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Static and Dynamic Convergence 
Behavior of Adaptive Blind Equalizers 

Ye Li and K. J. Ray Liu 

Abstract-This paper presents a theoretical analysis of the static 
and dynamic convergence behavior for a general class of adaptive 
blind equalizers. We first study the properties of prediction error 
functions of blind equalization algorithms, and then, we use these 
properties to analyze the static and dynamic convergence behav- 
ior based on the independence assumption. We prove in this paper 
that with a small step size, the ensemble average of equalizer 
coefficients will converge to the minimum of the cost function near 
the channel inverse. However, the convergence is not consistent. 
The correlation matrix of equalizer coefficients at equilibrium is 
determined by a Lyapunov equation. According to our analysis 
results, for a given channel and stepsize, there is an optimal 
length for an equalizer to minimize the intersymbol interference. 
This result implies that a longer-length blind equalizer does not 
necessarily outperform a shorter one, which is contrary to what 
is conventionally conjectured. The theoretical analysis results are 
confirmed by computer simulations. 

1. INTRODUCTION 

INCE THE pioneering work by Sato [IS], many blind 
channel equalization algorithms have been proposed [ 11, 

121, 1171, [21], 1231, 1241. They have been effectively used 
in digital communication systems to cancel the intersymbol 
interference (ISI). Blind equalization algorithms are usually 
designed to minimize some cost functions consisting of higher 
order statistics of the channel output without using the channel 
input. They are implemented mostly by stochastic gradient 
algorithms. The convergence analysis of blind equalization al- 
gorithms is very important to understanding their performance. 
We may categorize the convergence analyzes into two different 
kinds, static convergence analysis and dynamic convergence 
analysis. 

The static convergence analysis studies the positions of the 
minimum points of the cost functions under various conditions. 
It has been proven that undesirable local minima may exist for 
Godard algorithms [SI implemented with FIR equalizers [4], 
[5], [ I l l ,  and for BGR algorithms [ l ]  and decision-directed 
algorithms [17] even if implemented with IIR equalizers [6], 
[lo], 1141, [16]. Recently, we have found that almost all 
cost functions of blind equalization algorithms may have 
undesirable local minima [13] due to the finite-length of 
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equalizers. Although undesirable local minima exist for blind 
equalization algorithms, they may be effectively avoided by 
smart initialization strategies 171, 1111. 

On the other hand, the dynamic convergence analysis ad- 
dresses the stochastic dynamics of equalization algorithms. 
Because of the nonlinearity in adaptive blind equalization 
algorithms, the exact dynamic convergence analysis is often 
very difficult. Almost all dynamic convergence analyzes are 
conducted under some assumptions. Several papers 191, [ 101, 
[14], [16], [27] have studied the dynamic convergence of 
the decision-directed equalizers by assuming that equalizer 
is in “open eye pattern.” In 1261, Weerackody and his co- 
authors have presented dynamic convergence analysis of Sato 
equalizer. Chan and Shynk [19] have studied the dynamic 
convergence of the constant modulus algorithm by assuming 
that the channel output is Gaussian. Recently, Cusani and 
Laurenti [3] have given some new results on the dynamic 
convergence analysis of the constant modulus algorithm. 

Unlike most of the previous convergence analysis works, 
which specifically focused on some blind equalization algo- 
rithm, we will present the static and dynamic convergence 
analysis for almost all adaptive blind equalization algorithms. 
Since there are many initialization strategies [6], 171, [ l l l  
to make blind equalizer reach an open eye pattern, we will 
concentrate on the convergence analysis when the coefficient 
sets of equalizers are near the global minima of their cost 
functions. In the static analysis, we derive the close form 
solution for the coefficients of FIR blind equalizers from which 
we can evaluate the distortion caused by the finite length 
effect. In the dynamic analysis, we only use the independence 
assumption [9], which is widely used in the dynamic conver- 
gence analysis of adaptive algorithms [9], [14]-[16], [191, [261, 
[27]. Based on the independence assumption, together with 
the first-order approximation, we study the convergence and 
consistence of the equalizer coefficients. Our analysis indicates 
that for a given channel and step size, there is an optimum 
length of equalizer minimizing the intersymbol interference, 
which implies that a longer blind equalizer does not necessarily 
perform better than a shorter one. This result can be applied to 
the design of blind equalizers used in digital communication 
systems. 

This paper is organized as following. Section I1 briefly 
introduces the blind equalization in communication systems. 
Section I11 proves some properties of the prediction error 
function. Then, Section IV briefly analyzes the static con- 
vergence of blind equalizers. Next, Section V studies the 
dynamic convergence of blind equalizers. Finally, computer 
simulation results are presented in Section VI to demonstrate 
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adjusts the lcth parameter of the equalizer at time n by 

(2.5) Equalizer Decision *(,+I) - $4 - 
C k  - k Pd4Yn)Zn-k 43 lgorithm where p is a small step size, and $(.) is the derivative of 

@(w,), that is, 

d ) ( Y T k )  = @'(yTl), (2.6) 
Fig. 1. PAM communication 5ystem with blind channel equalizer. 

and it is sometimes called the prediction error function. 

expressed as 

the consistency of our analysis results. Conclusion remarks 
are g,iven in Section VII. If an FIR filter is used as the equalizer, then (2.5) can be 

P X n  4 (Yn 1 (2.7) ?("+I) = C(") - 

is the coe~c ien t  vector of a blind equalizer after 

(2.8) 

11. ADAPTIVE BLIND EQUALIZERS 

Without loss of generality, we consider a baseband rep- 
resentation of the pulse-amplitude-modulation (PAM) com- 
munication system with blind channel equalizer as shown 

(i.i.d.) digital signal {a ,  E R} with zero-mean and variance 

where 
the nth iteration defined as 

;in) a [pir,. . . A(,) , . . . ;(")IT in Fig. 1. A sequence of independent, identically distributed , N  

0 2  is sent through a bounded-input bounded-output (BIBO) and xn is the Output vector at time defined as 

channel exhibiting linear distortion. The resulting output signal 
5, c,an be expressed as (2.9) 

f m  Since all BIB0 channels can be approximated as a 
X, =I akh,-k. + w,, (2.1) moving-average model withi appropriate impulse response 

{ h - ~ ,  . . . , /Lo , .  . . , h ~ } ,  the channel output vector can be 
expressed as 

k = -  cc 

where h, is the impullse response of the linear time-invariant 
(LTI) channel, and w, is white Gaussian channel noise. In this 
paper, we will ignore the effects of the channel noise. 

As shown in Fig. 1, a linear channel equalizer with parame- 
ters { e n }  is used to remove the intersymbol interference caused 

x, = R T a n ,  (2.10) 

where 'H is a (2N + 2M + 1) x (2N + 1) channel matrix 
defined as 

by the channel distortiion. The parameters { c,,} are subject to 
adaptation via some algorithm to be determined. The equalizer 
output in Fig. 1 can then be written as 

(2.1 1) 

= <SkU,-k (2.2) 
k=-oo 

where { s ,  } is the impulse response of the equalized system 0 . . .  . . .  

and a, is the input symbol vector at time n defined as related to h, and c,, by 

In blind equalization, the original sequence is unknown to 
the receiver except for its probabilistic or statistical properties. 
A blind equalization algorithm is usually devised by minimiz- 
ing a cost function consisting of the statistics of the output of 
the equalizer y,, which is a function of {. . . , s-1, so. SI,. . .} 
or {. . . , e-1, eo, c1, . . .}, The cost function is usually of the 
form E{@(y,)}, where @(yn),  which is a function of y,, is 
selected such that the cost function has the global minimum 
points at 

{s,} = &{S[n - n d ] }  for all n d  = 0, *l, 5 2 , .  . . (2.4) 

A stochastic gradient algorithm is used to minimize the cost 
functiion to obtain an on-line equalization algorithm, which 

With the above definitions, the channel output can be ex- 
pressed in a compact form: 

y, = , a y " )  

= a;-&) (2.13) 

where s(rL) is the equalized system vector at time n defined as 

$ ( T L )  $ E?("). (2.14) 

It is obvious that an FIlR channel cannot be perfectly 
equalized by an FIR equalizer, that is, there is no equalization 
vector c such that 

R c  == e.v+br (2.15) 
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where 

e M + N  = [ 0 , " ' , 0 , 1 , 0 , ' " . 0 ] .  (2.16) 
J d  

M+N M+N 

However, when the length of the equalizer is large enough, 
there exists a C such that IIXC - eM+-Vll is very small. 

111. PROPERTIES OF PREDICTION ERROR FUNCTION 

Before analyzing the convergence behavior of blind equal- 
izers, we first introduce some properties of the prediction error 
function here. The following lemma considers two important 
properties to be used in subsequent discussions. 

Lemma: The prediction error function 4(.) has the follow- 
ing two properties: 

1) When the parameters of a finite-length equalizer make 
its cost function attain one of its minima, the output of 
the equalized system ij, satisfies 

b) R T F X  is positive-definite 

F is defined as 

a) q 4 i Y n ) G )  = 0, and 

where the (2M + 2N + 1) x (2M + 2N + I) matrix 

1 2 E{an 4' (Yn 1 , (3.1) 

with #(.) being the derivative of $(.) ,f in = XI, ? k z , - k  

and Ck being the equalizer coefficients making the cost 
function attain a minimum. 

2) For all integers n and k 

E { d ( a n ) a k )  = 0 (3.2) 

and 

E { 4 / ( a n ) a $ }  > 0. (3.3) 

Proof 1) Let {E,} be the coefficients of an FIR blind 
equalizer that make the cost function E { @ ( y n ) }  attain one of 
its minima. Then, 

(3.4) 

and 

E{ @(in)} is positive-definite. (3.5) 
3 2  

ac7,ac, 
From (2.4) and (2.6), 

3 
-E{@.(5n)l = E{$(Yn)rn-,}. (3.6) dC, 

Therefore, by (3.4), E{$($n)zrL-L} = 0, which is Lemma li). 
Using (2.4) and (2.6), direct calculation yields that 

= X T F R .  (3.7) 

According to ( 3 . 3 ,  RTFR is positive definite. 

2) If a double-infinite length equalizer is used, then { &} = 
{h i } ,  which is the channel inverse, is a global minimum of 
the cost function, and fin = a,. From the proof of the first 
part, for any integer k 

L 

= 0. (3.8) 

Since v u  matrix [ E { ~ ' ( & ) X ~ - ~ Z , - , } ]  is positive definite, 
C ,  C ,  h , h , E { ~ ' ( f i , ) r ~ - , ~ ~ c - J )  >, and therefore, 

> 0  (3.9) 

With the above lemma, we are now able to analyze the static 
and dynamic convergence of adaptive blind equalizers. 

IV. STATIC CONVERGENCE ANALYSIS 

If the equalizer is double infinite, then at the global mini- 
mum of the cost function, the parameters of the equalizer 

{ C L )  = { k L d }  (4.1) 

for some integer r i d .  However, only a FIR blind equalizer 
is used in practical systems. In this case, smart initialization 
strategies [6] ,  [7,] [ I l l  will make the equalizer coefficients 
converge to a minimum {E,: n = -N,  . . , 0 ; .  . . , N }  of the 
cost function near the channel inverse such that 9, - a, is 
very small. Using first-order approximation to 4( , )  at aTL,  we 
can prove the following theorem. 

Theorem I :  If an FIR equalizer is used to equalize an FIR 
channel, then at the minimum near the channel inverse, the 
equalizer coefficient vector c = [c-,V, . . ' i 20, . ' ' , can 
be expressed as 

a -  

where 

and 

R,f R T F R  (4.4) 

with 

and 
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€’roo$ Using the first-order approximation, we have which means that 

4(&) = $(an> + $’(an)(& - am). (4.7) E{$’(.n)& = E{$’(an))E{&. (4.19) 

For the Sat0 algorithm [ 181 decision-directed equalizers [ 141, 
[16], $’(a,) = 1, and therefore, 2. = e,. For the Godard 
algorithm [8], $(y) = y(y2 -- T )  with T = E { a ~ } / E { a ~ ) ;  

According to the lemma, 

E{.,$(a,,)> = ~TE{.?L41(.?7)} 

(4‘8) therefore, = O  

and 

and 
(4.9) 

Consequently, from (4.7) 

~ { ~ n $ ’ ( a n ) ( G ? i  - a,)} = 0. (4.10) 
(4.21) 

where 
Substituting yn = XZZ: and 2, = X T a n  into (4.10), we can 
obtain that m4 = ~ { a k } .  (4.22) 

Hence, if the channel input is binary, (4.19) is true, and 1: = eo. 
Otherwise, 1: # co. 

The distortion due to the fillite length of the equalizer is 

2 T I  
a 

a y E { a n $ ’ ( a n ) a ~ } x ~  = xFITE{a,~&’(G~)an}.  (4.11) 

Since we have assumed that { a r L }  is an i.i.d. sequence with 
zero-mean and variance o2 

f (0)a2 if n = m = 1 

otherwise . 

a 2 Df = 11s -- eM+NII 

(4.23) 2 ~ T { d j ( a ~ ~ ) a ~ , ~ a i }  -= if n # m = 1 (4.12) = / /X i :  - eM+NII . 

With the increase of the length of the blind equalizer, the 
global minimum of the cost function adopted by the equaliza- 
tion algorithm will be closer to the channel inverse. Hence, 

Therefore, ( 1/a2)E{uTL$’(an)u~}  is a diagonal matrix that 
can be expressed as 

1 (4.13) the distortion Df will decrease. - E ; { U , ~ ~ ’ ( U , ) U ~ }  = F 
0 2  

and (4.11) can be expressed as 

02R@ = 7 t T e ~ ~ + L ~ ~  f (0). (4.14) 

Furthermore, from Lernma 2), f ( 0 )  > 0 and f ( 1 )  > 0; hence, 
F is positive definite; therefore, Rf  is also positive definite 
since TL is of full (column) rank. From (4.14), the coefficient 
vector at the minimum of the cost function near the channel 

0 
From the above theorem, the equalizer coefficient vector at 

the minimum of the cost function near the channel inverse is 
determined by (4.2). 

For the channel with impulse response vector h, the op- 
timum equalizer (Wiener-Hopf filter) coefficient vector to 
minimize E{(y, - u , , ) ~ }  is given by [9] 

e, = R-lh (4.15) 

inverse is determined by (4.2). 

where 

R = XFt7“H. (4.16) 

Comparing (4.2) and (4.15), we have that the sufficient and 
necessary condition for E = c, for any FIR channel is 

(4.17) 

v. DYNAMIC CONVERGENCE ANALYSIS 

When the blind equalization algorithms are implemented 
using stochastic gradient method, as are most blind equalizers, 
the blind equalizers will have an extra distortion en fi ?(n) - 1: 
due to the gradient noise. Here, we study the stochastic 
dynamic convergence behavior of blind equalizers when the 
parameters of the blind equalizers are near the global min- 
imum of the cost function. In our analysis, we will use 
the independence assumption, which assumes that a, and E ,  

are statistically independent. Similar assumptions have also 
been used in the convergence analysis of the LMS algorithm, 
the decision-directed equalizer, and the Sat0 algorithm. The 
literature [9], [16], [26], [27] has given some good justification 
on the validation of this assumption. 

By means of the independence assumption, together with the 
first-order approximation, we are able to prove the following 
dynamic convergence theorem. 

Theorem 2: Let 

Rf a xTFx (5.1) 

R, 2 xTGx (5.2) 

with the largest eigenvalue A,,,, and 

Since R is of full column rank for all nonzero h, (4.17) implies 
that 

with 

(4.18) (5.3) 
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1 For any FIR blind equalization algorithm, mean con- 
vergence behavior near the global minimum of the cost 
function satisfies 

E{€,} = (I - pGr2Rf)"E{€,}. (5.4) 

If the step size p in iteration formula (2.5) or (2.7) 
satisfies 

(5.5) 
2 

O<p<- 
k l a X g 2  

then 

E { c ( " ) }  + C and E{s(")}  i 3 .  (5.6) 

4 1 is not con- 
sistent, and at the equilibrium near the minimum of the 
cost function, the correlation matrix R, of t is uniquely 
determined by the following Lyapunov equation 

(5.7) 

2) The equalizer coefficient vector 

Rf  R, + R,Rf = p R ,  

if o < p < 1/{AmaXo2. 
Proo$ From (2.15), the output of the equalizer can be 

expressed as 

Yn =Yn + (Yn - Yn) 
- Gn + U,R€,.  (5.8) 

Around the minima of the cost function of the equalizer, lltnll 

is small, and therefore, yn - yn is also small. Applying the 
first-order approximation to d(y,) at Qn, we have 

- T 

4(Yn)  = d G n )  + 4'(5n)aT%. (5.9) 

Subtracting both sides of (2.7) by C and using (5.9), we have 
that 

t n + l  = En - ~ ( z n 4 ( i j n )  + xFITan4'(~n)4x~n). (5.10) 

Taking ensemble average on both sides of (5.10) and using 
the independence assumption, we have 

E{En+l} = E { % )  - P(B{%4(5n)} 
+ I F t T E { u , ~ ' ( ~ , ) u ~ } ~ F t t o )  (5.11) 

From Lemma li), E{zn#(Yn)}  = 0. Thus, (5.5) can be 
simplified into 

E{€,+l} = ( I  - po2xTFx)E{En) .  (5.12) 

Hence, 

E{€,} = ( I  - pGr2IFtTFx)"E{Eo}. (5.13) 

Let A d n )  = s ( ~ )  - s. Then, Asin) = RE, and en = 
('HTIFt)plRTAs("). It follows from (5.13) that 

a 

E{&)} = x(I - p ~ 2 x T F x ) " ( x ~ x ) - 1 x ~ E { A s ( O ) } .  
(5.14) 

Since RTPx is positive definite according to Lemma li), 

lim I I E { E ~ } ~ ~  = O (5.15) 
n-m 

1 .o 

0.8 

0.6 

z 
0.4 

0.2 

0.0 

-0.2 
0 2 4 6 8 10 

1.0 - 

0.8 - 

0.6 ' 
f 

(b) 

Fig. 2. (a) Impulse response and (b) the frequency response of channel 1. 

and 

(5.16) 

if p satisfies 0 < p < 2/Xmaxo2. Hence, Theorem 2.1 has been 
proven. 

From (5.10), we can also obtain 

T 
E{E,+len+l} = - P ( I 1  + 1 2  - d 3 )  (5.17) 

where 

and 
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O.OD 1 

-0.40 
loo0 Zoo0 3000 4000 5000 
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Fig. 3 .  
using = 0.002. 

Ten trials of learning curves of (a) CO and (b) C L  for Sato algorithm 

where: RCn denotes the correlation matrix of en,  i.e., 

Ren = E { W : } .  (5.22) 

The dominant term in 1.3 is 

I3 = 2 R Y .  (5.23) 

Substituting (5.21) ancl (5.23) into (5.17), we obtain that 

R F n t l  = Rfn - pcr2(RfR,, ,  + R f n R f  - p , R g ) .  (5.24) 

Let R, be the unique positive-definite solution of the Lyapunov 
equation 

R f  R, + R,Rf p R g .  (5.25) 

Then, (5.24) is equivalent to 

RFn+l - R, = ;A(Rcn - R,) + ;(Ren - R,)A (5.26) 

where: 

A = I - 2 4 R f .  

ij 

Fig 

0.90p+' 1.05 

t 
2000 40W 0 2 m  4Mx) 

" b c r  of iterations Numbcr of iteratims 

-0.4 
2 m  4owN 0 2002 m 

Number of itcratims N u m k  of iterations 

. 4. Average of learning curves: Theoretical ones (solid lines) and sim- 
ulated ones (dot-dash lines) based orr 100 ensemble trials for Sato algorithm 
using different p .  

Hence, 

I I - B C I I  5: l lA l l l l~Cn - Rfll. 

Therefore, 

If 0 < p < I/Xmlaxo2, then 11f1// < 1, and 

lirn lIRfn - R, 1 1  = 0. 
n t c x  

Therefore, 

lini h!en = R,. 
n i m  

(5.27) Since R, # 0, c(") i E is not consistent. 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

0 
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090 " " " " '  2000 3000 m 5000 
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0901 " " " " " " " " " " " " '  
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1000 

N u m k  of ~terahm N-ba of iteraiu" 

(a) 

t 
0.00 1 

0.1 . . .  I , . . ,  1 

1000 2 m  3000 m 5000 
-0.40 

N u m k  of iterations 

(b) 

Fig. 5.  
using p = 0.002. 

Ten trials of learning curves of (a) " 0  and (b) ( ' 1  for Godard algorithm 4 . 4 1  " " " " " " " ' " " 1 
2000 m o  2000 4000 

Numbcr of itcmtiws N m b a  of iterations 

Fig. 6. Average of learning curves: Theoretical ones (solid lines) and simu- 
lated ones (dot-dash lines) based on 100 ensemble trials for Godard algorithm 
using different p .  

From the above theorem, the distortion Of the 
system due to gradient noise is 

In this case, (5.7) becomes 

R f  R, + R,Rf 1 &. (5.37) 
= tr[RR,]. (5.32) 

When an FIR equalizer is so long that { F n  z z,}, {?in KZ 

For the blind equalization algorithms with f ( 0 )  = f ( l ) ,  R f  = 
f ( 1 ) R .  Using (5.37), we have 

(5.33) 

where we have used the definitions For those blind equalizers with f ( 0 )  # f ( l ) ,  (5.38) can 
also be used to approximately estimate the average distortion 
introduced by gradient noise. According to (5.38), D,  is 
proportional to the step size p and the length of equalizer N .  
On the other hand, however, step size affects the convergence 
speed of equalizers, i.e., the larger the /A, the faster it converges 
if p is in the allowable range. Hence, when we select the step 

R, e XTG'H (5.34) 

and 
A 1  

9( ' )  = 7 E { 0 2 ( Q n ) a : j 5  .9(l)  = E{42(aTL)j) (5.35) 

' diag[g(l), ' ' ' ' 9('),  .9('), .9(')> ' '  ' > S ( ' ) I .  (5.36) size of an equalizer, we have to consider the tradeoff between - - 
nn + N M + N these two factors. 
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10.8 r"' " " '  " '  

1.2 

0.8 

0.4 

nn I 
Y." 

0.00 0.10 0.20 0.30 0.40 0.50 
f 

(b) 

Fig. 7. (a) Impulse response and (b) the frequency response of channel 11. 

As we have seen, there are two sources of distortion. One 
is D J  in (4.24) due to the finite length of an equalizer, and 
another is D, in (5.38) due to the gradient noise. Once the 
step size of a blind equalizer is set, there must be an optimum 
lengtlh that can be found for an FIR equalizer to minimize the 
total distortion D = 135 + D, since with the increase of the 
equalizer length, D f  decreases while D, increases. 

VI. COMPUTER SIMULATIONS 
Since approximation has been used in our theoretical anal- 

ysis, we shall check the validity of our theory by computer 
simulations. Two computer simulation examples are presented 
in this section. 

Example 1: The channel input sequence {a,} is indepen- 
dent, uniformly distributed over { h , * 3 a }  (U = l /v% to 
make E { a i }  = 1). The impulse response of the channel 
is h, = 0.3"u[n] with u[n] being unit step function. The 
channel impulse response and frequency response are shown 
in Fig. 2. An FIR equalizer with coefficients CO and c1 is used 
to compensate for the channel distortion. The initial value of 

0.100 

-9" I 
0.010 

0.w1 

I . , . , , ,  

i I I , ,  , , , , , , , , 77,. , I 
0.001 

0 20 MI 60 80 100 
L4mgthofcpuahza 

(b) 

Fig. 8. 
ent step size 11. (b) Simulation results for p = 0.002, using Sat0 algorithm. 

Total distortion of equalized system (a) theoretical results for differ- 

the equalizer coefficient vector is set to be 

The Sat0 algorithm [l8] is first used to adjust the coefficients 
of the equalizer. When the step size 1-1 = 0.002, there are 10 
trials of learning curves of c("),  as shown in Fig. 3. In this 
figure, the thick solid line is the theoretical average learning 
curve calculated from (5.13), and the thick dot-dash lines 
are the theoretical one-standard-deviation lines determined by 
(5.26). According to this figure, 10 trials of learning curves are 
almost within one standard deviation of the theoretical average 
learning curves for Sat0 algorithm. Fig. 4 demonstrates the 
ensemble averages of learning curves for different step-sizes 
based on 100 trials. From Fig. 4, our theoretical results fit to 
the simulation results very well for the Sat0 algorithm. 

Similar simulations have also been done for the Godard 
algorithm [8]. The simulation results are shown in Figs. 5 and 
6, which also confirms our tlieoretical analysis. 

Example 2: The channel input sequence in this example 
has the same statistical propeirty as in Example 1. The channel 
impulse and frequency response are shown in Fig. 7, which is 
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Fig. 9. Total distortion of equalized system (a) theoretical results for dif- 
ferent step size p .  (b) Simulation results for p = 0.002, using Godard 
algorithm. 

a typical telephone channel [20]. The center-tap initialization 
strategy [7] is used for the blind equalization algorithm. 

When the Sat0 algorithm is used, the theoretical relationship 
between the total distortion and the length of the equalizer for 
different step sizes is illustrated in Fig. 8(a), which indicates 
that the optimum length of the Sato equalizer for this channel 
is between 15 and 25, depending on the step size. Fig. 8(b) 
demonstrates the comparison between the theoretical results 
of D f  + D, and simulated results for step size p = 0.002. 

The calculation and simulation results are given in Fig. 9 
for the Godard algorithm. Because g(  l) /f(  I) for the Godard 
algorithm (0.169) is less than that for the Sat0 algorithm 
(0.250) for four-level PAM input, the Godard algorithm should 
have less distortion than the Sat0 algorithm should according 
to (5.38), which is confirmed by comparing Figs. 8 and 9. 

VII. CONCLUSION 

We have studied the static and dynamic convergence be- 
havior of adaptive blind equalizers in the PAM digital com- 

the cost function of blind algorithms under the independence 
assumption. Most of the analysis results presented here can 
be extended to QAM digital communication systems. Our 
analysis result indicates that for a given channel and step size, 
there is an optimal length for an equalizer to minimize the 
intersymbol interference. The results imply that a longer length 
blind equalizer does not necessarily outperform a shorter 
one, which is contrary to what is conventionally conjectured. 
The theoretical results are confirmed by computer simulation 
examples. 
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