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ABSTRACT

Multi-user collusion is an cost-effective attack against digital
fingerprinting, in which a group of attackers collectively undermine
the traitor tracing capability of digital fingerprints. However, during
multi-user collusion, each colluder wishes to minimize his/her own
risk and maximize his/her own profit, and different colluders have
different objectives. Thus, an important issue during collusion is to
agree on how to distribute the risk/profit among colluders and ensure
fairness of the attack. To have a better understanding of the attack-
ers’ behavior during collusion to achieve fairness, this paper models
the dynamics among colluders as a non-cooperative game. We then
study the Pareto-Optimal set, where no colluder can further increase
his/her own payoff without decreasing others’, and analyze the Nash
Bargaining solution of this game.

Index Terms— Multimedia forensics, security, game theory

1. INTRODUCTION

Digital fingerprinting is an emerging forensic tool to protect multi-
media from illegal usage and unauthorized redistribution. It embeds
a unique label, known as fingerprint, into every distributed copy to
track the usage of multimedia data. In digital fingerprinting systems,
there is a powerful attack called multi-user collusion, where a group
of attackers work together to effectively remove the identifying fin-
gerprints. To design anti-collusion fingerprints and provide trustwor-
thy traitor tracing performance, it is important to study collusion at-
tacks and understand the challenges in multimedia forensics. There
is a lot of work in the literature exploring different types of collusion
attacks and analyzing their effectiveness [1, 2, 3].

Colluders have to collaborate with each other during collusion
to reduce their chance of being caught. However, different collud-
ers have different objectives, and every colluder wishes to minimize
his/her risk . To address this conflict, colluders have to agree on
how to distribute the risk and achieve “fairness” of the attack. It
raises complicated dynamics among colluders to ensure fairness of
collusion, and it is important to formulate this dynamics, understand
colluders’ behavior during collusion, and analyze its impact on the
traitor tracing performance of multimedia fingerprints.

In this paper, we propose a game-theoretic frame work to for-
mulate and analyze this complex colluder dynamics. We model the
dynamics among colluders as a non-cooperative game where each
colluder tries to maximize his/her individual payoff under the fair-
ness constraint. We calculate the Pareto Optimal set of this game,
where no colluder can further increase his/her own payoff without
decreasing others’. We also consider different definitions of “fair-
ness”, investigate how the colluders would like to share the risk and
the profit, and study the Nash Bargaining solution.

The authors can be reached at wylin@eng.umd.edu,
vzhao@ece.ualberta.ca, and kjrliu@eng.umd.edu.

The rest of the paper is as follows. Section 2 introduces the mul-
timedia fingerprinting systems that we consider in this paper, and
formulates the fairness dynamics among colluders. Section 3 de-
rives the Pareto-Optimal set and the Nash bargaining solution of this
game. We show simulation results in Section 4, and conclusions are
drawn in Section 5.

2. SYSTEM MODEL

2.1. Scalable Video Coding Systems

Nowadays, scalable video coding is widely adopted to accommo-
date heterogenous networks and devices with different storage and
computing capability. It decomposes the video sequence into dif-
ferent layers of different priority. The base layer contains the most
important information of the video and is received by all users, and
the enhancement layers gradually refine the reconstructed sequence
at the decoder’s side and are only received by users with sufficient
bandwidth. Without loss of generality, we consider a two-layer tem-
porally scalable video coding system, where different frames are en-
coded at different layers [4]. Take MPEG-2 video coding as an ex-
ample, the base layer includes all the I frames, and the enhancement
layer may contain all the P and B frames.

Define Fb and Fe as the sets containing the indices of the frames
that are encoded in the base layer and the enhancement layer, respec-
tively; and let F (i) be the set that contains the indices of the frames
that user u(i) receives. Ub is the subgroup of users who receive the
base layer only; and Ub,e contains all users who subscribe to the
high quality version containing both layers.

2.2. Scalable Multimedia Fingerprinting System

Fingerprint Embedding We use the spread spectrum embedding
[5, 6] to embed fingerprints in the host signal. Let Sj be the jth
frame in the video, and for each user u(i) who subscribes to frame
j, the content owner generates a unique fingerprint W

(i)
j , with the

same length as Sj . The fingerprinted frame is X
(i)
j = Sj+JNDjW

(i)
j ,

which is distributed to u(i). JND [6] here is used to control the en-
ergy of the embedded fingerprints and make the fingerprinted copy
be perceptually the same as the original one. In this paper, we first
generate independent vector from Gaussian distribution N (0, σ2

w),
and then apply Gram-Schmidt orthogonalization to generate orthog-
onal fingerprints for different users.
Multi-user Collusion In this paper, we only consider averaging
based collusion because nonlinear collusion can be modelled as av-
eraging collusion with additive noise [7], and all collusion attacks
have similar performance with colluded copies of the same quality.

During collusion, depending on the resolutions of their received
copies, the colluders are divided into two non-overlapping subgroups.
SCb is the set including the indices of the colluders who receive the
base layer only and SCb,e contains the indices of the colluders who
subscribe to the high quality version. Kb and Kb,e are the number



of colluders in SCb and SCb,e, respectively, and K = Kb + Kb,e

is the total number of colluders.
In this paper, we consider the scenario where colluders who re-

ceive fingerprinted copies of the same resolution agree to share the
same risk. Following the work in [4], colluders apply intra-group
collusion first: for each frame j ∈ Fb that they receive, collud-
ers in SCb generate Zb

j =
�

k∈SCb X
(k)
j /Kb, and for each re-

ceived frame j ∈ Fb ∪ Fe, colluders in SCb,e calculate Zb,e
j =�

k∈SCb,e X
(k)
j /Kb,e. Then, the colluders apply inter-group collu-

sion: for each frame j ∈ Fb in the base layer, colluders generate
Vj = βZb

j + (1 − β)Zb,e
j + nj where 0 ≤ β ≤ 1; and for each

frame j ∈ Fe in the enhancement layer, Vj = Zb,e
j + nj . nj is the

additive noise to further deter the detection performance.
Fingerprint Detection When identifying colluders, the fingerprint
detector first extracts the fingerprint Yj from frame j in the colluded
copy. Then, for each user u(i), the fingerprint detector calculates the
detection statistics

TN (i)(F̆ (i)) =

�� �
j∈F̆ (i)

〈Yj ,W
(i)
j 〉
�� /

� �
j∈F̆ (i)

||W(i)
j ||2, (1)

compares with a threshold h, and outputs the estimated colluder set�SC = {i : TN (i) > h}. When identifying colluders, the fingerprint
detector can use fingerprints extracted from all layers collectively.
The fingerprint detector can also examine each individual layer to
determine whether a user is involved in collusion. For example, for
user i ∈ Ub,e, F̆ (i) has three choices, Fb ∪ Fe, Fb and Fe.

Different detection statistics have different means, and the one
with the largest mean has the best detection performance. The work
in [8] proposed to estimate the means of different detection statis-
tics first, and then use the one with the largest estimated mean when
identifying colluders. It was shown that information about the de-
tection statistics’ means helps significantly improve the detection
performance; and the proposed self-probing fingerprint detector has
approximately the same performance as the optimum one, which
has perfect knowledge of the means and always select the detection
statistics with the best performance.

2.3. Fairness Dynamics among Colluders

During collusion, every colluder wants to minimize his/her own risk
and maximizes his/her own profit. Colluders have conflicting objec-
tives and, therefore, an important issue during collusion is to achieve
“fairness” of the attack. Absolute fairness is one of the popular mod-
els used in the literature, where all colluders share the same risk and
have equal probability of being detected. Colluders can also use
other definitions of fairness, e.g., proportional fairness, where some
colluders benefits more from collusion at a cost of higher risk. We
model this dynamics among colluder to achieve “fair” collusion as a
game: colluders first define the payoff function (or the utility func-
tion) and agree on the “fair” distribution of the risk and the profit.
Then, they adjust the collusion parameters (β in the collusion model
in Section 2.2) to achieve fairness of collusion.

For colluder u(i), his/her payoff function π(i) should be a mono-
tone decreasing function of his/her risk of being detected (P (i)

d ): the
smaller the risk, the higher the payoff. In addition, when the colluded
copy has higher resolution and better quality, colluders can redis-
tribute the colluded copy with a higher price and thus receive higher
profit. Consequently, π(i) is a monotonically increasing function of
the colluded copy’s resolution. Furthermore, colluding with more
attackers reduces u(i)’s probability of being detected; while it also

reduces the profit that u(i) receives from the illegal redistribution of
multimedia since he/she has to share it with more people.

To address all the above issues, in this paper, we define colluder
u(i)’s payoff function as

π(i) =

	
1 − P

(i)
d


γ1
F γ2

K
, (2)

Where Pd is u(i)’s risk, and F is the number of frames (or equiva-
lently, the temporal resolution) of the final colluded copy. γ1, γ2 are
non-negative real numbers that can be adjusted by the colluders to
balance the tradeoff among the risk and the profit. Without loss of
generality, we use γ1 = 4, γ2 = 1 as an example in this paper, and
the analysis for other parameters is the same.

During collusion, every colluder in the game aims to maximize
their own payoff π(i) and, therefore, there exist conflicting objec-
tives among colluders during collusion. Thus, in our model of the
dynamics, colluders maximize their individual payoff function un-
der the fairness constraint. In the collusion model in Section 2.2,
we consider the scenario where colluders who receive fingerprinted
copies of the same quality agree to share the same payoff. From
the definition of the payoff function in (2), having the same payoff is
equivalent to sharing the same risk, i.e., P (i)

d = P
(j)
d if both colluder

i and colluder j receive the low (or high) resolution copies.

3. GAME BETWEEN COLLUDERS

In this section, we will first find the feasible set of the game, and
search for the Pareto optimal points, assuming that colluders who
receive copies of the same quality agree to share the same risk. Then,
we will analyze the Nash-Bargaining solution of the game.

3.1. Feasible Set

Given a N-person general-sum game, there is a certain subset S of
RN , called the feasible set. It is feasible in the sense that, given any
(π1, π2, ..., πN ) ∈ S, it is possible for the players, acting together,
to obtain the utilities π1, π2, ..., πN , respectively.

The proposed self-probing fingerprint detector in [8] has approx-
imately the same performance as the optimal detector. Therefore,
colluders should consider the worse-case scenario and assume that
the fingerprint detector can always select the detection statistics with
the largest mean. Following the analysis in [8], under the assumption
that the detection noise are i.i.d. Gaussian N (0, σ2

n),

P
(i)
d = Q

�
h − μ

(i)
max

σn

�
,

μ(i)
max = μb

�
=

β
√

Nb

Kb
σw for i ∈ SCb,

and μ(i)
max = μb,e

�
= max{μb

b,e, μ
e
b,e, μ

c
b,e} for i ∈ SCb,e,

where μb
b,e =

(1 − β)
√

Nb

Kb,e
σw, μe

b,e =

√
Ne

Kb,e
,

and μc
b,e =

(1 − β)Nb + Ne

Kb,e
√

Nb + Ne

σw. (3)

Q(x) = 1√
2π


∞
x

e
−t2
2 dt is the Gaussian tail function.

From (3), for a given β, μb is fixed while μb,e1 may take three
different values. To find the feasible set of the game, we need to find
the relationship between β and μb,e first.
Scenario 1 μb,e = μb

b,e: μb,e = μb
b,e if and only if μb

b,e ≥ μe
b,e, and

μb
b,e ≥ μc

b,e. So, from (3),



(1 − β) ≥ max

�√
Ne√
Nb

,
Ne√

Nb(
√

Nb + Ne −
√

Nb)

�
(4)

Note that
√

Nb +
�

Nb,e ≥ √
Nb + Ne. So the second upper bound

in (4) is always larger or equal to the first one. Thus, we have

μb,e = μb
b,e ⇔ 0 ≤ β ≤ 1 − Ne√

Nb(
√

Nb + Ne −
√

Nb)
. (5)

However, for all Nb > 0 and Ne > 0, the upper bound of β in (5)
is always smaller than 0. Therefore, μb,e 
= μb

b,e and μb
b,e cannot be

the largest among the three μb
b,e, μe

b,e and μc
b,e.

Scenario 2 μb,e = μe
b,e: μb,e = μe

b,e if and only if μe
b,e ≥ μb

b,e and
μe

b,e ≥ μc
b,e. Therefore, from (3),

(1 − β) ≤ min

�√
Ne√
Nb

,

√
Ne(

√
Nb + Ne −

√
Ne)

Nb

�
. (6)

Using the same analysis as in (3), the necessary and sufficient con-
dition for scenario 2 is:

μb,e = μe
b,e ⇔ 1 −

√
Ne(

√
Nb + Ne −

√
Ne)

Nb
≤ β ≤ 1. (7)

Scenario 3 μb,e = μc
b,e: Following the same analysis, we can get

the necessary and sufficient condition for Scenario 3, which is:

μb,e = μc
b,e ⇔ 0 ≤ β ≤ 1 −

√
Ne(

√
Nb + Ne −

√
Ne)

Nb
. (8)

From the above analysis on P
(i)
d , we can calculate the payoffs

π(i) for all colluders for any given β. From the definition of the
payoff function (2), colluders who receive fingerprinted copies of
the same quality have the same payoff. We define πb,e as the payoff
for colluders in SCb,e, and πb as the payoff for colluders in SCb.
Figure 1 plots πb versus πb,e, and shows the feasible set RN which
is the solid line.

3.2. Pareto Optimality

After finding the feasible set, it is important to find the set of Pareto-
Optimal points. A solution is Pareto-Optimal if and only if no player
in the game can increase his/her payoff without decreasing others’.
In a bargaining situation, players would always like to settle at a
pareto optimal outcome. This is because if they select a point that is
not pareto optimal, then there exists another solution where at least
one player can have larger payoff without hurting the interest of the
other players. Pareto optimal solutions are not unique in most cases.
This section searches the Pareto-Optimal points, and analyzes the
necessary and sufficient conditions for a point to be Pareto optimal.

Note that from (3), colluders in SCb can increase their payoff if
and only if they select a smaller β.
Necessary Condition: If a point is Pareto-Optimal, then decreasing
μb and increasing the payoff of those colluders in SCb must increase
μb,e and decrease πb,e. Note that from (3), μb is an increasing func-
tion of β. Thus, If a point is a Pareto-Optimal point, μb,e must be
a decreasing function of β, which happens only when μb,e = μc

b,e.
Consequently, if a point is Pareto-Optimal, β must satisfy (8), and
(8) is the necessary condition of a Pareto Optimal point.
Sufficient Condition: If μb,e = μc

b,e, then to increase the payoff of
those colluders in SCb,e, colluders must decrease μb,e by selecting
a larger β. However, a larger β implies a larger μb, thus, it decreases
the payoff of those colluders in SCb. Consequently, those points
that satisfy (8) are Pareto-Optimal points, and (8) is the sufficient
condition of Pareto-Optimal.

To collude, the collusion is Pareto-Optimal if and only if μb,e =
μc

b,e and (8) is satisfied, which is the curve segment in Figure 1.
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Fig. 1. Feasible set of the collusion game using the payoff function
π(i) = (1 − P

(i)
d )4F/K, with Pfa = 10−3, Nb = Ne = 50000,

Kb = 55, Kb,e = 165, and K = Kb+Kb,e. |Ub| = |Ub,e| = 250.

3.3. Nash-Bargaining Solution

There are many ways for colluders to share the risk and the profit, de-
pending on their definition of “fairness”. Absolute fairness is widely
adopted in the literature, where all colluders have the same payoff.
Colluders may also select proportional fairness, where some collud-
ers benefit more at a cost of higher risk. One popular solution is the
Nash-Bargaining solution, which is based on the idea that players
who can gain more will naturally ask for more in the bargain. The
Nash-Bargaining solution is based on the definition of fairness that
the additional payoff must be divided between the two players in a
ratio equal to the rate at which this utility can be transferred.

Mathematically speaking, the Nash-Bargaining solution maxi-
mizes the product of the utility gain. In our problem, the Nash-
Bargaining solution (πb,e, πb) maximizes

g(πb,e, πb) = (πb,e − π∗
b,e)

Kb,e

(πb − π∗
b )Kb

where π∗
b,e = min

β
πb,e, π

∗
b = min

β
πb. (9)

The Nash-Bargaining solution is in the Pareto-Optimal set and,
therefore, it always satisfies (7). Consequently, (9) becomes:

g(β) = A(β)Kb,e

B(β)Kb

, where

B(β) =

��1 − Q

��h − β
√

Nb

Kb σw

σn

����γ1

−
��1 − Q

��h −
√

Nb

Kb σw

σn

����γ1

A(β) =

��1 − Q

��h − (1−β)Nb+Ne

Kb
√

Nb+Ne
σw

σn

����γ1

−
��1 − Q

��h −
√

Nb+Ne

Kb,e σw

σn

����γ1

(10)

Note that Nash-Bargaining solution is always Pareto-Optimal
and the set of β corresponding to the Pareto-Optimal points is closed.
Thus, g(β) is a concave function, annd it is maximized when the gra-
dient of g(β) equals to zero or when β is on the boundary.

From (10), if g′(β) = 0, then

Kb,eA′(β)B(β) = KbA(β)B′(β) (11)

Where A′(β) and B′(β) are the derivatives of A(β) and B(β) over
β. Note that both B(β) and A′(β) are increasing functions of β,
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while A(β) and B′(β) are decreasing functions of β. Thus, the
solution of (11) is a monotonically decreasing function of Kb/Kb,e.
It implies that the subgroup of colluders with a larger size benefits
more than the others.

4. SIMULATION RESULTS

In our simulations, we first generate independent vectors follow-
ing Gaussian distribution N (0, 1), and then apply Gram-Schmidt
orthogonalization to generate orthogonal fingerprints. The lengths
of the fingerprints embedded in the base layer and the enhance-
ment layer are Nb = Ne = 50000, and both two layers contain
20 frames, respectively. The total number of users is 500, where
Ub = Ub,e. The probability of accusing an innocent user, Pfa, is
10−3. Kb/K = 1/4 of them receive the fingerprinted base layer
only, and the other Kb,e/K = 3/4 of the colluders receive finger-
printed copies of high resolution.

Figure 1 shows the corresponding feasible set when there are
totally 220 colluders. Define C as the set of all the cs where the in-
tersections of the curve g(πb,e, πb) = c and the feasible set are not
empty. Mathematically speaking, the Nash-Bargaining solution is
the intersection of the Pareto-optimal set and the curve g(πb,e, πb) =
max{C}. Since the boundary of the Pareto-optimal set is a strictly
concave function and g(πb,e, πb) = c is strictly convex, the Nash-
Bargaining solution is unique. In Figure 1, the dot is the Nash-
Bargaining solution and the cross is the absolute fairness solution.
It is clear that the Nash-Bargaining solution favors the group with
more colluders, which is SCb,e in our simulation setup.

Figure 2 shows colluders’ payoffs, and Figure 3 plots their prob-
ability of being detected. In our simulations, we consider two sce-
narios: attackers only collude with those from their own subgroup
(i.e., an attacker who receives a high-resolution copy will only col-
lude with those in SCb,e but not those in SCb.); and attackers also
collude with those from the other subgroup. From Figure 3, col-
luding with more attackers further reduces colluder i’s risk of being
detected. However, from Figure 2, it does not necessarily always in-
crease his/her payoff since he/she has to share the profit with more
people. For example, when Kb,e = 240 and Kb = 80, for those
colluders in SCb,e, colluding with SCb reduces their risk from 0.03
to 0.02; while it also lowers their payoff because they have to share
the profit with 80 more people. Therefore, in this scenario, colluders
in SCb,e may prefer not to collude with those in SCb.
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(i)
d ] for

i ∈ SCb and i ∈ SCb,e. Pfa = 10−3, Nb = Ne = 50000,
Kb : Kb,e = 1 : 3, and |Ub| = |Ub,e| = 250.

5. CONCLUSIONS

This paper studies the game-theoretic modelling and analysis of the
dynamics among colluders to achieve fairness of collusion. We model
the fairness dynamics among colluders as a non-cooperative game,
where each colluder aims to maximize his/her own payoff func-
tion under the fairness constraint. We analyze the feasible set of
the game; study the Pareto-Optimal set where no colluder can fur-
ther increase his/her payoff without decreasing others’; and find the
Nash-Bargaining solution of the game. Our analysis shows that dur-
ing collusion, colluders choose different points in the feasible set,
depending on the colluders’ definition of “fairness” and their agree-
ment on how to distribute the risk and the profit among themselves.
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