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We present and evaluate the performance of a reduced complexity variation to the source encoding assisted multiple access
(SEAMA) protocol for integrating voice and data over a wireless network. This protocol, denoted as slow movable-boundary
SEAMA (SMB-SEAMA), uses the same embedded and multistate voice encoder used in the original SEAMA protocol. However,
in SMB-SEAMA, the movable voice/data boundary is not set based on the frame-by-frame bandwidth demand of the voice sub-
system, but on the number of ongoing voice calls and the acceptable average distortion level. This results in a protocol that, at
the network layer, is packet switched for both voice and data; however, from the data traffic point of view, the voice looks like
circuit switched. Analytical results show that SMB-SEAMA is a very efficient MAC protocol and presents a model for analyzing
the performance of queuing systems with a variable number of servers, each with a constant service time. Consequently, while
reducing the refreshing rate of the movable boundary by three orders of magnitude, simulation results demonstrate that SMB-
SEAMA does not significantly degrade the system performance (less than 8% reduction in throughput) and it still performs better
than packet reservation multiple access (PRMA), the other known packet-switched scheme, which updates the boundary during
every transmit frame.

Keywords and phrases: TDMA, embedded voice coding, packet-switched wireless network, voice-data boundary setting, voice-
data integration.

1. INTRODUCTION

In a resource-limited wireless network, the medium access
control (MAC) protocol design plays an essential role in in-
tegrating different services (e.g., voice and data) and satis-
fying each service demands while providing high network
utilization. While end-users evaluate network performance
in terms of the perceived quality (regardless of how it is de-
fined), network operators and designers face the conflicting
need to satisfy end-users’ demands and assure high network

utilization. At the root of this problem is the need to consider
the design problem at two different layers of the communica-
tion link: the application layer and the network layer. Because
of these inherently conflicting constrains on different layers,
a cross-layer design can provide the best solution.

A circuit-switched network (e.g., a TDM network) as-
signs a dedicated channel to an admitted call for the
whole duration of the call. While this approach guaran-
tees quality of service (QoS) for real-time traffic, it also re-
sults in large network inefficiencies and underutilizations.
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A successful MAC protocol operates across different layers of
the communication link to achieve high network efficiency
by employing statistical multiplexing. In a voice/data wireless
network, the utilization can be increased by exploiting the
time-varying characteristic of speech at the application layer
in conjunction with statistical multiplexing and movable-
boundary schemes [1, 2] at the network layer. The idea is
to logically separate voice and data subsystems by a movable
boundary, the slots1 left unused by voice are made available
to data. For example, the wireless integrated multiple access
(WIMA) protocol [1] takes advantage of the variations in the
number of voice calls by incorporating a movable boundary
for the voice subsystem that assigns the free slots to data traf-
fic. This MAC protocol is circuit switched for voice subsys-
tem and packet switched for data subsystem.

Packet-switched protocols take advantage of the varia-
tions in the output rate of real-time traffic (e.g., voice) to
assign the network resources among users more efficiently.
Packet reservation multiple access (PRMA) protocol [3, 4],
uses the talk spurt/silence model of voice [5], and only calls in
a talk spurt can access the channel. Similar to WIMA, PRMA
separates voice and data subsystems with a movable bound-
ary. Unlike WIMA, in PRMA both voice and data subsystems
are packet switched. In every frame, the movable boundary
in PRMA depends on states of all the voice calls. Thus, we
consider this as fast movable boundary (FMB) as opposed to
slow movable boundary (SMB) in WIMA.

The source encoding assisted multiple access (SEAMA)
protocol exploits source encoder characteristics for voice/da-
ta integration in a wireless network [6]. SEAMA increases
network utilization while it provides the desired QoS for
applications. At the application layer, SEAMA employs an
embedded multistate (multirate) voice encoder. An embed-
ded voice encoder has the property that a truncated ver-
sion of its output bit stream can be used to generate a
coarser description of the original input signal. SEAMA as-
signs bandwidth to ongoing calls based on the state of the
encoders (state of the calls). SEAMA resolves overflows by
selectively dropping packets from the embedded bit stream
of some calls, according to an optimal scheduling pol-
icy. As a result, SEAMA achieves a significant gain in net-
work utilization, for example, a 100% gain compared to
a circuit-switched network and at least a 20% compared
to PRMA [6]. Moreover, the quality of the voice traffic
degrades gracefully by increasing the number of admitted
calls. At the network layer, and similar to PRMA, SEAMA
is packet switched for both voice and data and it incorpo-
rates an FMB, that is, the movable boundary is updated every
frame.

SEAMA (with FMB) provides high network utilization,
however, it adds to the complexity when compared to WIMA
(with SMB). In SEAMA and PRMA the state information of
all voice calls are needed to determine the FMB; in contrast,

1The discussion here is specific of a time-division multiple access net-
work, but it is straightforward to extend to other multiple access techniques,
for example, when the concept of time slots is replaced by radio channels.

in WIMA the number of ongoing voice calls is enough to ob-
tain the SMB. The challenge is to develop a low-complexity
MAC protocol with SMB that provides a performance com-
parable with SEAMA.

This paper proposes a low-complexity intelligent MAC
protocol that is a modification to SEAMA for supporting
voice and data in a wireless communication network. More
precisely, the proposed protocol reduces the refreshing rate
of voice/data boundary by three orders of magnitude when
compared to SEAMA and PRMA, yet, its performance is
close to SEAMA and still better than PRMA.

We propose a variation of SEAMA, SMB-SEAMA, that
uses an SMB. Our goal is to design, analyze, and evaluate the
performance of such new MAC protocol. At the application
layer, SMB-SEAMA uses the same voice encoder (embedded
and multistate) employed in SEAMA. At the network layer,
SMB-SEAMA is packet switched for both voice and data;
however, from data traffic point of view, voice looks like cir-
cuit switched. In other words, the SMB depends only on the
number of voice calls. In essence, SMB-SEAMA still achieves
the high network utilization provided by SEAMA while it re-
duces the complexity by using an SMB. Even more, analytical
results also indicate that SMB-SEAMA behaves as a highly
efficient MAC protocol. Simulation results show that SMB-
SEAMA does not significantly degrade the system perfor-
mance (less than 8% reduction in throughput) when com-
pared to FMB-SEAMA.

The rest of this paper is organized as follows. Section 2
presents the description of the SMB-SEAMA protocol.
Section 3 provides the design of the movable-boundary
scheme. In Section 4, we present mathematical analysis of the
movable-boundary setting and both the voice and data sub-
system performance. In the case of the voice subsection, we
study the statistical characteristics of the average distortion
for a given number of calls. Our work in the data subsection
leads to the mathematical study of the behavior of a mul-
tiserver queuing system with fixed service time and infinite
waiting queue where the number of servers changes over time
following some random process (a truncated Poisson in our
case). Section 5 presents the simulation results and compar-
isons to PRMA and between the slow and the fast movable
schemes. Finally, Section 6 draws some conclusions.

2. DESCRIPTION OF SEAMA

Next, we provide a brief description of SEAMA. Further de-
tails can be found in [6]. Consider a TDMA integrated voice
and data network. Because we are focusing on design issues at
the application and network layers we will assume error-free
uplink and downlink channels with negligible propagation
delay. On the uplink, communication is carried over fixed
length frames of Tf seconds, each consisting of M fixed num-
ber of time slots. Each frame length is equal to the length
of the voice encoder frame and consists of three parts: a
voice, a data, and a voice setup compartment. The voice
compartment carries voice packets, one in each time slot, and
has a movable boundary limiting its size to at most B slots.



A Low-Complexity Access Protocol for Voice/Data Integration 195

The data compartment carries data packets, one in each time
slot, and has a size equal to the number of slots left unused
by the other compartments. The voice setup compartment is
only used by calls intending to initially enter the system.

Speech is basically a variable rate source. For a given fi-
delity criterion, at any time, the rate of speech source de-
pends on the level of voice activity. We assume that the sys-
tem employs an L-state voice encoder with one distinct rate
associated with each state; for instance, the QCELP coder
has four states and four rates [7]. From now on, we use the
terms “encoder state” and “call state” interchangeably. We as-
sume framing and timing parameters so that the voice en-
coder rate corresponds to an integer number of packets per
frame. We denote by xmax

l the requested bandwidth in terms
of the number of slots per frame for a call in state l. For
instance, QCELP produces one of one, two, four, or eight
packets per frame depending on the encoder state. If a new
call meets the criteria imposed by the network admission
control policy, it will be admitted and the network will al-
low sending packets to the base station for the duration of
the call. Although this implies a commitment of network re-
sources for the duration of the call, in order to perform an
efficient statistical multiplexing, the amount of committed
resources will change depending on the call and the network
state. Furthermore, no commitment is given to the data traf-
fic.

Because of the dynamic state change of each voice call, a
mechanism for allocating bandwidth, measured as the num-
ber of time slots per frame, is needed. In each transmission
period, each call transmits the packets generated in the pre-
vious frame along with the bandwidth requested to trans-
mit the packets generated in the current frame. The over-
all result is that while calls undergo a fixed delay equal to
one frame, SEAMA knows all the bandwidth requests nec-
essary to control the network flow. Using a feedback chan-
nel, SEAMA assigns slots to each call based on the next states
of all calls as well as the available network resources (total
bandwidth). For most practical coders, this procedure causes
a delay that is tolerable in two-way voice communication sit-
uations.

SEAMA controls network flow and admissions of a net-
work section from a centralized position. In its flow control
task, SEAMA determines the rate assignment among calls to
avoid congestion. Congestion, or equivalently overflow, oc-
curs when the total requested bandwidth exceeds the voice
compartment capacity. Specifically, let Nt denote the num-
ber of ongoing calls in the tth frame, let Nl,t be the num-
ber of ongoing calls in state l, each requesting xmax

l slots
per frame. Then, overflow occurs when

∑L
l=1 Nl,tx

max
l > B.

Because SEAMA knows the bandwidth requested by each
call one transmission period earlier, it can detect the occur-
rence of congestion and resolve it. To resolve overflow while
providing the best QoS for the voice traffic, voice calls use
an encoder producing an embedded bit stream within each
state. SEAMA’s flow control mechanism exploits the hierar-
chical structure of the embedded encoder bit stream by se-
lectively dropping low-significance packets to avoid overflow.

An embedded source encoder produces a sequence of source
descriptions with the property that each source descrip-
tion, except the first, may be decomposed into the prior
source description and incremental descriptions. By decod-
ing this sequence, the decoder can obtain a sequence of
source reconstructions with decreasing expected distortions.
It was shown in [6] that, to optimally resolve congestion
by minimizing an increase in average distortion, the rates
of all calls in the same state should be either the same
or maximum one slot apart. Even more, [6] presented a
greedy but optimal algorithm that SEAMA uses to resolve
the overflow problem and to determine the bandwidth as-
signment to each call. Figure 1 summarizes the main flow
control operations carried on by SEAMA for the voice sub-
section.

SEAMA also implements an admission control policy
that determines the maximum admissible number of calls,
hereafter denoted by Nmax. The policy accounts for the
two interrelated facts that the overflow probability increases
as more calls are admitted and that the overflow resolu-
tion increases the average distortion per call. An appro-
priate solution for this policy is to choose the maximum
number of voice calls, so that the peak-load average dis-
tortion is kept below a threshold d, where the peak-load
distortion, Ē[D], is defined as the average distortion per
call when the number of calls in the network is maximum,
Ē[D] = E[D(N) | N = Nmax]. Here D(N) is the av-
erage distortion per call normalized to its minimum value
(i.e., the minimum value of D is 1). Note that we have
dropped from the notation the time reference. This is be-
cause, without loss of generality, we will consider in the
sequel the network state at some generic time. In the no-
tation we now emphasize the dependence of the distor-
tion on the random number of users present in the sys-
tem N .

3. SLOW MOVABLE-BOUNDARY SEAMA DESIGN

As presented in [6] SEAMA implemented an FMB between
voice and data sections. Specifically the boundary was set at
every frame based on the state of each call by doing BF =
min[

∑L
l=1 nlx

max
l ,B], where nl is the number of calls in state l

and B is the maximum number of slots allocated to the voice
compartment. Because of the frequent boundary adaptation
(typically tens of times per second if using practical coders),
we call this scheme FMB-SEAMA.

In SMB-SEAMA the boundary changes slowly based on
the number of voice calls in the network. Because the num-
ber of calls change roughly every few seconds, the frequency
with which the boundary is changed in the SMB scheme is,
depending on the voice subsection load, approximately three
orders of magnitude smaller than the adaptation frequency
in the FMB scheme. Given n ongoing calls in the system, the
boundary is obtained such that the average distortion, con-
ditioned on the number of calls in the network N , does not
exceed a limit d, that is, E[D(N) | N = n] ≤ d. Let q1 · · · qL
be the occurrence probability of each of the L encoder states.
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Figure 1: SEAMA’s flow control operation.

Then, in a network supporting n calls we have

E
[
D(N) | N = n

]

=
∑

n1+···+nL=n

(
n

n1 · · ·nL

)
qn1

1 · · · qnLL D
(
n1, . . . ,nL

)
,

(1)

where D(n1, . . . ,nL) is the optimum average normalized dis-
tortion per call resulting from SEAMA flow control opera-
tion, which assigns rates among calls as described in [6, Sec-
tion 2].

In our design we use the high-rate approximation for the
distortion-rate encoder, given by fl(x) = αl22kx, x ≤ xmax

l ,
where k is a scaling factor converting from bits per sec-
ond (bps) to number of slots and αl is a coder-dependent

parameter [8]. Assuming that, when operating at maximum
encoding rate, the average distortions in each state are all
the same and equal to a constant δ, the encoder normalized
distortion-rate performance in state l is fl(x)/δ = 22k(xmax

l −x).
In the absence of rate control, the average normalized dis-
tortion per call is (1/n)

∑L
l=1 nl2

2k(xmax
l −x). However, in the

presence of an overflow SEAMA optimally controls each call
voice encoding rate. It was shown in [6] that, following this
optimal rate adaptation,

D
(
n1, . . . ,nL

) =
( L∏

l=1

22k(nl/n)xmax
l

)
2−2k(B/n), (2)

where B in (2), when referred to FMB-SEAMA, is the max-
imum number of slots allocated to the voice compartment.
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In SMB-SEAMA, this boundary changes based on the num-
ber of calls present in the system. Denoting by BS(n) the
boundary setting in SMB-SEAMA when there are n users and
combining (1) and (2),

E
[
D(N) | N = n

]

= (n!2−2k(BS(n)/n)) ∑
n1+···+nL=n

L∏
l=1

(
qnll 22kxmax

l nl /n

nl!

)
.

(3)

The problem of designing the voice/data boundary is,
then, the one of finding BS(n) such that E[D(N) | N = n] ≤
d. This leads to the SMB design formula

BS(n)

=
⌈
n

2k
log2

(
n!
∑

n1+···+nL=n
∏L

l=1

(
qnll 22kxmax

l nl /n/nl!
)

d

)⌉
.

(4)

Note that, because of the admission control policy which
sets Nmax considering B and E[D|N = Nmax] ≤ d, we have
that BS(Nmax) = B.

4. SLOW MOVABLE-BOUNDARY SEAMA ANALYSIS

Because the movable voice/data boundary is the main tool
used here to integrate voice and data, its adaptation affects
both voice and data traffic within the same frame. In this sec-
tion we analyze the movable-boundary setting and both the
voice and data subsystem performance.

4.1. Movable-boundary setting

We assume that the number of calls present in the system,
n, is fixed and large, and consider the average normalized
distortion D(n1, . . . ,nL) in the presence of an overflow, from
(2),

D

(
n =

L∑
l=1

nl

)
= D

(
n1, . . . ,nL

)

= 2(2k/n)(
∑L

l=1 nlx
max
l −B(n))

= 2(2k/n)(
∑n

i=1 x
max
i −B(n))

= 2(2k/n)(S(n)−B(n)),

(5)

where we have defined S(n) � ∑n
i=1 x

max
i . Let µX be the

average number of slots requested by each call (i.e., µX =∑
l qlx

max
l ) and σ2

X the variance. Using the assumption that
the number of users is large, and resorting to the law of large
numbers [9], we can say that S(n)/n ≈ µX with high proba-
bility. Therefore,

D(n) ≈ 22k(µX−B(n)/n). (6)

Using (6) in (1) and considering the design condition
E[D(N) | N = n] ≤ d, we have

d ≈
∑

n1+···+nL=n

(
n

n1 · · ·nL

)
qn1

1 · · · qnLL 22k(µX−B(n)/n)

≈ 22k(µX−B(n)/n)
∑

n1+···+nL=n

(
n

n1 · · ·nL

)
qn1

1 · · · qnLL .

(7)

From here, since the sum adds up to 1, we get

log2 d ≈ 2k
(
µX − B(n)

n

)
. (8)

Through algebraic operations, this equation leads to

B(n) ≈ n
(
µX − 1

2k
log2 d

)
. (9)

This result allows us to derive the following lemma.

Lemma 1. Assuming that the fixed number of voice calls is
large, then BS(n) ≈ µXn.

Proof. The proof follows from considering that under practi-
cal operating conditions, d is a number close to one and k is
larger than 1. Then µX � (log2 d)/(2k).

From Lemma 1, we can derive the important conclusion
that SMB-SEAMA is a highly efficient MAC protocol. To see
this, consider that in a circuit-switched system, the number
of slots permanently assigned to each call equals the maxi-
mum bandwidth request. Statistical multiplexers assign less
time slots per call than the number assigned in a circuit-
switched system because they take advantage of the source
statistics. This more efficient time slot assignment comes as a
tradeoff with the probability of having to drop some packets
because of a lack of time slots. For example, in PRMA [3],
the number of time slots assigned per call is determined by
a limit on the packet drop probability. This tradeoff is trans-
lated on an average number of slots assigned per call that is
less than the number assigned in a circuit-switched system
but more than the average number of slots requested by each
call, µX . Lemma 1 shows that in SMB-SEAMA this assign-
ment, commonly known as effective bandwidth, is very close
to the average number of slots requested by each call, that is,
µX , which is a highly efficient result. This conclusion is illus-
trated in Figure 2, which shows the probability density func-
tion (pdf) of the average rate request, S(n)/n, when there is
a large number of users in the system. In the figure we used
the central limit theorem (CLT) to approach this distribution
to a Gaussian distribution. Alongside with this distribution,
we also exemplify the average rate assignment for the multi-
plexing cases we have discussed. Note how the SMB-SEAMA
assigns the smallest number of slots per call, followed by a
statistical multiplexer (e.g., PRMA) and a circuit-switched
system.
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SMB-SEAMA

Circuit-
switched
system

Statistical
multiplexer,

packet loss < 1%

Average number of slots required/assigned per call

0 1 2 3 4 5 6 7 8 9

Figure 2: Average bandwidth request, S(n)/n, and the correspond-
ing assignment for different multiplexing techniques.

Figure 3 summarizes the design and analysis results for
BS(n) following both the design equation (4) and Lemma 1.
We calculated BS(n) using (4) for d equal to 1.1 and 1.25,
that is, 10% and 25% additional average normalized dis-
tortion compared to the one where all calls transmit at full
rate. In the case of Lemma 1, we set d = 1.25. We choose
as voice encoder a QCELP-like encoder developed at the
University of Maryland’s Communications and Signal Pro-
cessing Laboratory (CSPL). This encoder is similar in struc-
ture to QCELP, being multistate with different rates asso-
ciated with each state. It differs from QCELP in that the
output stream is embedded, which allows for the flow con-
trol protocol to adapt encoding rate by selectively drop-
ping source packets. Because of this property we named
the encoder embedded QCELP. To calculate BS(n), we mea-
sured the encoder-dependent parameters as being L = 4,
xmax

1 = 1, xmax
2 = 2, xmax

3 = 4, xmax
4 = 8, q1 = 0.585,

q2 = 0.035, q3 = 0.050, and q4 = 0.330. According to
our tests on the embedded-QCELP encoder, we have found
that the impact on perceptual quality when allowing 10%
or even 25% additional average distortion is almost negli-
gible. Note that the design results show a very small de-
pendence on the design value chosen for d. This is be-
cause the values chosen for d are relatively small so that
the perceived quality degradation is kept negligible. Note
that this observation was expected from Lemma 1 and its
proof. Figure 3 also shows the values for BS(n) obtained using
Lemma 1. These results clearly shows that the approximation
in Lemma 1 is very tight and that the protocol is highly effi-
cient.

4.2. Voice subsystem

It is clear from our study so far that, when using the SMB,
calls are going to be operating with an average distortion
equal to the target d. Nevertheless, the instantaneous distor-
tions per call change following the total bandwidth request.
Equations (2) and (5) show the average normalized distor-
tion D(n1, . . . ,nL) in the presence of an overflow. Clearly,
when there is no overflow, calls will be carried on with no
packets dropping, thus D(n1, . . . ,nL) = 1. We can combine
these two operational conditions into a single equation for
D(n1, . . . ,nL). From (5)

D
(
n1, . . . ,nL

) = 2(2k/n){∑L
l=1 nlx

max
l −B(n)}+

, (10)
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Figure 3: Voice/data movable boundary BS(n), measured as the
number of slots reserved for voice traffic in a frame, as a function of
the number of calls in the network.

where {x}+ ∆= max[0, x]. Therefore,

D(n) = D
(
n1, . . . ,nL

)
= 2(2k/n){∑n

i=1 x
max
i −B(n)}+

= 2(2k/n){S(n)−B(n)}+
.

(11)

Note that the domain of D(n) is [1,∞] because D(n) is
a measure of a normalized distortion. Equation (11) shows
that the case D(n) = 1 (when S(n) ≤ B(n)) needs to be
considered separately from the case D(n) > 1 (when S(n) >
B(n)). For the case D(n) = 1 we have P[D(n) = 1] =
P[S(n) ≤ B(n)]. Assuming that the number of users is fixed
and large, we can apply the CLT to approximate the distribu-
tion of S(n)/n as

S(n)
n

−→ Zn ∼ N
(
µX ,

σ2
X

n

)
in distribution. (12)

Then, using Lemma 1,

P
[
D(n) = 1

] ≈ 1−Q
(
B(n)− nµX

σX
√
n

)
≈ 1

2
, (13)

where

Q(θ) � 1√
2π

∫∞
θ
ev

2/2dv. (14)

The range of values where D(n) > 1 corresponds to
the case when D(n) = 2(2k/n)(S(n)−B(n)) in (11), that is,
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when S(n) > B(n). Over this range of values, the pdf
of D(n), fD(n)(γ), can be obtained through fD(n)(γ) =
(d/dγ)P[D(n) ≤ γ]. With

P
[
D(n) ≤ γ

] = 1
2

+ P
[
2(2k/n)(S(n)−B(n)) ≤ γ

]

= P
[
S(n) ≤ B(n) +

n

2k
log2 γ

]

= 1−Q
(
B(n) + (n/2k) log2 γ − nµX

σX
√
n

)

≈ 1−Q
(

(n/2k) log2 γ

σX
√
n

)
,

(15)

we have

d

dγ
P
[
D(n) ≤ γ

] ≈ d

dγ

(
1−Q

(√
n log2 γ

2kσX

))

= − d

dγ

∫∞
√
n log2 γ/2kσX

e−v2/2
√

2π
dv

=
√
n

2kσXγ ln 2
e−(

√
n ln γ/2

√
2kσX ln 2)2

√
2π

.

(16)

Combining (13) and (16), the pdf of D(n), fD(n), is

fD(n)(γ) ≈ 1
2
δ(γ − 1)

+
√
n

2kσXγ ln 2
e−(

√
n ln γ/2

√
2kσX ln 2)2

√
2π

, γ ∈ [1,∞],

(17)

where δ(x) is Dirac’s delta function.
Figure 4 illustrates this result when d = 1.25. In the

figure we include the analytical function from (17) as well
as the empirical result obtained from simulation using the
embedded-QCELP encoder as described in Section 4.1. Note
that even though in the process of developing (17), we
did some simplifying assumptions, the result matches very
closely the empirical observations. Also, note that there is a
nonzero probability that distortion may exceed the accept-
able range. Nevertheless, this does not contradicts our claim
that d = 1.25 is an acceptable value. The reason for this is
that, because of their relatively low probability of occurrence,
the system operates under high distortion for short periods
of time and close to the average distortion d most of the time.
In terms of subjective perception of the received speech qual-
ity, the high distortion values become insignificant because
of their short duration.

4.3. Data subsystem

We have already emphasized the fact that, because the
boundary is changed based on the number of active voice
calls, for the data subsystem the voice subsystem appears as
being circuit switched. Our goal in this section is to analyze

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

P
ro

ba
bi

lit
y

de
n

si
ty

fu
n

ct
io

n

Analytical
Empirical

D(n)

Figure 4: The probability density function of the average normal-
ized distortion per voice call D(n).

the performance of the data subsystem in terms of the aver-
age system delay. For this purpose we assume that the data
traffic consists of packets arriving following a Poisson arrival
process with rate λd. Each packet is transmitted in one time
slot. Those packets that cannot be transmitted because at the
time of transmission all time slots in the data subsection are
occupied by other data packets wait in a queue of infinite
length and first-in-first-out (FIFO) service discipline. We will
show next that the behavior of the data subsystem is the one
of a variable number of servers (those time slots in the frame
unoccupied by voice calls), each with constant service time
(equal to the frame transmission time).

Let Nt be the number of voice calls at time t, Bt the
number of slots assigned to the voice subsystem at time t
(movable-boundary setting at time t), Gt the number of
backlogged data packets at time t, and dt the number of
data packets arriving at time t. We assume that packets arriv-
ing during the frame corresponding to time t are put in the
waiting queue until at least the beginning of the next frame.
Therefore, at time t we have

Gt =
{
Gt−1 −

(
M − Bt

)}+
+ dt. (18)

From (18),

P
[
Gt = i

] = ∞∑
j=0

B∑
b=0

P
[
Gt = i, Bt = b, Gt−1 = j

]

=
∞∑
j=0

B∑
b=0

P
[
Gt−1 = j

]
P
[
Bt = b | Gt−1 = j

]

× P
[
Gt = i | Gt−1 = j, Bt = b

]
.

(19)

Let Pi � P[Gt = i] and p̂b � P[Bt = b], b = 0, 1, 2, . . . ,B.
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Assuming that the data packet backlog process is in the steady
state and using the fact that the movable-boundary setting
is independent of the data packet backlog process and using
(18),

Pi =
∞∑
j=0

B∑
b=0

P
[
Gt−1 = j

]
P
[
Bt = b

]

× P
[{
Gt−1 −

(
M − Bt

)}+

+ dt = i | Gt−1 = j, Bt = b
]

=
∞∑
j=0

B∑
b=0

p̂bPjP
[{ j + b−M}+ + dt = i

]

=
B∑

b=0

p̂b

{ ∞∑
j=0

PjP
[
dt = i− { j + b−M}+]}.

(20)

Therefore,

P0 =
B∑

b=0

p̂b

{
p0

M−b∑
j=0

Pj

}
, (21)

and for i = 1, 2, . . . ,∞, with pk � P[dt = k],

Pi =
B∑

b=0

p̂b

{
pi

M−b∑
j=0

Pj

}
+

B∑
b=0

p̂b

{ M−b+i∑
j=M−b+1

pi+M− j−bPj

}

=
B∑

b=0

p̂b

{
pi

M−b∑
j=0

Pj

}
+

B∑
b=0

p̂b

{ i∑
j=1

pi− jP j+M−b

}
.

(22)

Let gG(z) � ∑∞
i=0 Piz

i be the probability generating func-
tion of the data backlog process. Assuming that the voice call
traffic is Poisson (λ) with exponential (η) holding times [10]
and that the number of ongoing calls, N , is limited to Nmax,
then Appendix A.1 shows that

gG(z) = H(z)− zMQ

C
∑Nmax

k=0 (ρkV /k!)zB(k) − zMeλd(1−z)
, (23)

where C = (
∑Nmax

k=0 ρkV /k!)−1, ρV is the voice subsection load,
ρV = λ/η, λd is the data packets average arrival rate,

Q �
Nmax∑
k=0

p̌k

{M−B(k)∑
j=0

Pj

}
,

H(z) �
Nmax∑
k=0

p̌kz
k

{ j=M−B(k)∑
j=0

z jPj

}
.

(24)

From (23), we show in Appendix A.2 that the data backlog
process probability generating function can be written as

gG(z) =
(
M − λd − E

[
Bt
])

(1− z)

C
∑Nmax

k=0 (ρkV /k!)zB(k) − zMeλd(1−z)

M−1∏
r=1

z − zr
1− zr

, (25)

where zr are the zeroes of the denominator in (23).
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Figure 5: Mean waiting time obtained using (27).

Using this result and the well-known property E[Gt] =
limz→1 dgG(z)/dz, Appendix B shows that the mean number
of backlogged data packets is

E
[
Gt
] = M−1∑

r=1

1
1− zr

+
M − (M − λd

)2
+ E

[
B2
t

]− E
[
Bt
]

2
(
M − λd − E

[
Bt
]) .

(26)

Finally, using Little’s law, the mean data packet delay, ∆d,
is

∆d =
[M−1∑

r=1

1
1− zr

+
M − (M − λd

)2
+ E

[
B2
t

]− E
[
Bt
]

2
(
M − λd − E

[
Bt
])

]
1
λd

.

(27)

This result has the form of a modified version of the for-
mula for the mean waiting time of a system with Poisson in-
put and multiple servers with constant service time [11]. Of
course, the differences are due to the fact that the voice/data
boundary (in effect the number of servers) changes over
time based on the number of users present in the system.
This process that changes the number of servers (i.e., the
voice/data boundary setting) is represented by its probabil-
ity generating function. As an application example, Figure 5
shows the mean waiting time obtained through (27) for a
system using the same embedded-QCELP decoder described
in Section 4.1, the total number of slots M = 150, maximum
number of voice calls Nmax = 27, and ρV = 20. The figure
also includes, for comparison purposes, empirical result ob-
tained from simulation using the embedded-QCELP encoder
as described in Section 4.1. Both results match each other
closely. The difference between them, about 3% at most, is
for the most part due to the sensibility of the solution to
inaccuracies in calculating the poles zr and due to the slow
convergence in finding them. Therefore, (27) can be used to
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Figure 6: Average waiting time as a function of data packets arrival
rate (λd) with voice subsection load, ρV , as a parameter. Normalized
distortion threshold equals 1.1.

estimate the mean data packet delay. Because (27) follows
from the assumption of a system in steady state, it is also
important to note that this result is valid up to the oper-
ating point when the queuing system becomes instable and
the mean waiting time grows rapidly. Finally we note that
in (25) we could have used Lemma 1 to do the approxima-
tion Bt(n) ≈ µXn. Also, assuming ergodicity of all the pro-
cesses involved, the first- and second-order statistics E[Bt]
and E[B2

t ] can be approximately calculated as

E
[
Bt
] ≈ E

[
µXn

] = µX

∑Nmax
k=0 k

(
ρkV /k!

)
∑Nmax

k=0

(
ρkV /k!

) ,

E
[
B2
t

] ≈ E
[(
µXn

)2] = µ2
X

∑Nmax
k=0 k2

(
ρkV /k!

)
∑Nmax

k=0

(
ρkV /k!

) .

(28)

5. PERFORMANCE SIMULATION

In this section, we present simulation results aimed at pro-
viding insight into the performance of the new design com-
bining a slow movable voice/data boundary and selective
voice packet dropping from an embedded stream. We focus
on simulations aimed at evaluating the impact on the data
subsection as compared to other solutions. For this purpose
we used the same setup as in [6]. The TDMA frame size is
assumed to be Tf = 200 milliseconds. A frame consists of
M = 300 time slots, with a maximum of B = 200 allocated
to voice calls. For FMB-SEAMA, using E[D|N = Nmax] ≤ d
as an admission control condition, from (3) with n = Nmax
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Figure 7: Average waiting time as a function of data packets arrival
rate (λd) with voice subsection load, ρV , as a parameter. Normalized
distortion threshold equals 1.25.

and using the fact that BS(Nmax) = B = 200, we found that
Nmax = 55 for d = 1.1 and Nmax = 57 for d = 1.25 (this can
also be seen in Figure 3). As discussed, these values of dis-
tortion were chosen because our test have shown that they
correspond to a perceptually negligible distortion.

In simulations, we assumed a Poisson arrival process (i.e.,
exponential interarrival time) with rate λ for voice calls with
the random calls duration following an exponential distribu-
tion with mean 1/η. Three cases of voice subsection load were
considered with ρV = λ/η equal to 40, 50, and 60 and with
1/η = 3 minutes [12] in all cases. The voice encoder used was
the embedded QCELP described in Section 3.

For the data subsection we assumed also that packets
arrive following a Poisson process with rate λd. Each data
packet has size equal to one slot, thus each is serviced dur-
ing the duration of one slot. We assume that packets may be
transmitted in the same frame where they arrive if possible.

We first compared both SMB and FMB schemes by mea-
suring the maximum data arrival rate that can be supported
by each network configuration before the data subsection of
the network is overflowed. Simulations were performed us-
ing Monte Carlo method with a simulation time long enough
so as to guarantee the statistical confidence in the results. We
measured the average queuing delay for both FMB-SEAMA
and SMB-SEAMA as a function of the data arrival rate under
different voice network loads and by allowing either 10 or
25 percent additional average distortion per call (d = 1.1 or
d = 1.25). These results are shown in Figures 6 and 7. To con-
sistently measure the maximum data arrival rate that can be
supported by each network configuration before data section
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Table 1: Data subsection comparison between FMB and SMB.

d ρV
λd λd

Difference
Relative
differenceFMB-SEAMA SMB-SEAMA

1.10 40 155 126 29 0.19

1.10 50 120 108 12 0.10

1.10 60 120 115 15 0.13

1.25 40 134 130 4 0.03

1.25 50 120 111 9 0.08

1.25 60 115 108 7 0.06

1.50 40 135 130 5 0.04

1.50 50 116 108 8 0.07

1.50 60 111 105 6 0.05

overflow, we estimated the overflow point to roughly corre-
spond to a time in queue equal to 50 frames in all cases. Be-
cause steady-state behavior of the system cannot be assured
for the measurements of interest in this case, we did not use
(27). Results are summarized in Table 1. We can see that the
downsizing of reducing complexity by using an SMB scheme
is some data subsection performance reduction. This reduc-
tion is noticeable in the case when d = 1.10. Nevertheless,
this case corresponds to an overly restrictive design. We have
noticed that a value of d = 1.25 is completely acceptable from
the subjective performance point of view. In this case, the
degradation in performance is small (ranging from 3% to
8%), especially when considering that the boundary is up-
dated at a frequency three orders of magnitude smaller. It
is clear from these results that the design should consider
performance, complexity, and distortion as three interrelated
variables. The observation that the choice of a larger d atten-
uates the performance reduction in the data subsection was
confirmed by measuring the performance when d = 1.50.
These results are also included in Table 1.

It is important to consider that a larger, yet still accept-
able, value of distortion threshold is not only desirable in
view of these results but also because it maximizes the per-
formance improvement of SEAMA when compared to other
multiple access protocols, such as PRMA [3, 4, 6]. Due to a
number of key differences between PRMA and SEAMA (both
SMB and FMB schemes), it is not possible to compare them
using the same setup as described above. Perhaps the most
important difference is that PRMA uses a two-state vocoder
that transmits at full rate for speech periods and does not
transmit at all during silence. Then, in an overflow situa-
tion, while SEAMA selectively drops a portion of packets,
PRMA drops all of them, effectively silencing an active user.
Because of this, PRMA is set to operate at a low overflow
probability (typically 1%). In SEAMA, overflow configura-
tion is based on the distortion threshold. Also, PRMA differs
from SEAMA in the access method. Since in PRMA active
users contend for access to the channel in every silence-to-
talk spurt transition it is possible that users may be silenced at
the beginning of a talk spurt if a contention occurs. In sum-
mary, the overall effect of these differences is that fair com-
parison between SEAMA and PRMA can only be drawn in
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conditions where subjective quality of speech is similar. To
achieve this, both access methods need to be compared at a
fixed number of users. In the present case, we fixed the num-
ber of voice users to n = 36. For PRMA, a 1% packet drop-
ping probability condition determined a maximum number
of voice time slots Bp = 176. Furthermore, we assumed that
this was also the total number of time slots in a frame. Hav-
ing set up the simulation parameters from PRMA, we pro-
ceeded to test SEAMA searching for the value of B where the
perceived quality is similar to PRMA. This value was found
equal to Bs = 117. Note that in this setup we are implicitly
fixing for SEAMA the maximum number of users as well as
the corresponding boundary. This makes both FMB-SEAMA
and SMB-SEAMA equivalent. Comparison between SEAMA
and PRMA was done using the same criteria as above, that
is, we measured the maximum data arrival rate that can be
supported before data subsection overflow. The results are
shown in Figure 8. Here we can see that PRMA supports ap-
proximately 13% less data arrival rate.
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Combining all the simulations results we can conclude
that SMB-SEAMA presents an acceptable reduction in per-
formance, considering the reduction in complexity, when
compared to FMB-SEAMA. Even more, from these results
we can also infer that SMB-SEAMA should still outperform
PRMA.

6. CONCLUSIONS

In this paper, we have presented, designed, analyzed, and
evaluated a reduced complexity variation to the source en-
coding assisted multiple access (SEAMA) protocol. The vari-
ation, denoted as SMB-SEAMA, uses at the application
layer the same embedded and multistate voice encoder used
in FMB-SEAMA. The new scheme, instead of setting the
voice/data boundary based on the frame-by-frame band-
width demand, sets the boundary based on the number of
active voice calls in the system and a maximum average nor-
malized distortion threshold. This results in a protocol that,
at the network layer, is packet switched for both voice and
data; however, from data traffic point of view, the voice sub-
section looks as a simple circuit-switched network.

We have also presented mathematical analysis that devel-
ops a model to describe the boundary setting and both the
voice and data queuing subsystems behavior. These results
allowed us to find a tight approximation for the boundary
setting that shows that SMB-SEAMA is a very efficient MAC
protocol, allocating a number of time slots to voice calls very
close to the one necessary for all speech users to commu-
nicate at the average encoding rate. In addition to this, the
result for the data subsection models the behavior of a mul-
tiserver queuing system with fixed service time and infinite
waiting queue where the number of servers changes over time
following some random process (a truncated Poisson in our
case).

In the design, we have used average distortion values that
have been shown in informal tests to have an almost negligi-
ble impact on perceptual quality. Simulations results using an
acceptable distortion threshold show that the SMB scheme
does not significantly affect performance (less than 8% in
maximum acceptable data arrival rate). Even more, simu-
lations also show that SMB-SEAMA could still outperform
pure packet-switched protocols such as PRMA (accepts 12%
more data arrival rate). The overall result is then a highly effi-
cient, low-complexity MAC protocol with an SMB that pro-
vides a performance comparable with SEAMA.

APPENDICES

A. DERIVATION OF EXPRESSIONS FOR THE
PROBABILITY GENERATING FUNCTION
OF THE DATA BACKLOG PROCESS

A.1. Probability generating function of the data
backlog process

In this appendix, we intend to show that the data backlog
process probability generating function is as shown in (23).

Let gG(z) � ∑∞
i=0 Piz

i, gB(z) � ∑B
b=0 p̂bz

b, and gd(z) �∑∞
i=0 piz

i be the probability generating function of the data
backlog, the boundary setting, and the data arrival processes,
respectively. Using (21) and (22) we have

gG(z) =
B∑

b=0

p̂b

{
p0

M−b∑
j=0

Pj

}
+

B∑
b=0

p̂b

{ ∞∑
i=1

zi pi

M−b∑
j=0

Pj

}

+
B∑

b=0

p̂b

{ ∞∑
i=1

i∑
j=1

zi pi− jP j+M−b

}

=
B∑

b=0

p̂b

{( ∞∑
i=0

zi pi

)(M−b∑
j=0

Pj

)}

+
B∑

b=0

p̂b

{ ∞∑
j=1

∞∑
i= j

zi pi− jP j+M−b

}

=
B∑

b=0

p̂b

{
gd(z)

M−b∑
j=0

Pj

}

+
B∑

b=0

p̂b

{ ∞∑
j=1

z jPj+M−b

( ∞∑
i= j

zi− j pi− j

)}

= gd(z)
B∑

b=0

p̂b

{M−b∑
j=0

Pj

}

+ gd(z)
B∑

b=0

p̂bz
−M+b

{ ∞∑
j=1

z j+M−bPj+M−b

}

= gd(z)
B∑

b=0

p̂b

{M−b∑
j=0

Pj

}

+ gd(z)
B∑

b=0

p̂bz
−M+b

{ ∞∑
j=M−b+1

z jPj

}

= gd(z)
B∑

b=0

p̂b

{M−b∑
j=0

Pj

}

+ gd(z)
B∑

b=0

p̂bz
−M+b

{ ∞∑
j=0

z jPj −
j=M−b∑
j=0

z jPj

}

= gd(z)
B∑

b=0

p̂b

{M−b∑
j=0

Pj

}

− gd(z)
B∑

b=0

p̂bz
−M+b

{ j=M−b∑
j=0

z jPj

}

+ gd(z)z−MgB(z)gG(z).

(A.1)

We can define Q � ∑B
b=0 p̂b{

∑M−b
j=0 Pj} and H(z) �∑B

b=0 p̂bz
b{∑ j=M−b

j=0 z jPj}. Then,

gG(z) = H(z)− zMQ

gB(z)− zM
[
gd(z)

]−1 . (A.2)
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Since the data arrival is a Poisson process with average ar-
rival rate λd, its probability generating function is given by,
[9], gd(z) = eλd(z−1). To find gB(z) we first note that p̂B(n) �
P[Bt = B(n)] = P[Nt = n]. We also assume that the call
traffic is Poisson (λ) with exponential (η) holding times [10].
The number of ongoing calls, N , is limited to Nmax, thus is
a truncated-Poisson (ρV ,Nmax) random variable where ρV =
λ/η, that is, for n = 0, 1, . . . ,Nmax,

p̌n � P[N = n] = ρnV /n!∑Nmax
i=0 ρiV /i!

. (A.3)

Therefore,

gB(z) =
∑Nmax

k=0

(
ρkV /k!

)
zB(k)∑Nmax

k=0 ρkV /k!
. (A.4)

Denoting C = (
∑Nmax

k=0 ρkV /k!)−1, and with

Q =
Nmax∑
k=0

p̌k

{M−B(k)∑
j=0

Pj

}
,

H(z) =
Nmax∑
k=0

p̌kz
k

{ j=M−B(k)∑
j=0

z jPj

}
,

(A.5)

we finally get (23).

A.2. Alternate expression for the probability
generating function of the data backlog process

Next, we can derive a more useful expression for gG(z) that
does not explicitly depend on Q and H(z). Note that the de-
nominator of gG(z) in (23) has M zeros zr , r = 0, 1, . . . ,M−1,
which are the roots of

C
Nmax∑
k=0

ρkV
k!

zB(k) − zMeλd(1−z) = 0. (A.6)

Using the normalizing property for probability generating
function limz→1 g(z) = 1, it is clear that one root is z0 = 1.
The rest of the roots can be obtained by setting in (A.6)
zr = γe− jω, with j = √−1, C

∑Nmax
k=0 (ρkV /k!)zB(k) = Γ(z)e jθ(z),

separating the real and imaginary parts to obtain the equa-
tions

γ = Γ1/Meλd(γ cosω−1)/M ,

ω = 2πr + θ + γλd sinω

M
, r = 1, 2, . . . ,M − 1,

(A.7)

that need to be iterated to find each of the roots zr .
Since gG(z) has no poles for |z| ≤ 1, the numerator of

the right-hand side of (23) should also have the zeros zr ,

r = 1, 2, . . . ,M − 1. Therefore, (23) is of the form

gG(z) = K(z − 1)
∏M−1

r=1

(
z − zr

)
C
∑Nmax

k=0

(
ρkV /k!

)
zB(k) − zMeλd(1−z)

. (A.8)

The constant K can be found by using the normalizing prop-
erty limz→1 gG(z) = 1, that is,

K
M−1∏
r=1

(
1− zr

)
lim
z→1

z − 1

C
∑Nmax

k=0

(
ρkV /k!

)
zB(k) − zMeλd(1−z)

= 1.

(A.9)

Therefore, the data backlog process probability generating
function is as in (25).

B. DERIVATION OF EXPRESSION FOR MEAN NUMBER
OF BACKLOGGED DATA PACKETS

In this appendix, we show that the mean number of back-
logged data packets is as in (26).

Knowing the probability generating function of the data
backlog process, its expected value can be obtained from
the property E[Gt] = limz→1 dgG(z)/dz, [9]. Consider first
ln(gG(z)); from (25)

ln
(
gG(z)

) = ln

(
M − λd − E

[
Bt
]

∏M−1
r=1

(
1− zr

)
)

+ ln(1− z)

+
M−1∑
r=1

ln
(
z − zr

)− ln
(
gB(z)− zMeλd(1−z)).

(B.10)

Then,

g′G(z)
gG(z)

=
M−1∑
r=1

1
z − zr

− 1
1− z

− g′B(z)−MzM−1eλd(1−z) + λdzMeλd(1−z)

gB(z)− zMeλd(1−z)
.

(B.11)

Taking limz→1 dgG(z)/dz,

lim
z→1

g′G(z)

=
M−1∑
r=1

1
1− zr

+ lim
z→1

(
− g′B(z)−MzM−1eλd(1−z) + λdzMeλd(1−z)

gB(z)− zMeλd(1−z)
− 1

1− z

)
.

(B.12)

The second term on the right-hand side can be further
reduced through algebraic operations and by considering
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that E[Bt] = limz→1 dgB(z)/dz and E[B2
t ] − E[Bt] =

limz→1 d2gB(z)/dz2 [9]:

lim
z→1

(
− g′B(z)− (M − λdz

)
zM−1eλd(1−z)

gB(z)− zMeλd(1−z)
− 1

1− z

)

= M − (M − λd
)2

+ g′′V (1)
2
(
M − λd − g′B(1)

)

= M − (M − λd
)2

+ E
[
B2
t

]− E
[
Bt
]

2
(
M − λd − E

[
Bt
]) .

(B.13)

Then, we conclude that (26) holds.
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