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A High-Resolution Technique for Multidimensional
NMR Spectroscopy

Ye (Geoffrey) Li, Javad Razavilar, and K. J. Ray Lilg&nior Member, IEEE

Abstract—In this paper, a scheme for estimating frequencies subspace methods [19], [20], which provide high-resolution
and damping factors of multidimensional nuclear magnetic res- estimation in many signal processing applications, are good

onance (NMR) data is presented. multidimensional NMR data oo djqates for NMR spectroscopy to further improve the fre-
can be modeled as the sum of several multidimensional damped

sinusoids. The estimated frequencies and damping factors of QUeNCYy resolution. The Multiple signal classification (MUSIC)
multidimensional NMR data play important roles in determining ~ algorithm [9] is one of the most effective and commonly used
protein structures. In this paper we present a high-resolution algorithms for 1-D stationary signals. The MUSIC algorithm
Suntl)if(pac?[hgjretg%?hr)odrsesitkilrizagrllgo:irt]ﬁmpar:]aamkgtserfsu ll()fu’:g"%fdtf"htg- can even achieve th€ramér-Raolower bound under some
gnk-gefci)ciency and Hz;mkel pro%erties of the prediction matrix m'ld CO_ﬂdlthﬂ;. ngever, the NMR SIQnIaIs consist of damped
composed of NMR data. Hence, it can estimate the signal param- Sinusoids, which is, therefore, nonstationary. Therefore, the
eters under low signal-to-noise ratio (SNR) by using a few data original MUSIC algorithm cannot be directly applied to NMR
points. The effectiveness of the new algorithm is confirmed by data. In this paper, we present a novel parameter estimation
computer simulations and it is tested by experimental data. method for NMR data based on the subspace techniques, which
Index Terms—bDamped sinusoids, high resolution, multidimen- we will call M-D DMUSIC algorithm in order to reflect its
sional NMR, parameter estimation. capability to estimate the parameters (frequencies and damping
factors) of multidimensional damped sinusoids. Since M-D
MUSIC algorithm makes full use of the rank-deficiency and
Hankel properties of the prediction matrix composed of NMR
ULTIDIMENSIONAL nuclear magnetic resonancedata, it can estimate the signal parameters under low signal-to-
M (NMR) data can be modeled as the sum of multPoise ratios (SNR'’s) by using only few data. The effectiveness
dimensional damped sinusoids. The frequencies and dampighe new algorithm is demonstrated by computer examples
factors of damped sinusoids are crucial to determining prot@ﬁd the eXperimental data obtained from National Institutes of
structures using NMR spectroscopy. The frequency resolutibigalth (NIH).
of the fast Fourier transform (FFT)-based algorithms [1], [2] The rest of the paper is organized as follows. After a brief
is limited by the short acquisition time of the NMR datadescription of the mathematical model of NMR signals in Sec-
and measurement noise. Hence, to improve the resolutisan I, a damped MUSIC (DMUSIC) algorithm for estimating
many model-based methods [3]-[27] have been proposed foe parameters of 1-D NMR signals will be presented and
the parameter estimation of one-dimensional (1-D) and twanalyzed in Section Ill. In Section 1V, the DMUSIC algorithm
dimensional (2-D) NMR data. The autoregressive modeling ofill be generalized to multidimensional NMR signals, by first
NMR data is one of the most commonly used algorithms in trextending the results to 2-D NMR signals and then to general
analysis of 1-D NMR data [8]. In particular, it has been showease of M-D NMR signals. A low-complexity peak-searching
that the methods based on the linear prediction technique @gorithm for searching the peaks of M-D DMUSIC spectrum
estimate parameters more accurately than the standard Rkédlescribed in Section V. Computer examples are presented in
methods do. This should also be true for 2-D NMR data. Section VI and the application of the 2-D MUSIC algorithm

Unfortunately, the existing model-based parameter estinta-a set of experimental data from NIH is described in Section
tion algorithms for 2-D NMR data are still sensitive to meav/|.
surement noise, which limits their frequency resolution. The
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expressed by a continuous hypercomplex faki(t;,¢.) as

[23]-{25] g
Xp(t,t2) = g
K 0
Zak{ cos (Qél)tl + 9,&1))

k=1
- COS (Qg)tg + 9,@)

+ isin (Q(})tl + 9(‘1)) cos (Q(?)tg + 9@)
+ jcos (Q(l)tl + 9(1)) (9(2)t + 9(2))

+ijsin (Q( )t + 9(1)) (Q(Q)t + 9(2))}

e—tl /’T]E1> —tz/T]52>

(1)

whereK is the model ordemg) ande) denote the angular
frequencies of the magnetization correspondingttoand
t,, respectively, 7" and T\? are the decay constants of@
the magnetlzanon and;’'s are the amplitudes of damped
sinusoids.

In our discussion, we employ the commonly used complex
representatiotk . (¢, 2), that can be obtained by lettirig= j

spectr

andij = —1 in [2]
tl tg Z cre A/kl)'i'jQi»l))t1+(—"/;(\,2>+jﬂi,2>)t2 (2)
whereey, = are?+07) andy(Y = 1710 4@ =171

which are called the decay rates.

If the continuous complex 2-D NMR signal is measured at
uniform intervals,A; for ¢; and A, for ¢, a set of 2-D NMR
data{x(n1,n2)} will be obtained as

K

W
D o

.CTk
k=1

(2),,

nl-l—s

(3)

x(ni,ne) =

wheresff) = —ocg) +jw,(€l), andw,(f) = QS)AI, ag) = ’y,EI)Al
for [ = 1,2 with a§j> being the damping factor. Without

loss of generality, we assume that = (s, s(?) for k =
1,2,..., K are distinct. It should be pointed out that high SNR
is required in order to estimate the signals with only distinct
a's, but the samev;’s, as demonstrated by Fig. 1(d)—(e). ,
In presence of measurement error or noisén,nz), the
measured NMR data can be expressed as

0.
©

@ o

y(ni,n2) = z(n1, n2) +w(ng,n2)
forn; =0,1,---,N;—1 and: = 1, 2. In the above expression
N;'s are the acquisition times of each time domain. We will
assumeN; = N, = N in our discussion.
In (3) and (4), if we letN, = 1, then the mathematical

model of 2-D NMR signal is degenerated into that of 1-[¥g.

NMR signal, which can be rewritten as

=z(n) +w(n)

S1

and (d) whens;

40

y(n) (5)
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1. Spectrum and contour of DMUSIC algorithm: (a) and (b) when
= —0.2 4+ 5270.42,s2 = —0.1 4+ 5270.52 and SNR= 40 dB; (c)
0.2 4 j270.42, 55 0.1 4+ j270.42 and SNR=
dB; (e) and (f) when; = —0.2 + j270.42,52 = —0.1 + j270.42 and

SNR = 60 dB.
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wherew(n) denotes again the measurement noise and If s’s are distinct, therr,(s;) for & = 1,2,.-., K are
) linearly independent, hencg, is full column rank, and so is
2(n) = Z e (6) S;. Since the rank ofC is K, the rank ofA is also equal

to K when there is no noise. Since there are many effective
algorithms to estimate the model ord&r [28], [29], in our
algorithm we will assume tha&’ is known in advance. In [27],

the authors have used a similar approach to derive their state

forn =0,1,--.,N—1. The mathematical model of 2-D NMR
signal can be easily extended to thatleflimensional NMR

signal as space formulation. If there is no noise, by means of singular
y(n) = z(n) + w(n) (7) Vvalue decompositiond can be decomposed into the product
of three matrices
and I
A=UDV (13)
T
n)=>_ cxe™ (8) wheretU/ and V" are unitary matricesD is a diagonal matrix,
and H denotes Hermitian, i.e., conjugate transpose, operator.
for n € {0,1,---,N — 1}~ In the above expressiom = Furthermore,D must be of the form
. o Y e
'3 compiex hequency vector. St o the 2.5 dase) tiesD) = lowson, 0,000
p q y . 01209222 0K. (14)

represents measurement noise &hdenotes the model order.
Normally, we have to make sur& > 2K, to be able to  From (13), we also have

estimate signal parameters.
AV =UD. (15)

. 1-D DMUSIC ALGORITHM Denotew; thei-th column ofV, span{vy, - - -, vk } is called
We first present the DMUSIC algorithm for 1-D NMRthe signal subspaceince
signals (1-D MUSIC algorithm). To derive 1-D DMUSIC

algorithm, we will set up afN — J) x J prediction matrix span{vy, -, vk} = span{r,(s1), . re(sx)} - (16)

(0) y(1) e y(J=1) wherespan{ } is referred to as the subspace that is defined
y(1) y(2) e y(J) by the set of all linear combinations of the vectors. From (14)
A= ) ) . . (9) and (15), we have the followingrthogonality relations
y(N—J—-1) y(N-=J) - y(N-1) AVp =0, or Avy, =0 for k=K+1,---,J (17)

where K < J < N — K. We normally choose/ = [N/2] whereVy = [vkx41,---,vr]. From (10), we have
to obtain the best performance [4]. The prediction matrix in T B
the DMUSIC algorithm plays a similar role as the correlation S5iCSrvgp =0 for k=K+1,---,J (18)
matrix_ in the MUSIC algorithm [20]. From (5) and (644 can Since bothS;, S, and C are full rank, vak — 0 for
be written as (see also, [27]) k=K+1,--J e, T(sup=0fork=K+1,--,J
K . andn = 1,2,--- K. Hence,Vir,.(s) = 0 only whens =
Z ar(se)rt(se) + W =S,CS; + W (10) ;... sx. Therefore,s; can be obtained by finding that
k=1 makes||V4r.(s)|| = 0.
wherer,(s) and S, are theright signal vectorand theright ~ \When noise exists, the orthogonality relations (17) no longer
signal matrix respectively, defined as hold. In this case, we can sear_ch for signal vectors that are
most closelyorthogonal to the noise subspace. Hengecan

1k be obtained by finding the peak of the following DMUSIC
r(sh) = ¢ spectrum:
(J=L)sk P(s) = 5 ! (19)
S, =] D) Fgr(s)( 3 v;v;-g>m3>
respectively. Thdeft signal vectorr;(s) and theleft signal k=K+1
matrix S; are similarly definedC is a K x K diagonal matrix where
with diag(C) = (1, ¢2, - - -, cx ). Thenoise matrixW is given B r, (20)
=1
by [l |l
w(0) w(l) e w( = 1) The algorithm is summarized in Table |. The algorithm
W w(1) w2) e w(J) discussed above is called the damped MUSIC (DMUSIC)
B : : : : ' algorithm. Since the mathematical model of NMR data has
—J- - _ the damped sinusoidal form, it is true that it is nonstationary
w(N—J—-1) w(N—-J) w(N —1) he d d sinusoidal form, it i hat it i i

(12) in a strict mathematical sense. This is easy to prove and it
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TABLE | and7, =r./||r.||. The parametes;, of 2-D NMR data can be
DAMPED MUSIC ALGORITHM estimated by finding to maximize the above 2-D DMUSIC
Step 1 | Forming data matrix A using (9) spectrum.
Step 2 | Finding V,, by making SVD to A In general, forL-dimensional NMR signak N — J +1)% x
Step 3 | Estimating s; by finding the peaks of (19) JL data matrix A is defined as
A(0) A1) e A= 1)

follows directly from standard methods for computing the

autocorrelation function for a random sequence and inter- 4 — A(ll) A(_2) A(.J)

ested readers should refer to [30] and [31]. There are two : : : :

crucial differences between the DMUSIC algorithm and the AN-J-1) AN-J) -+ AN-1)
MUSIC algorithm. First of all, the DMUSIC algorithm is (25)
for parameter estimation of damped sinusoidal signals whi¥fere indexesny,ny,---,n; correspond to the number of

are nonstationary, as opposed to MUSIC algorithm whi@iven data points in each dimension, i.e., we are using an
works for stationary signals. Since the correlation matrix i X 7z X -+ X ny, data matrix and (26), (27) shown at the
not available for nonstationary signals, in DMUSIC algorithrRottom of the next page.

the prediction matrix is used instead of correlation matrix. Theright signal vectorcorresponding to the data matrik
Second, the DMUSIC algorithm searches thew) plane to IS defined as
estimate two parameters simultaneously.

(7;>L—1(8)
IV. M-D DMUSIC ALGORITHM (s) = e’k rp_1(s) 28)
The DMUSIC algorithm for 1-D NMR signals developed in " :
the Section Ill can be extended to the DMUSIC algorithm for =05 e (s)
multidimensional NMR signals (M-D DMUSIC).
To obtain a DMUSIC algorithm for the 2-D NMR signalswhere
modeled in (3) and (4), we first generate@i— J +1) x J
matrix, (21) shown at the bottom of the page, for = S(L_zﬂgs)
1,2,---,N — 1. Based onA(n), a(N — J + 1)? x J? matrix _ et Ti-1(s)
. 71(8) : (29)
is formed :
A(0) A1) - AT =1) =D g (s)
A(1) A2) - A()
A= . ) : . forl =2,3,---,L —1, and
AN — J — — N — 1
( J-1) AN-J) A(N - 1) 22) e
where K < J < N — K. It is important to notice that the Ti(s) = : . (30)
rank of matrix 4 is K. G(J_i)sgvm
Using a similar procedure to the derivation of 1-D DMUSIC
algorithm, we can form a 2-D DMUSIC spectrum For J > K,J' x 1 vectorsr(sy)'s for k = 1,2,--- K
P(s) = 1 (23) are linearly independent vectors. Therefore, similar to 1-D
J? DMUSIC algorithm, the frequency vectarcan be estimated
Fﬁ(s) ( Z ”Z”f) 7(s) by finding the peaks of M-D DMUSIC spectrum
k=K+1
_ 1
wherew,, for k = K+1,---,J? are the right singular vectors Pls) = Jt
of A corresponding to thé? — K smallest singular values and 7 (s) (Z k=K+1 vivf) 7r(8)
r(sk) = <1 R I i T,
and 7. = —— (31)
T [l
LD e(J—l)si”HJ—l)sf))
where vectore i 1, - - -, vz areJ*—K right singular vectors
(24) of A corresponding to thg* — K smallest singular values.
y(nv 0) y(n, 1) o y(n, J - 1)
Aln) = y(ﬂ_, 1) y(ﬂ_, 2) y(n_, J) 21)

y(n,N—J) y(n,N'—J—i-l) y(n,N—l)
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TABLE I
2-D PEAK-SEARCHING ALGORITHM

Step 1 | Find ((T),(cl), ng) for k=1, 2,---, K maximizing P(0, 0; w(!), w®)
a

P)

- (1 )

Step 2 | Find (a51), 52)
Step 3 | Find (5(1 ), 5(1 )) around (@sl), @52)) and maximizing P(&(ll), &(12), WV W)

) maximizing P{ofV, o, aﬁ“, uA)gQ))

Step 4 | Repeat Step 2, 3 until the estimation of sgl) = oVt ]wi‘)

!
552) = —a(lz) + ywiz) attains certain precision

Step & | Repeat Step 2, 3and 4 for k=2, 3,--- | K

V. Low-COMPLEXITY 2-D PEAK-SEARCHING METHOD frequency pairs corresponding to time index and n, can

To estimate the parameters of L-D NMR signals, we have ¢ estimated by the 2-D MUSIC algorithm. Similarly, the
find the peaks of L-D DMUSIC spectrum, which is a functiofféquencies corresponding e can be estimated using the
of 2L variables:a® ... o™ w® ... @) To find the 1-D DMUSIC algorithm. The 3-D complex frequency vector
peak of the L-D DMUSIC spectrum, we have to calculatean be found by searching the peaks of the 3-D DMUSIC
it in a fine lattice, which is a 2L-dimensional search. spectrum near all the combinations of the frequency pairs

Since the damping factors of NMR signals are normaligorresponding to indices; and n, and the frequencies
very small (usually less than 0.3), the following simplifiecorresponding to indexs. In this way, parameter estimation
peak-searching algorithm can be used to reduce the cowmfi-3-D NMR signals is simplified into parameter estimation
putation of the 2-D DMUSIC spectrum. For convenienceyf 2-D NMR signals and 1-D NMR signals. In fact, the
we rewrite P(s(V),5?) as P(aV),a®;w® w@). If the parameter estimation of higher-dimensional NMR signal can
damping factors of signals are small, then the maxima gfways be decomposed into the parameter estimations of
P(a®, a;0®, @) will be near the(w™,w®) plane.  corresponding 2-D NMR signals and 1-D NMR signal. It

Because P(a!), a?;wW,w®) is convex around its js also worth mentioning that the complexity of thd-
maxima, P(0,0;w(l),w@))l is 2a|so convex around thep pMUSIC algorithm is comparable to the other singular-
mag)lm%) Hence, P(0, 0;%), w(?) has maximum points y5)ye decomposition (SVD)-based algorithms. Since in our
(@7, @) for k = 1,2,---, K, which are near the peaksgigorithm high-resolution estimates can be achieved using
of P(aD),a®;0wM,w®). For each maximum(@y”,&1”) fewer number of data points, the complexity of the SVD
of P(0,0;w(l),w@)),(&S),&g)) can be found to maximize computation is less than that of existing methods whose
Pa®,a®;:00 0Py since P(aW,a®;0M o) is performance relies on using large data matrices. But our
convex. Then, we can findfuf),@f)) around (@l(el)’@’(f)) algorithm also involves a 2L-D peak-searching process whose
that maximizes P(&S),&g),w(l),w@)). Repeating the complexny is heavily reduced by our proposed peak_-searchlng
above procedures, the peaks Bfa(V), a®;w®), w®) can _algonthr‘q. T_h_erefore, the burden of the pgak-searchlng process
be searched. The above searching procedures, which i§r@!sO significantly reduced in our algorithm.
summarized in Table Il, reduces the peak search of a four-
variable function to that of a two-variable function. Therefore, VI. SIMULATION EXAMPLES
the computation is significantly reduced.

The parameter estimation of higher-dimensional NMR sig- Before presenting our estimation results for experimental
nals can be decomposed into parameter estimation of lowg@ta from NIH, we confirm the DMUSIC algorithms by
dimensional NMR signals to reduce the computation. Takirgree simulation examples in this section. In our simulation
three-dimensional (3-D) NMR signal(ny,n2,n3) as an ex- examples, the measurement noig¢-) is complex white
ample, it is a 2-D NMR signal ifns is fixed. Hence, the Gaussian noise with varianeg® that is determined by peak

A(nb...’nl’()) A(?’Ll,"',ﬂl,J—l)
Alny, i) = Al o g Al o 7 (26)
Alng, o msN = J=1) «or Alng,-ee ni, N — 1)
forl = 1,2,---,L — 2
y(nh...’nL_l’()) y(nb...’nL_l’J_]_)
A(nl,- . 7nL—l) == y(nl7' h ;nL_171) y(nl’ h '7:nL_17J) (27)

y(ﬂl,"wﬂL—l,N—J) y(nlv"'an—lvN_]-)
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Fig. 2. The spectrunP(0,0;w(",w(?)) and its contour for synthetic 2-D : . s . .
NMR signal using 2-D peak-searching method when SNRO dB. 01 02 03 04 0552 06 07 08 09 1
(b)
SNR defined as Fig. 3. The spectrunP(a(1), a(2);0.207,0.257) and its contour for syn-
1 thetic 2-D NMR signal 2-D peak-searching method when SNRO dB.
SNR = 10log —. (32)
20

_ . . Example 2: In this example, a set of synthetic 2-D NMR
Example 1: The synthetic 1-D NMR data is generated bydata is first generated using (3) and (4). The model order
K = 5 and the frequency pairs are shown in Table Ill. The
data length isV = 24 and J is, therefore, chosen to be 12 to
) . achieve best performance.

wheres; = —0.2 + j27(0.42), s, = —0.1 + 527(0.42 + A).
The data length isV = 24, therefore, we pick/ = 12. For SNR= 40 dB, the 2-D DMUSIC spectrunf(s), and

For SNR= 40 dB, A = 0.1, the 1-D DMUSIC spectrum its contour, using 2-D peak-searching algorithm are shown in

and its contour are shown in Fig. 1(a) and (b), respectivelg"%s- 2 and 3. From the figures, we can see tHé4) only
From these figures, the damping factors and frequencies of fi@$ four peaks om; — w, plane witha(t) = 9(2) = 0, but
signal can be estimated simultaneously by finding the pefixe Peaks are found by the 2-D peak-searching algorithm and
on the spectrum. But, if SNR= 40 dB, A = 0, i.e., two the parameters can be estimated successfully as illustrated by
exponentially damped signals with the same frequency, thable Il

spectrum has just one peak, as indicated by Fig. 1(c) and (d)From the estimation results in Table Ill, our estimation
Hence, the damping factors of the signals cannot be estimagégorithm cannot resolve the fourth and fifth frequency pairs
correctly under this condition. However, if SNR is increase¢then SNR= 20 dB, since they are to close.

to 60 dB, both the damping factors and the frequencies of theExample 3: The 3-D synthetic NMR signal is generated
signals can be estimated again as demonstrated by Fig. Dg)using (7) and (8). The model order & = 3. The
and (f). frequency vectors are shown in Table IV. The synthetic NMR

y(n) = " " w(n) (33)
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TABLE Il
ESTIMATED PARAMETERS OF A SYNTHETIC 2-D NMR SGNAL
1 T 7
[kl o [ ol [a® ] o
1| -0.20 | 0.107 | -0.10 | 0.107
True 24 -0.00 | 0.30x | -0.00 | 0.107
values 3 1 -0.05 | 0.20m | -0.02 | 0.257
4 1 -0.02 | 0.05% | -0.02 | 0.307
51 -0.10 | 0.067 | -0.02 | 0.31x
14 -0.21 ] 0.10x | -0.11 | 0.107
Estimated || 2 || -0.00 | 0.30% | -0.00 | 0.107
values 31 -0.05 | 0.207 | -0.02 | 0.257
SNR=30dB || 4 || -0.11 | 0.057 | -0.04 | 0.317
511 -0.09 | 0.077 | -0.01 | 0.317
11 -0.19 | 0.10x« | -0.10 | 0.10%
Estimated 2 1 -0.00 | 0.307 | -0.00 | 0.107
values 34 -0.05 | 0.207 | -0.02 | 0.2567
SNR=20dB || 4 || -1.00 | 0.64x | -0.00 | 0.31wx
51 -0.07 | 0.067 | -0.01 | 0.31x
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NMR signal.
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TABLE IV
ESTIMATED PARAMETERS OF A SYNTHETIC 3-D NMR SGNAL

[k of [ o’ [a®e ] wff o | of

True 11 0.040 | -0.7407 | 0.140 | -0.820% | 0.100 | -0.1407
values 2 || 0.010 | 0.0507 | 0.190 | -0.1907 | 0.170 | 0.3107

3 || 0.140 | 0.2907 | 0.080 | -0.7207 | 0.010 | 0.150%

Estimated { 1 | 0.040 | -0.7407 | 0.150 | -0.8157« | 0.100 | -0.1407
values 24 0.010 | 0.0507 | 0.190 | -0.1907 | 0.180 | 0.3107
SNR=15dB | 3 || 0.140 | 0.2957 | 0.080 | -0.7207 | 0.020 | 0.1457«

third index. Then, we find the 3-D frequency

vectors by

searching the maximum points at the all possible combinations
of the complex frequency pairs and the complex frequencies.
The estimated frequency vectors are shown in Table IV.

signal is corrupted by measurement noise with SNR = 15 dB.

First, we estimate the complex frequency pairs corresponding VII.

E STIMATION RESULTS ON EXPERIMENTAL DATA

to the first two indexes using the simplified 2-D searching The 2-D MUSIC parameter estimation algorithm is used
algorithm and the complex frequencies corresponding to theexperimental NMR data. The measured>224 2-D NMR
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Fig. 6. Contour plot ofP(0,0; w(1) w(2)) for 2-D NMR signal using (a) NmrPipe and (b) our 2-D DMUSIC algorithm.

TABLE V The performance of our algorithms have been tested by

ESTIMATED PARAMETERS OF A SET OF EXPERIMENTAL 2-D NMR DaTA extensive simulation examples and experimental data. The

k “ oD | WD |a(2)k | W testing results show that the M-D DMUSIC algorithm can

1710061 004r 1 006 -002x resolve closely-spaced frequencies and damping factors, which

5 1007 | -056n | 0.08 T010x is one of the most effective algorithms for NMR data. Hence,

310.07 T20.427 | 0.09 | 0.407 it has been included in the NmrPipe tool in NIH and will be

4] 013 | 0.107 | 0.09 {-0.127 used by the NMR researchers over the world.

5021 0127 | 0.29 | 0.64x
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