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Abstract— In this paper, we propose a differential encoding and
decoding scheme for MIMO-OFDM systems under frequency-
selective fading channels. We differentially encode signal within
each OFDM symbol period. The scheme does not only reduce
encoding and decoding delay, but also relaxes the restriction on
channel assumption. The successful differential decoding of the
proposed scheme depends on the assumption that fading channels
keep constant over two OFDM symbol periods rather than
multiple of them as required in previous schemes. We provide
the pairwise error probability formulation, and quantify the
performance criteria in terms of diversity and coding advantages.
Our design criteria reveals that the existing diagonal cyclic codes
can be applied to achieve full diversity with high coding gain.
Performance simulations in various channel conditions show
that our proposed scheme yields superior performance to the
previously proposed differential schemes.

I. INTRODUCTION

Differential space-time (DST) modulation [1]-[4] has been
widely accepted as one of many practical alternatives that
bypasses multi-channel estimation in frequency non-selective
multiple-input multiple-output (MIMO) system. Recently, a
technique of incorporating the DST modulation with or-
thogonal frequency division multiplexing (OFDM) transmis-
sion, called differential space-time-frequency (DSTF) MIMO-
OFDM [5]-[11], was introduced for wideband systems under
frequency-selective fading environments. The DSTF scheme
differentially encodes across spatial, temporal, and frequency
domains such that both spatial and frequency diversities can
be explored. However, a complete transmission of one DSTF
codeword expands several OFDM symbol periods which are,
in fact, proportional to the number of transmit antennas. In
order to perform successful differential decoding, all of the
DSTF schemes in [5]-[11] assumed that the fading channels
keep constant within several OFDM blocks and slowly change
from a duration of several OFDM blocks to another OFDM
blocks. Nevertheless, such channel condition is not valid in
most practical situations since the channel coefficients would
change before two entire DSTF codeword matrices are com-
pletely transmitted. The related work on non-coherent space-
frequency (SF) coding has been investigated in [12]; however,
a set of SF codes was obtained through random search, and
the scheme introduced high decoding complexity.

In this paper, we propose a differential encoding and de-
coding scheme for MIMO-OFDM system which is able to
transmit the differentially encoded signal matrix within one
OFDM symbol period, regardless of the number of transmit
antennas. The scheme allows us to relax the channel fading
assumption to vary from a duration of one OFDM block to the
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Fig. 1: Description of the differential MIMO-OFDM system.

next, but remain approximately constant over only two OFDM
symbol periods. The pairwise error probability analysis in case
of frequency-selective fading channels with arbitrary power
delay profiles is also given. We address design criteria of the
proposed scheme, and it reveals that the diagonal cyclic codes
[3] can be used to achieve the maximum diversity order with
high coding gain. The merit of our proposed scheme is shown
through computer simulations.

The rest of the paper is organized as follows. Section II
outlines the system description. In Section III, we derive the
differential encoding and decoding scheme for MIMO-OFDM
systems. The pairwise error probability is analyzed, and the
design criteria of the proposed scheme is given in Section IV.
We show some simulation results and discussions in Section
V. Finally, Section VI concludes the paper.

II. SYSTEM DESCRIPTION

We consider a MIMO wireless communication system
equipped with Mt transmit and Mr receive antennas, as shown
in Figure 1. Each antenna employs an OFDM modulator with
N subcarriers. In each transmit-receive link, the frequency-
selective fading channel is assumed to have L independent
delay paths with arbitrary power delay profiles, and the base-
band equivalent channel is modelled by

hk
ij(t) =

L−1∑
l=0

αk
ij(l)δ(t − τl), (1)

where αk
ij(l) is the path gain coefficient of the lth path between

transmit antenna i and receive antenna j at the kth OFDM
symbol period, and τl represents the lth path delay. The αk

ij(l)
is modelled as zero-mean complex Gaussian random variable
with variance E

∣∣αk
ij(l)

∣∣2 = δ2
l . The channel coefficients are

assumed to be spatially uncorrelated and the power of the L
independent delay paths is normalized such that

∑L−1
l=0 δ2

l = 1.
At the transmitter, an information bit sequence is differen-

tially encoded and mapped onto an N × Mt transmit matrix
Xk =

[
xk

1 · · ·xk
Mt

]
. The N × 1 vector xk

i , i = 1, · · · ,Mt,
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of Xk has xk
i (n) as its {n, i}th element which represents a

differentially encoded symbol to be transmitted over the nth

subcarrier by the ith antenna during the kth OFDM block. We
assume that Xk is normalized to satisfy the energy constraint
E‖Xk‖2

F = N , where ‖·‖F denotes the Frobenius norm [17].
We will explain details of the proposed differential encoding
and decoding scheme in Section III. In order to transmit Xk,
each of the ith column of Xk is OFDM modulated using
N-point IFFT and augmented by cyclic prefix. The resulting
OFDM symbol is transmitted over the ith transmit antenna.
Note that all of the Mt OFDM symbols are transmitted
simultaneously over different transmit antennas within one
OFDM symbol period.

At each receive antenna, the receiver performs match fil-
tering, cyclic prefix removing, and OFDM demodulating by
N-point FFT. The received signal is a noisy superposition
of transmitted symbols from multiple transmit antennas. We
model the received signal at the nth subcarrier at the jth

receive antenna during the kth OFDM block as

yk
j (n) =

√
ρ

Mt∑
i=1

xk
i (n)Hk

ij(n) + wk
j (n), (2)

where ρ is the average signal to noise ratio per receiver, and

Hk
ij(n) =

L−1∑
l=0

αk
ij(l)e

−j2πn∆fτl (3)

is the subchannel gain. Here, ∆f = 1/Ts is the inter-subcarrier
spacing, and Ts is the OFDM symbol period. The additive
noise wk

j (n) is modelled as independent complex Gaussian
random variable with zero mean and unit variance, CN (0, 1).
We observe from (2) that the OFDM modem converts a
frequency-selective fading channel into a set of parallel flat
fading channels. The differential modulation scheme does not
require the knowledge of channel state information at either
the transmitter or the receiver. However, the subchannel gains
are assumed constant over two OFDM symbol periods, i.e.
Hk

ij(n) ≈ Hk−1
ij (n).

Let yk
j =

[
yk

j (0), yk
j (1), · · · , yk

j (N − 1)
]T

be an N×1 vec-
tor comprising the received signal at the jth receive antenna
during the kth OFDM symbol period. We can describe yk

j as

yk
j =

√
ρ D(Xk)hk

j + wk
j , (4)

where we denotes D(Xk) as an operation on an N×Mt matrix
Xk that converts each column of Xk into a diagonal matrix
and results in an N × NMt matrix, expressed by

D(Xk) = D(
[
xk

1 · · ·xk
Mt

]
) =

[
diag(xk

1) · · · diag(xk
Mt

)
]
. (5)

In (4), the NMt × 1 channel gain vector hk
j is repre-

sented by hk
j =

[
(hk

1j)
T · · · (hk

Mtj
)T
]T

in which hk
ij =[

Hk
ij(0) · · ·Hk

ij(N − 1)
]T

and the noise vector has the form

wk
j =

[
wk

j (0) · · ·wk
j (N − 1)

]T
. By stacking all Mr received

signal vectors together, we obtain the NMr×1 received vector

yk =
√

ρ
(
IMr

⊗ D(Xk)
)
hk + wk, (6)

where yk =
[
(yk

1)T (yk
2)T · · · (yk

Mr
)T
]T

, hk =
[
(hk

1)T

(hk
2)T · · · (hk

Mr
)T
]T

, wk =
[
(wk

1)T (wk
2)T · · · (wk

Mr
)T
]T

,
and ⊗ denotes the tensor product [17].

III. SINGLE-BLOCK DIFFERENTIAL TRANSMIT SCHEME

In what follows, we propose a differential encoding and
decoding scheme for MIMO-OFDM systems under frequency-
selective fading channels. By taking advantage of the coding
strategy in [13], the proposed scheme is able to completely
transmit the differentially encoded signal matrix within one
OFDM symbol period. This allows us to relax the channel
assumption for efficient differential decoding. Specifically, our
scheme requires that the fading channels keep constant within
only one OFDM block, and slowly change from one OFDM
block to the next.

A. Transmit Signal Structure

We will introduce a differential encoding and decoding
scheme based on a transmit scheme proposed in [13]. Specif-
ically, for an integer Γ such that 1 ≤ Γ ≤ L, a transmit signal
matrix Xk is partitioned into P = �N/(ΓMt)� sub-matrices
as follows [13]:

Xk =
[
(Xk

1)T (Xk
2)T · · · (Xk

P )T (0N−PΓMt
)T
]T

, (7)

where 0N−PΓMt
denotes an (N −PΓMt)×Mt zero padding

matrix to be inserted if N cannot be divided by ΓMt. The
ΓMt × Mt matrix Xk

p , for p = 1, 2, . . . , P , is modelled as

Xk
p = diag(xk

p,1 xk
p,2 · · · xk

p,Mt
), (8)

where xk
p,i, for i = 1, 2, . . . ,Mt, is a Γ × 1 vector,

xk
p,i =

[
sk

p,(i−1)Γ+1 sk
p,(i−1)Γ+2 · · · sk

p,iΓ

]T
, (9)

and all sk
p,m, m = 1, 2, . . . ,ΓMt, are differentially encoded

symbols that will be specified later.
We now specify information matrices as follows. For each

p, p = 1, 2, . . . , P , let Vk
p denote a ΓMt × ΓMt unitary

information matrix having diagonal form as

Vk
p = diag([vk

p,1 vk
p,2 · · · vk

p,ΓMt
]T ), (10)

in which vk
p,m, m = 1, 2, . . . ,ΓMt, is an information symbol

to be transmitted over subcarrier (p − 1)ΓMt + m during the
kth OFDM symbol period. We will independently design the
matrix Vk

p for different p. The set of all possible information
matrices constitutes a constellation Vp. In order to support a
data rate of R b/s/Hz, Vp is designed to have constellation
size L = |Vp| = 2RΓMt .

B. Differential Encoder and Transmission Matrix

The differential encoding procedure comprises a concatena-
tion of two functional blocks, namely, a differential encoder
and a multiplicative mapping matrix.

1) Differential Encoder: Let Sk
p be a ΓMt×ΓMt differen-

tially encoded signal matrix to be transmitted during the kth

OFDM symbol period. We recursively construct Sk
p from the

fundamental differential transmission equation [2], [3]

Sk
p =

{
Vk

p Sk−1
p , k ≥ 1

IΓMt
, k = 0 , (11)

where the differential transmission initially sends S0
p = IΓMt

to learn the channels. The matrix Sk
p is also unitary since
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it results from recursive multiplication of unitary information
matrices. Due to the diagonal structure of Vk

p , Sk
p can be

expressed as

Sk
p = diag([sk

p,1, s
k
p,2, ..., s

k
p,ΓMt

]T ), (12)

where sk
p,m, m = 1, 2, . . . ,ΓMt, is the differentially encoded

complex symbol to be transmitted at subcarrier (p−1)ΓMt+m
during the kth OFDM block.

Note that, depending on how the elements of Sk
p are trans-

mitted over the Mt transmit antennas, the differential schemes
can be different. The DSTF schemes in [5]-[11] transmit
the Sk

p matrix through Mt OFDM modulators over multiple
OFDM blocks. This leads to performance degradation when
the fading channels do not stay constant over several OFDM
blocks. In what follows, we introduce a multiplicative mapping
matrix that allows us to transform Sk

p into the code structure
in (8) and completely transmit Sk

p within one OFDM block.
This does not only improve system performance under rapid
fading environment, but also reduces encoding and decoding
delay.

2) Multiplicative Mapping Matrix: We define the ΓMt×Mt

multiplicative mapping matrix as

Φp = [φ1 φ2 · · · φMt
], (13)

in which φi is a ΓMt × 1 vector,

φi = ei ⊗ 1Γ, i = 1, · · · ,Mt, (14)

where ei is an Mt × 1 unit vector having one at the ith

component and the rest are zeroes, and 1Γ denotes a Γ × 1
vector of all ones. We post-multiply Sk

p by Φp, resulting in
the ΓMt × Mt transmit matrix

Xk
p = Sk

pΦp. (15)

Consequently, the differentially encoded complex symbol
sk

p,m, as specified in (12), is transmitted at the 	m
Γ 
 transmit

antenna, where 	·
 represents the ceiling function.

C. Differential Decoding

According to (6) and (7), the receive signal vector corre-
sponding to the transmitted matrix Xk

p is given by

yk
p =

√
ρ
(
IMr

⊗D(Xk
p)
)
hk

p + wk
p , (16)

where D(Xk
p) (D(·) is defined in (5)) is a ΓMt × ΓMtMt

transmit matrix. The ΓMtMtMr × 1 channel vector hk
p =[

(hk
p,1)

T (hk
p,2)

T · · · (hk
p,Mr

)T
]T

comprises

hk
p,j =

[
(hk

p,1j)
T (hk

p,2j)
T · · · (hk

p,Mtj)
T
]T

, (17)

where

hk
p,ij =

[
Hk

ij((p − 1)ΓMt) · · · Hk
ij(pΓMt − 1)

]T
. (18)

Similarly, the ΓMtMr × 1 receive signal vector is given
by yk

p =
[
(yk

p,1)
T (yk

p,2)
T · · · (yk

p,Mr
)T
]T

, where yk
p,j =[

yk
j ((p − 1)ΓMt) · · · yk

j (pΓMt − 1)
]T

. The noise vector wk
p

is in the same form as yk
p with yk

j (n) replaced by wk
j (n).

To perform differential decoding, two consecutive received
signal vectors, i.e. yk

p and yk−1
p in (16), are required to recover

the information matrix at each OFDM symbol period. Since
the two consecutive received signal vectors are related through
the differentially encoded signal matrix Sk

p (see (11)), we will
introduce the equivalent expression of

(
IMr

⊗D(Xk
p)
)
hk

p in
terms of Sk

p for subsequent differential decoding.
From (13) and (15), we can express D(Xk

p) as

D(Xk
p) =

[
diag(Sk

pφ1) · · · diag(Sk
pφMt

)
]
. (19)

According to (17) and (19), we have

D(Xk
p)hk

p,j =
Mt∑
i=1

diag(Sk
pφi)h

k
p,ij , (20)

which can be re-written using Hadamard product [17] as

D(Xk
p)hk

p,j =
Mt∑
i=1

(Sk
pφi) ◦ hk

p,ij

= Sk
p

Mt∑
i=1

φi ◦ hk
p,ij � Sk

p h̃k
p,j , (21)

where h̃k
p,j in the last equality is explicitly defined. By

substituting (18) into (21), we can express h̃k
p,j as

h̃k
p,j =

[
(h̃k

p,1j)
T (h̃k

p,2j)
T · · · (h̃k

p,Mtj)
T
]T

(22)

in which

h̃k
p,ij = [Hk

ij(n
0
p,i) Hk

ij(n
1
p,i) · · · Hk

ij(n
Γ−1
p,i )]T , (23)

where
nγ

p,i = (i − 1)Γ + (p − 1)ΓMt + γ (24)

for γ = 0, 1, . . . ,Γ − 1. Denoting h̃k
p =

[
(h̃k

p,1)
T (h̃k

p,2)
T · · ·

(h̃k
p,Mr

)T
]T

as a ΓMtMr × 1 channel gain vector and using
(21), we obtain an equivalent expression(

IMr
⊗D(Xk

p)
)
hk

p =
(
IMr

⊗ Sk
p

)
h̃k

p. (25)

For notation convenience, let us define Sk
p�
(
IMr

⊗ Sk
p

)
and Vk

p�
(
IMr

⊗ Vk
p

)
such that

Sk
p =

(
IMr

⊗ Vk
p

)Sk−1
p = Vk

pSk−1
p . (26)

Accordingly, using (25) and (26), we can rewrite the two
consecutive receive signal vectors in (16) as

yk−1
p =

√
ρSk−1

p h̃k−1
p + wk−1

p , (27)

yk
p =

√
ρSk

ph̃
k
p + wk

p . (28)

We relate the equivalent terms of (27) and (28) through (26),
and assume that the channel coefficients are almost constant
over two consecutive OFDM blocks, i.e. h̃k

p ≈ h̃k−1
p ≈ h̃p,

we obtain yk
p = Vk

py
k−1
p + w̃k

p , where w̃k
p � wk

p −Vk
p wk−1

p

has twice variance as that of wk
p . Without acquiring channel

state information, the detector follows the decision rule [3]

V̂k

p = arg min
Vk

p∈Vp

‖yk
p − Vk

p yk−1
p ‖2

F . (29)

It is worth to mention that the detector is able to differ-
entially decode within two OFDM symbol periods regardless
of the number of transmit antennas. Therefore, our proposed
scheme significantly reduces the decoding delay compared to
the DSTF schemes. Note also that the proposed differential
scheme includes the differential scheme in [14] for single
antenna OFDM system as a special case.
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IV. PAIRWISE ERROR PROBABILITY AND DESIGN

CRITERIA OF THE PROPOSED DIFFERENTIAL SCHEME

The PEP analysis of the differential scheme for MIMO-
OFDM systems have been considered in [6]-[11]. In this
paper, we provide an alternative PEP formulation based on
the results in [15] which showed the asymptotic PEP for dif-
ferential detections. The PEP upper bound in [15] is not only
asymptotically tight, but also provides a simple interpretation
of the performance in terms of the eigenvalues of signal and
correlation matrices.

Suppose that Vk
p and V̂k

p are two different information
matrices. With the assumption of slow fading channels, the
average PEP is upper bounded by [15]

P
(
Vk

p → V̂k

p

)
≤
(

2ν − 1
ν

)( ν∏
m=1

βp,m

)−1 (ρ

2

)−ν

, (30)

where ν is the rank and βp,m’s are the non-zero eigenvalues
of the matrix

Ψp � Sk−1
p Σh̃p

(Sk−1
p )H

(Vk
p − V̂k

p

)H(Vk
p − V̂k

p

)
, (31)

in which Σh̃p
= E[h̃ph̃

H
p ] denotes the correlation matrix of

channel vector h̃p. Note that the PEP upper bound in (30) is a
function of ρ/2, which corresponds to the 3-dB performance
loss when compared to its coherent counterpart.

We will reformulate the PEP upper bound in (30) for
the case of spatially uncorrelated MIMO channels such that
we can obtain design criteria for our proposed scheme. To
simplify the expression for matrix Ψp in (31), we evaluate
the channel correlation matrix Σh̃p

as follows. First, we re-
write the frequency response in (3) as

Hk
ij(n) = ωT (n) ak

ij , (32)

where ak
ij � [αk

ij(0), · · · , αk
ij(L − 1)]T ∈ CL×1, ω(n) �

[ωnτ0 , . . . , ωnτL−1 ]T ∈ CL×1, and ω � e−j2π∆f . According
to (32), we can represent h̃k

p,ij in (23) as

h̃k
p,ij = Ωp,i ak

ij , (33)

where Ωp,i =
[
ω(n0

p,i) ω(n1
p,i) · · · ω(nΓ−1

p,i )
]T ∈ CΓ×L and

nγ
p,i is defined in (24). Substituting (33) into (22), we have

h̃k
p,j = Ωp ak

j , (34)

where Ωp = diag (Ωp,1, · · · ,Ωp,Mt
) ∈ CΓMt×LMt , and

ak
j =

[
(ak

1j)
T · · · (ak

Mtj
)T
]T ∈ CLMt×1. Based on (34) and

the assumption that each transmit-receive link has the same
power delay profile, we can calculate the correlation matrix
of channel vector h̃k

p,j as

Σh̃p,j
= E[h̃k

p,j(h̃
k)H

p,j ] = Ωp (IMt
⊗ Λδ2)ΩH

p , (35)

where Λδ2 = diag(δ2
0 , . . . , δ2

L−1) represents an L×L diagonal
matrix of power delay profile. Observe from (35) that Σh̃p,j

is the same for all j’s. Denote Σ � Σh̃p,j
, then we have

Σh̃p
= IMr

⊗ Σ. (36)

Applying the property of tensor product (A1 ⊗ B1)(A2 ⊗
B2)(A3 ⊗B3) = (A1A2A3 ⊗B1B2B3) to (31), we obtain

Ψp = IMr
⊗ Θp, (37)

in which
Θp = Sk−1

p Σ(Sk−1
p )H∆, (38)

and ∆ =
(
Vk

p − V̂k
p

)H (
Vk

p − V̂k
p

)
. Hence, by (37), the

PEP in (30) can be expressed as

P
(
Vk

p → V̂k
p

)
≤
(

2rMr − 1
rMr

)( r∏
m=1

λp,m

)−Mr ( ρ

2

)−rMr

(39)

where r is the rank of Θp and λp,m’s are the non-zero
eigenvalues of Θp.

The PEP upper bound in (39) suggests two design criteria
1) Rank criterion: For any Vk

p = V̂k
p , design a constellation

set of unitary matrices Vp such that the minimum rank of Θp

is maximized.
2) Product criterion: For any Vk

p = V̂k
p , design a constella-

tion set of unitary matrices Vp such that the minimum value
of the product

∏r
m=1 λp,m is maximized.

To quantify the maximum achievable diversity order, we
substituting (35) into (38), and re-express Θp as

Θp = Sk−1
p Ωp (IMt

⊗ Λδ2)ΩH
p

(
Sk−1

p

)H
∆. (40)

Observe from (40) that Sk−1
p and Vk

p are of size ΓMt×ΓMt,
the correlation matrix Ωp is of size ΓMt×LMt, and IMt

⊗Λδ2

is an LMt × LMt diagonal matrix. Since Γ ≤ L, the rank
of Θp is at most ΓMt. Therefore, the maximum achievable
diversity gain is

Gmax
d = Mr max

(
min

∀ Vk
p �=V̂k

p

rank (Θp)

)
= ΓMtMr. (41)

When the maximum diversity order is achieved, the maxi-
mum product criterion is determined by the normalized coding
advantage or the so-called diversity product [3], [13]

ζ =
1
2

min
Vk

p �=V̂k
p

∣∣∣∣∣
ΓMt∏
m=1

λp,m

∣∣∣∣∣
1

2ΓMt

, (42)

where a larger ζ results in better performance.
In this case, we can evaluate the product of the non-zero

eigenvalues of the matrix Θp as
ΓMt∏
m=1

λp,m = det
(
Sk−1

p Ωp (IMt ⊗ Λδ2)ΩH
p

(
Sk−1

p

)H)
det (∆)

=
Mt∏
i=1

det
(
Ωp,iΛδ2ΩH

p,i

) ΓMt∏
m=1

∣∣vk
p,m − v̂k

p,m

∣∣2 (43)

where Vk
p − V̂k

p = diag(vk
p,1 − v̂k

p,1, . . . , v
k
p,ΓMt

− v̂k
p,ΓMt

).
In the second equality, we apply the identity det (AB) =
det (BA) and the unitary property of matrix Sk−1

p . Substitute
(43) into (42), resulting in

ζ =

∣∣∣∣∣
Mt∏
i=1

det
(
Ωp,iΛδ2ΩH

p,i

)∣∣∣∣∣
1

2M
1

2
min

Vk
p �=V̂k

p

M∏
m=1

∣∣∣vk
p,m − v̂k

p,m

∣∣∣ 1
M

(44)
in which M = ΓMt.

Observe from the equation in (44) that ζ can be maximized
by designing the two terms on the right hand side separately.

IEEE Communications Society / WCNC 2005 535 U.S. Government work not protected by U.S. copyright



The first term depends only on the power delay profile, and
it can be maximized by the use of proper subcarrier selec-
tion method, e.g., an optimum permutation strategy proposed
in [13]. The interested reader is referred to [13] for more
detail treatment of the optimum permutation. In this paper,
however, we resort to random permutation strategy to enable
fair performance comparison between the proposed scheme
and others, e.g. [8]-[11]. The second term relies on the code
structure. Here, we adopt the diagonal cyclic group code
[3], which is well systematically designed and applicable for
MIMO systems with any number of transmit antennas and
transmission rates.

In particular, for a specific integer M and transmission
rate R such that L = 2RM. We denote a set of parameters
used to fully specify the signal constellation Vp as GM,L =
(M,L, [u1, u2, ..., uM]), where u1, u2, . . . , uM are chosen
from a set of integer number IL = {0, 1, ...,L − 1} that
satisfies [3]

[u1, . . . , uM] = arg max
{um∈IL}


min

l∈IL

∣∣∣∣∣
M∏

m=1

sin (πuml/L)

∣∣∣∣∣
1
M

 .

Some of the sets of optimum parameters, u1, u2, . . . , uM,
obtained from exhaustive computer search are shown in [3].
Based on GM,L, the constellation Vp are constructed from

Vp,l = diag
(
ejθLu1l, ejθLu2l, . . . , ejθLuMl

)
, (45)

for l = 0, 1, ...,L − 1, and θL = 2π/L.

V. SIMULATION RESULTS

In all simulations, each OFDM modulator utilized N = 128
subcarriers with the total bandwidth of 1 MHz. The corre-
sponding OFDM symbol period was Ts = 1/∆f = 128µs.
We added a guard interval of 20µs against intersymbol inter-
ference due to channel multipath delay spread. We considered
a simple two-ray and a more realistic six-ray typical urban
(TU) power delay profiles. Each delay path of the two-ray
power delay profile had equal power with a delay of 20µs
between the two paths. The TU channel description was the
same as those shown in ([18], Table 2.2). The fading channels
were assumed constant within each OFDM block and slow
varying from one OFDM block to another according to the
Jakes’ fading model [18] with fD representing the maximum
Doppler frequency in Hz.

We simulated the performance under different mobile en-
vironments by varying the normalized Doppler frequencies,
namely, fDTs = 0.0025, 0.005, 0.01, and 0.025 which corre-
spond to a mobile speed of 6, 13, 26, and 65 m/s, respectively.
The performance curves are demonstrated in terms of averaged
bit error rate (BER) versus averaged signal energy per bit
(Eb/No) in dB. We compare the performance of our proposed
differential scheme to that of an existing DSTF scheme in
[11] with the same rate R. The random permutation strategy,
in which the nth subcarrier is moved to the ñth subcarrier,
follows the Takeshita-Constello method as [16]:

ñ = mod

(
n(n + 1)

2
, N

)
+ 1, n = 1, 2, ..., N. (46)

We considered a system with Mt = 2, Mr = 1, and Γ = 2.
Figures 2 depicts the simulation results for the two-ray power
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Fig. 2: Two-ray power delay profile, Mt = 2, Mr = 1, R = 1.5 b/s/Hz.
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Fig. 3: TU power delay profile, Mt = 2, Mr = 1, and R = 1 b/s/Hz.

delay profile with R = 1.5 b/s/Hz (omitting the cyclic-prefix
and guard interval) and using G4,64 = (4, 64, [1, 17, 45, 53]).
It is apparent that the performances of our proposed scheme
(showed by solid lines) are superior to that of previously pro-
posed scheme (showed by dashed lines) in every normalized
Doppler frequency. For instance, in case of fading channels
with fDTs = 0.0025 and 0.005, our proposed scheme yields
almost the same performance of BER ≈ 5× 10−5 at Eb/N0

of 24 dB, which outperform those of previous scheme that
achieved BER = 1.5 × 10−4. When fading rate increases
from 0.005 to 0.01, the performances of our proposed scheme
and the previous scheme degrade to BER = 1.22×10−4 and
4.5× 10−4, respectively, at Eb/N0 = 24 dB. Observe that the
performances of the previous scheme degrades faster than that
of our proposed scheme. For a more rapid fading at fDTs =
0.025, the performance of the previous scheme degrades even
faster from BER = 1.5 × 10−4 to 6.81 × 10−3 and nearly
reach error floor, while the performance of our propose scheme
degrades from BER ≈ 5×10−5 to 5.2×10−4. This confirms
our expectation that by coding within only one OFDM block,
our propose scheme is robust to the effect of rapid channel
variation. In contrast, the DSTF scheme relies on constant
channel over several OFDM blocks, thereby more susceptible
to rapid fading condition. Note that in all figures, we provide
simulation results for coherent detections of our scheme for
fDTs = 0.0025. The 3 dB performance loss due to differential
detection can be observed.
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Fig. 4: Two-ray power delay profile, Mt = 3, Mr = 1, and R ≈ 1 b/s/Hz.
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Fig. 5: TU power delay profile, Mt = 3, Mr = 1, and R ≈ 1 b/s/Hz.

The performance under the TU power delay profile is
shown in Figures 3 for Mt = 2, Mr = 1, Γ = 2, and
R = 1 b/s/Hz in which G4,16 = (4, 16, [1, 3, 5, 7]) is used.
Observing that under slow fade rates, i.e., fDTs = 0.0025 and
0.005, our scheme yields slightly better performances than
those in previous scheme at Eb/N0 of 22 dB. Significant
performance difference can be observed when fDTs = 0.01.
In this case, our proposed scheme achieves an average BER of
4.13×10−5 at Eb/N0 = 22 dB, whereas the previous scheme
has a BER of 9.0 × 10−5. When fDTs increases from 0.01
to 0.025, the BER of the previous scheme severely degrades
to 1.75 × 10−3 at Eb/N0 of 22 dB, while the BER of our
proposed scheme slightly degrades to 1.92 × 10−4.

The superior performance of our proposed scheme over the
previous scheme can be obviously seen in case of Mt = 3
and Mr = 1. For Γ = 2 and R ≈ 1 b/s/Hz (due to zero
padding insertion), we generated the signal constellation by
G6,64 = (6, 64, [1, 9, 15, 17, 23, 25]). Figures 4 and 5 show
performances under the two-ray and the TU power delay
profiles, respectively. Similar to the case of two transmit
antennas, our scheme yields better performances and more
robust to channel fading conditions than those of the previous
scheme. In case of fast fading, e.g. fDTs = 0.025, the
performance degradation is significant and high error floor
can be observed in the previous scheme. In contrast, the
performance of our proposed scheme slightly degrades with
an acceptable error floor.

VI. CONCLUSIONS

We proposed in this paper a differential scheme for MIMO-
OFDM systems that can differentially encode signal within
one OFDM block. The scheme allows us to relax the channel
assumption to keep constant during each OFDM block and
slowly change from a duration of one OFDM block to an-
other, rather than multiple OFDM blocks as assumed in the
previously existing works. We formulated the pairwise error
probability and design criteria, and showed that our scheme
achieves maximum diversity order with high coding gain by
utilizing an existing diagonal cyclic codes. Comparing to the
previous scheme, the proposed scheme is not only robust to
rapid channel variation, but also reduces encoding and decod-
ing delay. Simulation results showed that our proposed scheme
yields better performance than those previously proposed in all
of the fading conditions and different power delay profiles.
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