sensitive to the
condition number of the objective function than the former
[11]. Our observation extends this property to the distributed
network cost minimization problem (1).

V. CONCLUSION

In this paper, a novel generic network cost minimization
problem incorporating both node costs and link costs is stud-
ied. A distributed Newton’s method (Algorithm 1) is proposed
to solve the network cost minimization problem in a decentral-
ized manner. We establish the global linear convergence and
a quadratic convergence phase of Algorithm 1 theoretically.
Numerical experiments are carried out to corroborate the
effectiveness of Algorithm 1, which outperforms other first
order primal or primal/dual optimization methods remarkably
and is robust to ill-conditioned cost functions.

REFERENCES

[1] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48-61, 2009.

[2] D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131-1146, 2014.

[3] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750-1761,
2014.

[4] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DIm: Decentralized linearized
alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 63, no. 15, pp. 4051-4064, 2015.

[5] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Dgm: Decentralized
quadratically approximated alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5158-5173,
2016.

[6] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus admm,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482497, 2015.

[7] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous
distributed admm for large-scale optimizationpart i: Algorithm and
convergence analysis,” IEEE Transactions on Signal Processing, vol. 64,
no. 12, pp. 3118-3130, 2016.

[8] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146-161, 2017.

[9] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Transactions on Signal Processing, vol. 62, no. 16,
pp. 41294144, 2014.

[10] J. Chen, C. Richard, and A. H. Sayed, “Diffusion Ims over multitask
networks,” IEEE Transactions on Signal Processing, vol. 63, no. 11,
pp. 27332748, 2015.

S. Boyd and L. Vandenberghe, Convex optimization. Cambridge univer-
sity press, 2004.

D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
1999.

K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3,
pp. 1835-1854, 2016.

A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized
second-order method with exact linear convergence rate for consensus
optimization,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 2, no. 4, pp. 507-522, 2016.

S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” lecture notes
of EE3920, Stanford University, Autumn Quarter, vol. 2004, 2003.
[16] X. Cao and K. J. R. Liu, “Distributed linearized admm for network cost
minimization,” arXiv preprint arXiv:1702.03367, 2017.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends®) in Machine Learning, vol. 3,
no. 1, pp. 1-122, 2011.

(11]
[12]

[13]

[14]

[15]

[17]

