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and then p(S) = 1 .  Now suppose that p ( S )  2 p > 1 and that the 
boundary values of Gp- I are infinite. From (12)  a boundary value 
of Gp can be finite only if /BPI = 1, then from (1 1 )  we obtain 

P 

k = O  
c,( t ;p)  = hkXj-(t  - k )  = 0 ,  

t = p + l ; . . , m ,  r = l ; . .  , n  

andp(S) = p .  
Finally, we must show that forp 2 p ( S )  the MLE does not exist. 

It is sufficient to take p = p ( S ) .  Let ( B , ,  . . . , a,! be a set of 
reflection coefficients with IBkI < 1 fork  < p and IPpI = 1 lead- 
ing through (5) to the condition (6) in the definition ofp(S). From 
the expression (10) of Gp we obtain, for p, in a neighbourhood of 
BD 9 

where C stands for some constant, so G, tends to zero in this 
boundary point. 

V. CONCLUSION 

We have proved that for almost all sets of n records of length m 
of complex data, the MLE in AR ( p )  models exists if and only if 
the n records can not be exactly fitted by complex undamped si- 
nusoids using the same set o f p  distinct frequencies. So in estimat- 
ing AR ( p )  models with increasing order p ,  the maximum likeli- 
hood method can be applied until p = m - 1 or stops with p just 
smaller than the minimal number of frequencies p ( S )  used by the 
sinusoids fitting the data exactly. The method in [4] working on 
the reflection coefficients, its use withp = p ( S )  gives, in the limit, 
the borderline values B1, . * * , with IBp0,/ = 1 describing the 
average of the discrete spectrum of these sinusoids. 
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Estimation of Multiple Sinusoidal Frequencies Using 
Truncated Least Squares Methods 

S .  F. Hsieh, K. J. R. Liu, andK. Yao 

Absfracf-Various SVD-based methods have been shown effective for 
resolving closely spaced frequencies. However, the massive computa- 
tions required by SVD makes it unsuitable for real-time applications. 
To reduce the computational complexity, three truncated QR methods 
a re  proposed: I) truncated QR without column pivoting (TQR); 2) 
truncated QR with reordered columns (TQRR); and 3) truncated QR 
with column pivoting (TQRP). I t  is demonstrated that many of the ben- 
efits of the SVD-based methods a r e  achievable under the truncated QR 
methods with much lower computational cost. Based on the forward- 
backward linear prediction model, computer simulations and  compar- 
isons a re  provided for different truncation methods under various 
SNR’s. Comparisons of asymptotic performance with large data sam- 
ples a r e  also given. 

I. INTRODUCTION 

In the pioneering paper of Tufts and Kumaresan [3], a SVD- 
based method for solving the forward-backward linear prediction 
(FBLP) least squares (LS) problem was used to resolve the fre- 
quencies of closely spaced sinusoids from a limited amount of data 
samples. By imposing an excessive order in the FBLP model and 
then truncating small singular values to zero, this truncated SVD 
(TSVD) method yields a low SNR threshold and greatly suppresses 
spurious frequencies. However, the massive computations required 
by SVD makes it unsuitable for real-time superresolution applica- 
tions. We propose using truncated QR and LS methods which are 
more amenable to VLSI implementations, such as on systolic ar- 
rays [8], with insignificantly degraded performances as compared 
to the TSVD method. Three different truncated QR methods are 
considered, depending on the ordering of the columns of the data 
matrix. The first one is the truncated QR method without column 
shuffling (TQR). This method does not change the structure of the 
data matrix. A QR decomposition (QRD) of the data matrix is fol- 
lowed by the truncation of the lower right weak-rank submatrix of 
the upper-triangular matrix. The seccnd one is the truncated QR 
method with reordered columns (TQRR). The reordering of the 
columns is determined in an a priori manner [6]. Here truncation 
is performed on the QRD of the column-reordered data matrix. The 
computational cost of this TQRR method is the same as that of the 
first method, except for the column reshuffling. The last one is 
called truncated QR with column pivoting (TQRP) [9]. This method 
entails a series of dynamic swapping of columns while performing 
the QRD. An additional computational cost is required to monitor 
the norms of the remaining columns in the dimension-shrinking 
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submatrix such that the first column is replaced by the one with the 
largest norm in the remaining submatrix. The processing overhead 
of successive column swapping may be nontrivial and prohibitive 
in implementing a VLSI structure. All these three truncated QR 
methods only involve a finite number of computations, while for 
the TSVD method, it is well known that the number of iterations 
required cannot be specified exactly. Based upon Matlab compu- 
tations, SVD requires about 5 to 6 times the number of flops com- 
pared to the QRD for a dense 50 X 50 matrix. Furthermore, we 
should note that the QRD only requires a small number of flops for 
updating when new data are successively appended [SI, [9]. Exact 
updating of the SVD is generally much more intractable [lo], al- 
though efficient updating techniques do exist at the expense of de- 
creased accuracy [ l l ] .  

A FBLP model for estimating sinusoidal frequencies is formu- 
lated first, followed by an introduction of different truncation meth- 
ods and the minimum-norm solutions. Finally, comparisons of these 
three QR and the LS methods to the TSVD method are given based 
on computer simulations. 

11. FBLP MODEL 

Consider a complex-valued data sequence of length n ,  

P 

k =  I 
f ,  = el2rbf + w 

i =  1 , 2 ,  . . *  , n  (1) 

= x + w 1 -  I I' 

where p is the number of sinusoids and w, is an additive white 
Gaussian noise with variance U ' .  We define the signal-to-noise ra- 
tio (SNR) as SNR (dB) = -10 log (2.') [3]. It can be shown [3], 
[ I ]  that under noise-free conditions, the frequency locations can be 
obtained by finding the roots of 

/ 

s(z) = 1 - c gkZ-k = 0 (2) 

which are on the unit circle. The complex-valued coefficients gi s, 
k = 1, 2, * * * , 1, satisfy the following system of FBLP equations: 

k =  I 

(3) 

with 1 representing the order of the prediction model, and * the 
complex conjugate. For simplicity, denote (3) as 

Ag = b (4) 

where the data matrix A and the right-hand-side vector b are con- 
structed from the data sequence { x ,  ) i  = 1, . . * , n }  in a FBLP 
manner. We will assume thatp 5 1 5 n - p / 2  and rank (A) = p 
[ l ,  p. 3431. When the noise is present, we use an on A and b, 
i.e., A = A + E and 6 = b + e ,  to denote the noise-corrupted 
FBLP model with the additive noise. Equation (4) now becomes 
the FBLP LS problem of 

Obs. data: { 5 }  x, I 

Roots S ( Z )  
#PI 

Fig. 1. Block diagram for sinusoidal frequency estimation based on the 
FBLP model. 

where A has full rank due to the perturbation of the noise. One 
standard approach [3] is to use the TSVD method on (5) to obtain 
a rank-p approximation of the FBLP matrix A, denoted by A@?,, 
followed by solving for a minimum norm LS solution of g given 
by 

Ag,g = 6 (6) 

or equivalently, g = [A&lt6, where [ .I t  denotes the pseudoin- 
verse of a matrix. Then the frequencies can be computed'by finding 
the phases of the roots of (2) close to the unit circle or searching 
for the peaks of l / (S(exp  ( j27rf)I2,  -0.5 5 f < 0.5. Notice that 
the proper choice of the prediction order 1 depends on p ,  the num- 
ber of sinusoids, which may or may not be known in advance. 
Throughout our discussion, we will assume this quantity is known. 
If not, then the detection problem arises [2]. A detailed treatment 
of this problem involves various other basic issues and will not be 
addressed here. Fig. 1 depicts a flowchart diagram summarizing 
the estimation of harmonics frequencies based on the FBLP model. 

111. TRUNCATION METHODS 

In this section, we consider the rank-p approximation of the 
FBLP matrix A". We subsequently solve the corresponding system 
for the minimum-norm solution g @ ) .  For many LS problems, ill- 
conditioning can be troublesome, and truncation methods are known 
to be useful in stabilizing the solutions at the cost of slightly in- 
creased residual errors [9]. Let 

C ,  0 
A =  O C P H = [ O ,  4 1 1  0 E, I[;;] (7) 

An = QR = [ Q ,  Q,] [ 3 
be the SVD and QRD of the 2(n - 1 )  X 1 complex-valued matrix 
A, respectively, where denotes the complex-conjugate tratspose 
of a complex-valued matrix or vector and II is a column-permuta- 
tion matrix and will be explained later. 2, = diag (C,, * * * , C p )  
and 

represent nonincreasing singular values. R I ,  E ePxP, RI,  E 
C 3 p x ( ' - p ) ,  and RZ2 E e('-p)x('-p),  while R is an upper-triangular 
matrix. 
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and 

Q = [Q, Q,] = [q,, * * . , qp, qp+ I )  . . . , 4/]  E c2( " - I~x /  

all have orthonormal columns, i.e., 
In the absence of noise, E, = R,, = 0. Here the permutation 

matrix II = [al, . . . , 7r/] is used to represent different methods 
of performing QRD with column interchanges. Now, we want to 
preserve as much of the energy as possible (with respect to the 
Frobenius norm defined below) in the trapezoidal matrix [ I ? ,  , RI,] 
of (8). Equivalently, we want to leave as little energy as possible 
residing in the lower right submatrix R,,, which will be truncated. 
During the ith stage of the QRD procedure (i = I ,  . . . , 1 ) ,  the 
submatrix R,, has 1 - i + 1 columns. In the dynamic column- 
swapping case the column of RZ2 having the largest 2-norm is per- 
muted into the first column position [9]. This is the column with 
the maximum linear independence with the subspace defined by 
[4,, . . . , qi- I]. This process forces the energy in the remaining 
portion of R2, to be as small as possible. Hence, the subsequent 
truncation of R,, results in  the smallest possible error. 

There are at least three possible methods for determining the per- 
mutation matrix II while performing QRD. They are: 

1) For QRD with no pivoting, II is simply an identity matrix. 
We denote this scheme as the TQR method. 

2) QRD with preordered columns [6] determines II according to 
a column index maximum-difference bisection rule. Here we select 
the first and the Ith columns, followed by the column r( 1 + 1)/21 
halfway between 1 and 1. Then we pick the columns that lie in the 
midway of those ones previously selected, i.e., [(l + r ( l  + 
1)/21 ) /21 , r (  r ( l  + 1)/21 + 1)/21 , and so on. This selection 
rule does not depend on the real-time data in A. The underlying 
reason for this ad hoc fixed-ordering scheme is to provide the se- 
lected columns with a possibly maximum differences or minimum 
linear dependency among these columns. This ordering scheme is 
not unique nor is optimum in general. It was motivated due to the 
nature of the matrix k arranged in the form of (3) consisting of 
perturbed sums of harmonic sinusoids. As an example, suppose 
there are 5 columns, then the preordering strategy leads to [1]-[5]. 
Thus we have II = [e,, e5, e3, e2, e4], where e; is a dimension 1 
column vector with all zero components except for an one at the 
ith position. We denote this scheme as the TQRR method. It ap- 
plies only when the frequencies of the input signal components are 
closely spaced. 

3) As for QRD with column pivoting [9, p. 2331, II is deter- 
mined during the QRD process, where s, = ed, and d ,  E [ l ,  I ]  is 
the index such that a,,, the d,th column of k, has the largest norm. 
Continuing with this column-pivoting process on the lower right 
submatrix yet to be triangularized, we can determine the permu- 
tation matrix II which yjelds an optimum QRD column ordering 
strategy in the sense of preserving most energy in the upper trap- 

. ezoidal submatrix. However, this II is data-dependent and the extra 
cost for this pivoting may make it less desirable for some appli- 
cations. We denote this scheme as the TQRP method. 

After forcing those weak-rank quantities to be zero and preserv- 
ing the most significantp-rank, we can obtain a rank-p approximate 
of A. These weak-rank quantities are those entries in the factorized 
matrix that contribute least significantly to the matrix, or possess 
the smallest portion of the energy (square of Frobenius norm) of 

= i j F C j  = qYqj = 6,. 

the associated matrix. For TSVD, E, is discarded and 

AEVD = 8, c, r?:. (12) 

Similarly, for TQR, the lower right submatrix I?,, is discarded and 

(13) 

To account for the effect due to truncation, we define the fractional 
truncated F-norm as 

(PI 
TQR = [RllR, , I '  

5") = 1 - ~ ~ A ( ~ ) ~ ~ ~ / \ ~ k ~ ~ ~  (14) 

where 1 1 .  I I F  is the Frobenius norm given by 

I 

Thus we have 

and 

While 

0 I 5fVD I 5gRp 5 1 (18) 

is valid analytically [9], from extensive computations we also ob- 
served the relationships among truncated QR methods to satisfy 

(19) FTQRP (PI  I STQRR (P) I 5i"dR 5 1. 

Therefore, from the point of view of preserving the Frohenius norm 
(square root of energy) of a matrix, SVD provides the optimum 
truncation, with TQRP being next, while TQRR and TQR truncate 
even more (see Fig. 2). 

IV. MINIMUM-NORM SOLUTIONS 

After truncation, the FBLP LS problem becomes rank-deficient, 
hence the minimum-norm LS solution is desired in order to sup- 
press those spurious harmonics in the pseudo-spectrum. For TSVD 
it is given by 

gv, = VI e ;Ioy&. (20) 

After the QRD and truncation of R,,, the FBLP system assumes 
the following form: 
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where the matrix on the left is of dimension p X 1, 1 > p .  We 
therefore observe the original overdetermined FBLP system of 
equations given by (3) converted into an underdetermined system. 
To obtain g:AR corresponding to (21), we can perform a QRD on 
the right of the trapezoidal upper triangular matrix in (13) to zero 
out and also obtain the orthonormal row space, P H ,  of 
[ I? , ,  PI*]. That is 

(22) AFAR n = Ql [Rl l  RI,] = QILHP." 
where = [il, . * * , 41 E e lxp  has orthonormal columns and L H  
E C p x p  is an upper triangular matrix. This is sometimes called a 
complete orthogonal factorization [9, p. 2361, and we can consider 
it as a two-sided direct unitary transformation on a rank-deficient 
matrix to compress all the energy of a matrix into a square upper 
triangular matrix. Then from (22) the minimum-norm solution for 
the underdetermined LS problem 

75 

follows by 

1 -  

0 -I5 

5 
1 

-2 

-2.5 

(PI  . In summary, gTQR in (24) for various TQR methods can be ob- 
tained in a backward manner. We first perform the QRD and also 
determine the permutation matrix I1 and the transformed right-hand- 
side vector Q? 6 as given in (13). After performing another QRD 
on the truncated upper triangular matrix in (22) we can obtain F 
and L. Next, a back substitution for L-HQr6 followed by a ma- 
\ria-vector multiplication and a vector permutation results in 
g TQR 

- 

- 

- 

V.  SIMULATION RESULTS 

Finally, we present various computer simulations based on the 
following model. Let f ,  = cos (27rf, i) + cos ( 2 i r -  i )  + w,, i = 1, 
2, . , 48, withfi = 0.125, A = 0.135, 1 = 36 and {w!} is a 
white Gaussian random sequence. The estimated frequencies, f, 
and A, are determined by the phase (from 0 to ?r) of complex roots 
closest to the unit circle. For TQRR, we prepermute the columns 
of the FBLP matrix in the order of  { 1 36 18 9 27 5 . * * } 
as suggested by [6]. We will consider the frequency bias and the 
standard deviation of the estimated frequency on the evaluation of 
the performances. Two classes of comparisons will be considered 
in the following curves. The first one is to compare these truncation 
methods under various values of SNR from 0 to 50 dB. The second 
is to observe the asymptotic performance by fixing the order I = 
36, and increasing the number of observed data samples. One 
hundred independent simulations are used to obtain the statistical 
means and standard deviations. 

Fig. 2 gives the average fractional truncated Frobenius norms of 
(15) versus SNR when we preserve only the four most significant 
ranks of the FBLP matrix for the five different methods. This con- 
firms their relationships in (18) and (19) and also shows that the 
truncated energy decreases monotonically as SNR increases. We 
note that the solid curve for the LS case coincides with the SNR 
axis due to no truncation at all. Fig. 3 shows the standard deviation 
offz. We can see the TQRP competes quite well with TSVD, while 
TQRR performs slightly worse than TQRP but better than TQR 
without pivoting. 

4 . 5 1 . .  . . . . . . .  I 

. . . . . . . . .  
0 5 10 15 20 25 30 35 40 45 50 

SNR(dB) 

-51 ' 

Fig. 3. Standard deviations for estimatingf, = 0.135 using a 24 X 36 
FBLP matrix. 

-0.5 I 

31 I 
40 45 50 55 60 65 70 75 

no. 01 data s m p h  

Fig. 5.  Standard deviations of estimates versus the number of data samples 
f o r f =  {0.125, 0.135}, SNR = 10 dB, and order = 36. 

If we fix the SNR = 1@dB and the order of the FBLP model to 
be I = 36, as more data are collected, the ill effects of the noise 
should be asymptotically smoothed out. Fig. 4 shows the combined 
average frequency bias (defined as the sum of the absolute values 
of the biases forfl a n d h )  versus the number of data samples. Fig. 
5 shows the curves of various combined standard deviations of the 
estimated frequencies which is defined as the square root of the sum 
of squares of the standard deviations of each frequency estimate. 
From Figs. 4 and 5 ,  it is clear that under moderate SNR conditions, 
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TABLE I 
COMPARISONS OF TRUNCATED LEAST SQUARES METHODS 

Freq. Est. Comput. Cost VLSI Updating 

TSVD Excellent Very high Complex Difficult 
TQRP Very good Medium Medium Medium 
TQRR Good Fair Fair Easy 
TQR Fair Fair Fair Easy 
LS Poor Low Low Easy 

the performances of TQRP closely follow that of TSVD. Through- 
out our simulation, we have fixed the model order 1 = 36. This 
choice is optimal for the TSVD method. As for the proposed three 
TQR methods, further investigation and extensive simulations need 
to be performed to see its effects. 

VI. CONCLUS~ONS 

Three truncated QR methods have been proposed for resolving 
closedly spaced frequencies. Well known for their numerical sta- 
bility and ease in updating, these TQR methods, at the cost of 
slightly degraded performance, are promising for real-time appli- 
cations. Table I summarizes the comparisons among different trun- 
cation methods. From our simulations, we found that the ratio of 
flops counts of SVD, QR with reordering, QR with column pivot- 
ing, and standard QRD is about 5.9 : 1.1 : 1.1 : 1 .  This comparison 
is based on factorization of a 24 X 36 matrix using PC-MATLAB. 
We conclude that TQR is the simplest and can be performed easily 
in a real time updating, but may suffer significant degradation. 
TQRP provides almost the same performance as SVD, but is not 
easy to implement in real time processing in that the difficult col- 
umn reshuffling is required while performing QRD with pivoting. 
TQRR provides a good compromise between the above two and 
can also be implemented for systolic array processing. The LS 
method is simple to implement and update but has a poor frequency 
estimation capability. 
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The Double Bilinear Transformation for 2-D Systems 
in State-Space Description 

P. Agathoklis 

Abstract-The double bilinear transformation for two-dimensional 
(2-D) systems described by state-space models is considered. The re- 
lationships between the realization matrices of the continuous and the 
discrete 2-D transfer functions are presented. 

I. INTRODUCTION 

The bilinear transformation has been widely used to transform 
continuous prototypes into discrete transfer functions. For one-di- 
mensional (1-D) systems it has been studied for systems described 
by transfer functions, as well as by state-space models [l], and has 
been used in many filter design techniques and control design ap- 
plications. In the two-dimensional (2-D) case, the double bilinear 
transformation has been used to design 2-D digital filters ([4], [5] 
are examples of such techniques), as well as for double integral 
evaluations [2] of systems described by transfer functions. 

In this correspondence, the double bilinear transformation for 
2-D systems described by state-space models is considered. The 
relationships between the realization matrices of the discrete and 
the continuous transfer functions are given. 

11. PRELIMINARIES 

Consider a 2-D discrete system represented by a 2-D state-space 
model [3]: 

where xh E R“ and XI’ E R” represent the horizontal and vertical 
states respectively, U is the input and y the output. The system 
transfer matrix is given by 
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