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Abstract- An optimal unified architecture that can efficiently 
compute the Discrete Cosine, Sine, Hartley, Fourier, Lapped 
Orthogonal, and Complex Lapped transforms for a continuous 
stream of input data that arise in signallimage communications 
is proposed. This structure uses only half as many multipliers as 
the previous best known scheme [l]. The proposed architecture 
is regular, modular, and has only local interconnections in both 
data and control paths. There is no limitation on the transform 
size N and only 2N - 2 multipliers are needed for the DCT. 
The throughput of this scheme is one input sample per clock 
cycle. We provide a theoretical justification by showing that any 
discrete transform whose basis functions satisfy the Fundamental 
Recurrence Formula has a second-order autoregressive structure 
in its filter realization. We also demonstrate that dual generation 
transform pairs share the same autoregressive structure. We 
extend these time-recursive concepts to multi-dimensional trans- 
forms. The resulting d-dimensional structures are fully-pipelined 
and consist of only d 1-D transform arrays and shift registers. 

I. INTRODUCTION 

ISCRETE sinusoidal transforms play significant roles in D various digital signal processing applications, such as 
spectrum analysis, image and speech signal processing, com- 
puter tomography, data compression, and signal reconstruction 
[2]-[5]. Among different discrete sinusoidal transforms, the 
discrete cosine transform (DCT) [6]-[9], the discrete sine 
transform (DST) [9], [ lo],  the discrete Hartley transform 
(DHT) [27], [28 ] ,  [26], [6], and the discrete Fourier trans- 
form (DFT) [.3] are widely used because of their efficient 
performance [SI, [20]-[24]. Recently, the Lapped Orthogonal 
Transform (LOT) [14], and the Complex Lapped transform 
(CLT) [ 131 were introduced for transform coding with signif- 
icantly reduced blocking effects and for motion estimation. 

In real-time signal processing applications, especially in 
speedimage communications and radarkonar signal pro- 
cessing, input data arrive serially. In traditional FFT based 
algorithms, the serial data is buffered and then transformed us- 
ing the FFT scheme of complexity O ( N  log N )  [3]. Buffering 
the serial data requires O ( N )  time. In this paper, we describe 

Manuscriut received Auril 13. 1993: revised October 18, 1993. 

a novel architecture that merges the buffering and transform 
operations into a single unit of total hardware complexity 
O ( N ) ,  and the O ( N )  waiting time is thus eliminated. Unlike 
the FFT, this architecture has only local interconnections and 
is better suited for VLSI implementations. It is important to 
note that the proposed architectures generate time-recursive 
transforms, not just block transforms, i.e., the transform of the 
N points [x( t  + 1); x( t  + a) ,  . . . , ~ ( t  + N ) ]  is generated one 
clock cycle after the transform of [z ( t )  ~ z(t+ l ) ,  . . . ~ x (  t+N - 
l)] is generated. To generate time-recursive transforms, the tra- 
ditional fast algorithms based architectures require O( log N )  
time using O ( N  log N )  hardware, while the architectures we 
propose require only a constant time with O ( N )  hardware. 
Time-recursive transforms are currently gaining widespread 
use in motion estimation, in video signal processing, and in 
reducing blocking effects in data compression. 

We have shown in [ I ]  that when discrete transforms are 
performed on segments of a continuously incoming data 
stream, transforms can be realized by a unified lattice structure 
with a data throughput rate of one input sample per clock 
cycle. This architecture is regular, modular, and free of global 
interconnections. Unlike the many fast algorithms for DFT, 
DCT, and DHT, there is no constraint on the transform size 
N .  Table I [ 11 summarizes a comparison of the time-recursive 
approach with other well-known fast algorithms. A time- 
recursive lattice 2-D DCT structure with applications to the 
HDTV systems is also given in [ 171. This 2-D DCT structure 
requires only two 1-D DCT blocks and is fully-pipelined with 
no transposition. 

In this paper, we describe an optimal unified filter structure, 
which preserves the advantages of the lattice architecture, 
while reducing the hardware complexity in half. In the time- 
recursive lattice architecture, two transforms called the dual 
generated pairs, are obtained simultaneously. The unified filter 
structure is more suitable for applications where only one 
transform is required. We develop a systematic approach to 
derive the time-recursive unified filter architecture for any 
discrete transform. We show that all the resulting unified 
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filter architectures have a similar second-order autoregressive 
structure with minimum number of multipliers. A theoret- 
ical basis for this fact is provided. We also demonstrate 

dimensional transforms by using only the one-dimensional 
transform architecture and simple shift registers. An area-time 
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TABLE I 
COMPARISONS OF DIFFERENT DCT ALGORITHMS 

Liu-Chiul Liu-Chiu2 Chen [23] et al. Lee [24] Hou [I81 
No. of Multipliers 6Ar - 4 41x1 N l n ( N )  - 3 N / 2  $ 4  (12'/2)1n(N) N - 1  
latency N 2 N N /  2 [ l n ( N ) ( l n ( N )  - 1) ] /2  3 N / 2  (order) 
limitation on transform size N no no power of 2 power of 2 power of 2 
communication lOCd local global global global 
U 0  operation S I P 0  S I S 0  P I P 0  P I P 0  S I P 0  

complexity analysis is also provided to show that the proposed 
approach is asymptotically optimal in speed and area. 

The rest of this paper is organized as follows. The unified 
lattice structure for sinusoidal transforms is summarized in 
Section 11. The derivation of the optimal unified filter structure 
from the transfer function of the discrete sinusoidal transforms 
is discussed in Section 111. The architectures of the inverse 
discrete sinusoidal transforms based on the IIR filter realization 
are presented in Section IV. In Section V, the characteristics 
of these architectures are discussed from a theoretical point 
of view. The unified architectures for time-recursive based 
multi-dimensional discrete sinusoidal transforms are discussed 
in Section VI. Finally, we give a conclusion in Section VII. 

11. LATTICE STRUCTURE FOR 
DISCRETE SINUSOIDAL TRANSFORMS 

The time-recursive approach has been shown to be efficient 
in both hardware and computational complexity for the com- 
putation of discrete sinusoidal transforms (DXT), (such as the 
DCT, DST, and DHT), for time series input data stream [l]. 
In this section, we will summary and provide a unified view 
of lattice structures for time-recursive approach. 

Denote the discrete sinusoidal transform DXT of a data 
sequence of length N [x(t), z(t + l ) ,  . . . , z{t + ilr - I); 1 = 
0, 1, a , . . . ]  at time t as 

t+N-1 

~ ( k ,  t )  = ~ ( k )  z(n)Pn-t(k), 
n=t 

k = 0 ,  l : . . , N - l .  (1) 

where PTtPt (k )  are transform basis functions and C ( k )  are 
constants used for normalization. It was shown in [I ]  that 
most discrete sinusoidal transforms have dual generated pairs. 
That is, the lattice structure used for generating one transform 
automatically generates its dual. For example, the dual of 
the DCT is the DST. Both the transform and its dual have 
similar updating relations. Let us denote the dual generated 
pairs by X , , ( k ,  t )  and X, , (k ,  t ) .  Then, the time-recursive 
relation between X z ( k ,  t )  and X,(k ,  t + 1) can be obtained 
by eliminating the effect of the first term of the previous 
sequence and updating the effect of the last term of the current 
sequence. In general, the dual generation properties between 
the transform pairs X,,(k. t )  and X,,(k, t )  are given by the 
following equations [ 11: 

X,C(k, t + 1) 
= e ( k ) { [ L ( k  t )  + [z(t + N ) ( - V  - ~ ( t ) l D c l r c  

+ [X,,(k, t )  + [z(t + N ) ( - V  - z ( t ) ]~y] r s}  (2) 

and 

where Dc and D, are the associated cos and sin transform 
kernels of the DXT with fixed index n. Coefficients e ( k )  and 
f ( k )  depend on the definition of the transforms and are always 
equal to one except for the two transforms LOT and CLT. 
Here, we will briefly describe the definition of the various 
discrete sinusoidal transforms [lo]-[ 131. 

The one-dimensional (1-D) DCT of an input data sequence 
[z ( t ) ,  x ( t  + l), ' .  . , z( t  + N - l ) ,  t = 0, 1, 2 , .  . .] is defined 
as [ I l l  

and the 1-D DST is defined as [lo] 

where 

The definition of DHT is given by [12] 

A where cas 0 = cos 0 + sin 8. 
The Discrete Fourier Transform (DFT) is defined as [3] 

k = 0 ,  l , - . . , N - l .  (7) 

The Lapped Orthogonal Transform (LOT) [ 141, [ 131 of 2N 
samples [z(t - N + i), x(t  - N + ;),.. . , z(t + N - i)] is 
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defined as 

where afi = / j l &  = 0, except 
Fig. I. The universal lattice module. 

Input data amve serially in most real-time signal processing 
applications. If we can view the transform operation as a 
linear shift invariant (LSI) system which transforms the input 
sequence of samples into their transform coefficients, then 

(n  - t ) ~  it is similar to a filtering operation. The general approach 
cos- . exp( - j  2N 2~ ' to tackle a digital filter problem is to look at its transfer 

k = O ,  1 ; . . . N - l  . (9) 

Since the LOT is obtained from the even and odd value of k ,  

function. The transfer functions of the DXT can be derived 
using several approaches. We will derive them from the unified 
time-recursive lattice structures as shown in Fig. 1. The time 
difference equations' for the dually generated pairs are we focus on the discussion of the dual generation for the CLT 

only. Define an Auxiliary Complex Lapped Transform (ACLT) 
of 2N samples [ ~ ( t -  N + i), .c(t - N + $), . . . , .r(x+N- i)] ysc k ( t )  = c(k){rc[oc.:(q + yzc, k ( t  - 111 
as + rc[Ds.qt) + yzs, k ( t  - 111) ( 1  1) 

and 

X, / t ( k ,  t )  == 

( 2 k  + l ) (n  - t )T  ( n  - t ) T  } sinZN. where 
2N 

. exp { - j  

k = 0 .  l , . . . , N - l  . (10) 2 ( t )  = ( - l ) k z ( t  + N )  - ~ ( t ) ,  (13) 

Then, the CLT and ACLT can be dually generated from (2) 
and (3) with the corresponding coefficients listed in Table 11. 
All the transforms mentioned above can be realized by a lattice 
structure as shown in Fig. 1. This lattice structure is a modified 
normal form digital filter. Table I1 lists the coefficients in 
the unified lattice structure for different transforms. Here B k  

and P z c , k ( t >  and Y z s . k ( t )  Co~esPonds to X Z C ( ~ ,  t )  and 
x z s ( k -  t )  in (2 )  and (3). The z transform deduced from 
the above difference equations are 

yZc, k ( ~ )  = e ( k ) { ( o c r c  + osrs)x(z)  
+ rcyz , ,  k ( Z ) z - l  + rsyzs, k(.).-'} (14) 

associated with the LOT/CLT equals v. ' The time index t is an integer parameter. 
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TABLE I11 
COEFFICIENTS OF THE UUIVERSAL IIR FILTER STRUCTURE FOR THE DXT 

k 12 D1 0 2  s 1 ’V2 
DCT k s 2 cos ( rk/-\-) 1 

1 .cos ( r k / 2 n ‘ )  .cos ( H k / 2 N )  
DST k 

DHT 0 

DFT 0 

s 2 cos (rk/:\-) 1 

‘V 2 cos ( 2 7 r k / S )  1 

Y 2 COS ( 2 ~ k / S )  1 

and 

YA, k ( z )  := f ( k ) { ( a r c  - axs)&) 
+ rcyzs, ,+(z)z-l - rsyzc, k ( z ) z - l } .  (15) 

f ( k ) { ( D J C  - D c r s ) X ( Z )  - r s y x c  k ( z ) z - l )  

1 - f(rc)rcz-l 

Y,,, k ( z )  can be expressed in terms of Yzc, k ( z )  and x ( z )  as 

Y z s , k ( , )  = - 

(16) 
it follows that the transfer function for is given by 

H x c .  k ( z )  
((-I)~ - z-lV)(e(k)[D,rc + DJ,] - e ( k ) f ( k ) D , z - l )  

1 - ( e ( k )  + f ( k ) ) r C z - l  + e ( k ) f ( k ) z - 2  
-__ - - 

(17) 

Similarly, the transfer function for is given by 
X ( Z )  

Hzs,  k (2) 

((-I)~ - z - - ” ) ( f ( k ) [ D s r c  - ~,r,] - e ( k ) f ( k ) D S z - l )  
1 - ( e ( k )  + f(k))r& + e ( k ) f ( k ) z r 2  

-- - - 

(18) 

From Table I1 and the transfer functions derived above, the 
transfer functions of different discrete sinusoidal transforms 
are given by 

(19) 
(1 - 2-1) 

(1 - 2(cos$$)z-l+ 2 - 2 )  ‘ 

Because the size of the input data is 2N in the CLT, the updat- 
ing vector is 1 - z2” instead of 1 - 2’’. The transfer function 
is obtained by substituting the corresponding coefficients in 
Table I1 to ( l l ) ,  resulting in 

(2k  + 1)7r 
l9= 

4 N  
It follows that for the LOT, 

Hl,to(z) = o d d P r t o f { ~ , / t ) .  (25) 

We know from (1) that the transfer functions of these trans- 
forms are of finite impulse response. Hence, the poles in the 
denominator will be cancelled by the zeros of (( - l ) k  - z - ~ )  
in the nominator. We observe that when the updating vector 
(1 - z-”) is factored out, the basic structure of all the 
transforms is composed of a FIR and an IIR filter with a 
second order denominator and a first order numerator, i.e. we 
are using an IIR filter to realize a FIR filter. This realization 
can greatly reduce the hardware complexity compared with 
the implementation consisting of FIR structures. 

111.2. The UniJed IIR Filter Architectures 

From the transfer functions derived above, we observe that 
the DXT can be realized using a single universal filter module 
consisting of a shift register array and a second order IIR 
filter. This structure is depicted in Fig. 2. The coefficients of 
the universal IIR module for different transforms are listed in 
Table 111. 

We note from (19) and (20) that the DCT and the DST share 
the same denominator and can be simultaneously generated 
using an IIR filter structure with three multipliers as depicted 
in Fig. 3. Compared with the lattice structure for the DCT 
and DST [l] ,  the IIR realization requires only half as many 
multipliers. The difference is that the IIR structure implements 
the denominator of the transfer function in the direct form, 
while the lattice structure implements the poles in the normal 
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DCTandDST 
RltamCdu1e 
fw k 

- 
DCT and DST 
Kiter module - 

I 

Fig. 2. The universal IIR filter module. 

Fig. 3.  

x(t) 

The IIR filter structure for the DCT and DST. 

IiNI I T 4 
Fig. 4. The IIR filter structure for the DHT and DFT 

form. From (21) and (22), we also observe that a single unified 
filter structure can be used to generate both the DHT and the 
DFT. This structure is depicted in Fig. 4. 

The transfer function derived in (23) is in complex form. We 
will show in the following how to realize the CLT using real 
operations. The definition of the CLT in (9) can be rewritten as 

( 2 k  + 1)(2n + 1). ( 2 n  + 1)7r 
sin 

. exp{ - j  4N } 4N ' 
k = O ,  l : . . . , N - l  . (26) 

If we define another transform with basis functions only length 
N ,  

1 j ( 2 n f l ) k 7 r  1 
= --(DCT,k - j ' DST,k). 

2N N 
t n k  = -exp- 

N 

1 1 DCT and DSl 
R l t a  mcdule 
fork 

DCT and DST 
filter module 
k k + l  

Fig. 5.  The IIR filter structure for real operation of the LOT and CLT 

TABLE IV 
NUMBER OF MULTIPLERS AND ADDERS FOR DIFFI-RENT TRANS~ORMS WI1 H 

IIR FILTER REALIZATIONS (HERE iir DEVOTES C O M P L f X  0I.f RATlOhS) 

Transformers multipliers ddders 
DCT 2 s  - 2 3 Y + 2  
DST 2'XT - 2 3 5  + 2 
DHT 2 N 3'X7 + 1 
DFT 3 F -  2 3 9  + 1 
LOT* 4 'Y 4 Y  
CLT' 4 h' 4 s 
DCT and DST 3n' - 3 4 B  + 2 
DHT and DFT 3 8  - 2 4 Y + 1  

then the CLT can be expressed in the form of [ 131 

N-1 

2 N - I  

This leads to the CLT architecture as shown in Fig. 5 ,  in 
which the t,, are generated by using the DCT and DST 
dual generating circuit as depicted in Fig. 3. The number of 
multipliers and adders required for these IIR filter structures 
are summarized in Table IV. 

The architecture to generate I-D DXT is depicted in Fig. 6. 
This parallel structure consists of a shift register array of size 
N ,  two adders, and N IIR filter modules. Two sets of inputs 
x( t  + N )  - ~ ( t )  and -x( t  + N )  - ~ ( t )  are generated for the 
even and odd filter modules respectively. When a new datum 
~ ( t )  amves, a new set of transform coefficients are obtained 
in O( 1) time, i.e., the throughput rate is O( 1). 

I v .  ARCHITECTURES FOR INVERSE TRANSFORMS 
Inverse transforms are important in retrieving original infor- 

~~ 

n, k = 0: 1,. . . ~ N - 1. (27) mation in digital communication systems. The inverse DHT 
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to even module 

to odd module 

Filter 
Array 

I 

M(N-2) 

M(N-1) 

Fig. 6.  The parallel 1IR filter structure for I-D DXT. 

and DFT are given by 

We observe that the transfer function of the inverse DHT 
(IDHT) is exactly the same as its forward transform. The 
transfer function of the inverse DFT (IDFT) is given by 

1 
Hf(2) == --(1 - z-") Jiv 

3 (31) 
C O S T  - j sin% - z-1 

.~ ( 1 - 2 cos%z-l + 2 - 2  

which is the same as (22) except that the imaginary part 
is negated. Therefore, the IDHT and IDFT can be realized 
by using the same architecture as those depicted in Fig. 4 
except that we have to add an inverter at the output of the 

The inverse DCT and DST (IDCT and IDST) are defined 
I r r t X f ( k .  t ) .  

as follows: 

5, (n ,  t )  = g C(k - t ) X , ( k )  
k=t+l 

n = O .  l , - . , . N - l .  (35) 

Because C ( k )  is inside the transform, the architectures require 
some modification. Since C ( k )  = 1 except for k = 0 or 
k = N ,  we can rewrite (32) as 

+ g( 6 - 1) X ( t ) .  (36) 

The transfer function of IDCT is 
cos Bz-" + (- 1)'' sin B 

1 - 2cost lz- l+ 2 - 2  ' 

where 8 = v. If we perform the block transform 
instead of sliding window transform, then the z-N-l and z-"' 
components in the numerator can be eliminated because of 
the reset operation. In Fig. 7, we show the optimal unified 
IIR implementation of the inverse DCT module under block 
transform. The number of multipliers required for the inverse 
DCT is 2 N  - 1. The additional branch of multiplier is shared 
by the N IIR array with a delay of N - 1 cycles. The 
difference in the direct and inverse transform formula can be 
rectified by adding one additional branch of multipliers to a 
whole parallel IIR structure and changing the multiplication 
coefficients. Similarly, the IDST can be rewritten as 

+ g (& - 1) X ( t  + N - l) ,  (38) 

whose transfer function is 

+ qJi- l ) ,  (39) 

The architecture for the block transform of the IDST is shown 
in Fig. 8. 

The Inverse Complex Lapped Transform (ICLT) [I31 
of samples [ X ( t ) ,  X ( t  + l ) ; . . , X ( t  + N - l), X ( t  + 
N ) ,  . . . , X ( t  + 2N - l)] is defined as 

Z c l t ( k ,  t )  
. t+nr-1 

(an + l ) ( k  - t)T 
+ X ( k + N +  1))Iexp 
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TABLE V 
CORRESPONDIhG COEFFICIENTS IN THE RECURRENCE FORMULA FOR DIFFERENT DXT 

k c A RI p- 1 PIV - 1 P.V 
DCT 2 cos ( K k / N )  0 I cos ( a k / 2 N )  Po ( -1) ' "Po  Po 
DST 2 cos (?Tk /N)  0 I sin ( i r k /21V)  -Po - ( - l ) k P o  Ri 
DHT 2 cos ( 2  *k/ 'V)  0 I 1 cos (2ak /2 )  p- I I 

DFT 2 cos (27rk/N)  0 1 1 cos (2ak./2) p- I 1 

CLT exp ( - J 2 0 k )  0 exp ( - j48r ) 1 exp ( J 2 H k  1 (-l)k (-1)kJ 

sin (27rk/i\') 

-1 sin (27iX-/AV) 

.2  cos ( * / 2 N )  .cos (a /2 ,V)  .sin (a/2:V) 

Fig. 7. The IIR filter structure for the IDCT. 

Fig. 8. The IIR filter structure for the IDST. 

To compute the ICLT, the 2 N  inputs are combined first into 
length of N ,  then the IDCT and IDST of the N-point vector 
are calculated individually. The ICLT is obtained by summing 
the result of the IDCT and that of IDST multiplied by j .  The 
architecture of the IDCLT is depicted in Fig. 9. 

V. THEORETICAL BASIS 

The basis functions of all the discrete sinusoidal transforms 
mentioned above corresponds to a set of orthogonal polyno- 
mials [ 151. One of the important characteristics of orthogonal 
polynomials is that any three consecutive polynomials P,, ( k )  
are related by the Fundamental Recurrence Formula [ 161 given 
by 

The discrete transforms discussed in the previous section 
satisfy a simpler version of the recurrence relation. More 

I D t T  f l l t e r m o d ~ l ~  

IDST f i l l e rmadula  

Fig. 9. The IIR filter structure for the IDCLT. 

precisely, the parameters c, and An are independent of 71 and 
the basis function P7&(k) is periodic in n and k of period N .  
In these cases. the Fiindumentul Recurrence Formulu can be 
rewritten as 

For different discrete sinusoidal transforms, the corresponding 
parameters k .  r ,  X in the Fundumental Recurrence Formula 
are stated in Table V. 

Lemma 1: For all discrete transforms whose basis functions 
satisfy the Fundamental Recurrence Formula (42), the z-  
transform of the basis functions { P , ( k ) }  can be expressed 
as a rational function with a second order denominator that 
is the characteristic equation of the Fundamental Recurrence 
Formula. 

Proof: Since any Pn(k )  depends only on the previous 
two terms, the first two polynomial terms, P - l ( k )  and P-z(k), 
uniquely specify the entire set of basis functions. 

Apply z transform on index 71 to both sides of (42), 

n=O 
N-1 

r N-1 1 
= ( k  - c) P-,(k) + 2-l Cz- '" , , (k)  - z-"PLv-l(lc) I n=O 

N - 1 

L n=O 
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(44) 

= ( k  - r . )z- lP(z ,  I C )  - Xz-2P(z ,  k )  
+ [ ( k  - C)P-l(k) - XP_2(IC)] - xZ-IP-l(k) 
- .-"[(IC - C)PL%TL1(k) - XP1v-2(IC)] 
+ xz-(-W+W,v-1 ( k )  

IC = 1, 2 ; . . , N -  1. (43) 

Factoring out P(z .  k ) ,  we obtain (see (44) at top of page) 
Because of the second order recurrence relation, the denomina- 
tors of the z-transform of the basis functions are second-order 
polynomials in z .  

The characteristic equation of the Fundamental Recurrence 
Formula (42) is obtained by solving the homogeneous so- 
lutions of the difference equation (42). The homogeneous 
equation is given by 

P ( z ,  k )  = ( I C  - c )P(z ,  ICjz-l - X P ( Z ,  (45) 

Combining both sides of the equation, we have 

P ( z ,  IC)z-"(x - ( I C  - c ) z  + 2 )  = 0. (46) 

Since P ( z ,  k )  does not equal to zero, we have that (A  - ( k  - 
c ) z  + z 2 )  equals to zero and hence the characteristics equation 
is (A  - ( I C  - c ) z  + z 2 ) ,  which is the denominator. 

The transfer function of the discrete transforms (DXT) is 
derived from ( I ) ,  that can be rewritten as 

N -  1 

X ( k ,  t )  = C ( k )  C.C(n + t)P,(IC), t = 0 ,  1, 2 , .  . . . (47) 
n=O 

Performing the z-transform on the index t on both sides of 
the above equation, we have 

N - 1  

Hay(.) = C(k)ZdL+l) Ez ,P , (k )  
1L=O 

= C(k)z-("-1)P(z-1, I C )  (48) 

which is the z-transform of the basis orthogonal polynomials 
with index z replaced by 2-l and multiplied by C ( k ) z - ( N - l ) .  
That is, the transfer function of the discrete transform can 
also be expressed as a rational function with a second order 
denominator 

H,(z) = C ( k )  
(AP,v_1(kj - P1v(IC)z-l - XP-l(k)z-N + RJ(IC)z-(N+l)) 

(A  - ( I C  - c)z-1 + 2 - 2 )  

(49) 

Here we illustrate another way to derive the transfer function 
of the discrete sinusoidal transforms. Substituting the coeffi- 
cients listed in Table V to (49), we obtain the transfer functions 
derived in Section 111.1. 

Lemma 2: To compute the discrete sinusoidal transforms 
time recursively, we have to factor out the updating component 
(I - z-") or (1 + z-") in the filter realization. There exists an 
updating component (1 + z-") or (1 - z-") in the nominator 
of the transfer function of the discrete sinusoidal transform, 
if and only if the boundary conditions of the basis function 
satisfy PO = kPlv and PP1 = f P ~ - l .  

Pro& If the updating vector can be realized by (1 + 
z-") or ( I  - z-"), then the nominator of (49) must contain 
the factor (1 + z-")  or (1 - z-"). That is, the nominator 
can be expressed as 

AP!\r-l(k) - P~\~(Ic)z-' - XP-l(ICjz-N + P~(Ic)z-("+') 
= (1 f .-*')(U, + b z - ' ) ,  (50) 

since it is a ( - N  - 1) degree polynomial. Expand the right 
side of the above equation, we have 

AP,V-l(k) - PN(k)z-1 - xP-l(k)z-" + Po(k)z-("+l) 
= a + 0 - 1  -l az-" 6 bz-"-l , (51) 

it follows that 

and 

This proves the necessary condition. If PO = fP ,v  and 
P-1 = kPLv-l ,  then the nominator in (49) becomes 

A P N - l ( k )  - P,v(IC)zFl - AP-l(IC)z-" + Po(k)z-("+l) 
= + w - l ( k )  =k Po(k)z-1 - xP-l(k)z-" 
+ P,(k)z-("+l) 
= (1 f z-")(XP,(k)z-l XP_l(k)) ,  (54) 

which means the nominator contains the factor (1 &z-").  U 
Lemma 3: All the transforms that satisfies Lemma 1 and 

Lemma 2 can be realized by an updating FIR filter with 
transfer function (1 - z-") or (1 + z - ~ ) ,  and an IIR filter with 
second order denominator and first order nominator whose 
coefficients are dependent on A, ( I C  - e ) ,  PO and P-1. 

Proofi If Lemma 1 and 2 are satisfied, the transfer 
function can be expressed as 
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Therefore, the transform can be realized by the filter structure 
as shown in Fig. 2. The coefficients are 

(56) 
D1= ( k  - C) 

N1 XP,.-l N 2  = -P,v ’ 

0 2  = X 

Lemma 3 implies that if a transform can be computed time- 
recursively, a maximum of four multipliers required to realize 
the transform. Fig. 2 shows a good example of this case. 

Lemma 4: For the discrete sinusoidal transforms, the roots 
of the characteristic equation belong to the set of the root of 

Proof Since the discrete sinusoidal transform is FIR in 
natural, the roots of the denominators should be cancelled 
by the zeros of the nominator. In general, the roots of the 
denominator are complex conjugate poles because of ( k  - 
c ) ~  - 4X < 0. Therefore, the poles should be cancelled by the 
zeros of the (1 :k z-“), and the roots of the denominator 

(1 * z-”). 

( I C  -- c)  f J ( I C  - C)2 - 4X 
zl. 22 =I ~ 

2X 

I exp+ 
expn’- 

71 = 0, I ,  2 , .  . . , N - I., z N  = 1 
n = 0 ,  1, 2 , . . . . N  - 1., zM = -1. j n ( 2 n f l )  

(57) 

All the discrete sinusoidal transforms list in Table IV satisfies 
Lemmas I through 4. Therefore, these transforms can be 
computed time recursively and can be realized by a FIR filter 
with transfer function (1 f z-”) and an IIR filter with second 
order polynomials. These facts support the results obtained in 
Section 111 and IV. 

Lemma 5: If two transforms can be dually generated, then 
they share the same autoregressive model in their IIR filter 
structure. 

Proof: The basis polynomial p ,  and qTL of the dual 
generated transform pairs satisfy the following equations 

.( 

pn = D z c ~ n - 1  + Dzsqn-1 
yn  = Dzcqn-1 - Dz9Pn-1. ( 5 8 )  

Since p ,  and y n  are dually generated and from (59), they have 
the same characteristic equation. That is 

I - A2-l = 0. (59) 

where 

Dzc Dzs 
A =  [-Dzs D J  

As shown in Lemma 1 ,  the roots of the denominators are the 
roots of the characteristics equation. Since p ,  and yn have the 
same characteristic equation, they have the same denominator. 
Hence, both transform have identical poles, and as a result, the 
same autoregressive filter form. 

Example 1: The DCT and DST are dual generated trans- 
form pairs and share the same second order denominator. 

As shown in [ I ] ,  the DCT and DST satisfy 

7r(2(n + 1) + 1 ) k  7r(2n + 1)k 
‘Os [ 21Q 

n(2n + 1)k 
- sin [$] sin [ 

2N ] 

7rpn + l ) k  + sin [ $1 cos [ 2N ] ’ 
it follows that 

n k  
D,, = cos [ F ]  

~~ 

7rk D,,~ = -sin [ 
From (59), the poles are the root of the equation 1 - 
2cos[nk/N]z-’ + z-’ = 0, which is the same as the 
characteristic equation derived from the Lemma 1. This is 
why the DCT, DST and DFT, DHT share the same second 
order autoregressive structure. From Lemma 3, it is noted 
that a maximum of 4N multipliers is required to realize the 
transform. Due to the fact that X = 1 and PLv = +P,V-~ for 
the case of the DCT and DST, we can see that 2N multipliers 
for the DCT and DST is minimum for this realization. Based 
on Lemma 5 ,  we can combine the denominator together for 
the dual generation of DCT and DST. This gives an average 
1.5N multipliers to realize the DCT or DST. We believe that 
this is the best we can achieve for real-time computation. 

VI. UNIFIED TIME-RECURSIVE BASED 
MULTI-DIMENSIONAL DISCRETE SINUSOIDAL TRANSFORMS 

Multi-dimensional transforms provide powerful tools for 
multi-dimensional signal processing. Some of the important 
applications are in the areas of signal reconstruction, speech 
processing, spectrum analysis, tomography, image processing, 
and computer vision. Specifically, in multispectral imaging, 
interframe video imaging, and computer tomography, we 
have to work with three or (higher) dimensional data. I t  
is difficult to generalize the existing fast 1-D algorithms to 
3-D or higher dimensional transforms. However, our time- 
recursive concept can be easily extended to multi-dimensional 
transforms resulting in architectures that are simple, modular, 
and hence suitable for VLSI implementation. Since the 3-D 
DCT is very useful in processing interframe video imaging 
data, we first describe the filter architecture for the 3-D 
DCT, and then generalize it to any multi-dimensional discrete 
sinusoidal transform. 

VI. 1. Time-Recursive Structures for 3-0 DCT 

The basic concept of time-recursive computation is to 
compute the new transform at time ( t  + 1) based on the 
transform at time t. The operations can be divided into two 
parts, one consists of computing the difference of the input data 
between time t and ( t  + 1) and the other consists of performing 
the recursive updating. Looking at the basic architecture of 
computing I-D DXT as shown in Fig. 2,  the basic structure 
consists of three components: shift registers, adders, and IIR 
arrays. The shift register is used to store the input data from 
~ ( t )  to x ( t  + N ) ;  adders are used to compute the difference 
between data ~ ( t )  and z(t  + N )  and the IIR arrays are used 
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to perform the computation recursively. We will show that the 
d-D DXT can be computed by using d blocks consisting of 
shift registers, adders, and filter arrays, each performing the 
time-recursive computation along a dimension. 

For 1-D time-recursive DXT, the input data window is 
moved one sample at a time. That is, the input data vector 
at time t is given by the vector [ ~ ( t ) , . . - , ~ ( t  + N - l)] ,  
and at time ( t  + 1) the input data consists of the vector 
[z(t + 1). . . . , .x(t + N ) ] .  The time-recursive relation for the 
2-D transforms is based on updating the input data row by 
row [17]. A 2-D DCT for HDTV application based on the 
lattice structure as considered in [17]. Assuming a 3-D input 
data is updated frame by frame in the third axis 713 the range 
of the input data ~(711, T L Z ,  n3) is (71.1 = 0. . . . ,  N - 1; 71.2 = 
0. .  . . , N - 1; r13 = 0, 1, 2 , .  . .}, we call the input data frame 
:r(nl. 712, t )  for a specific index t as the tth frame input data. 
The 3-D DCT of the tth frame input data is defined as 

XC3(k1, k2, k.3, t )  
= c(kl)C(kZ)C(k3) 

A-1 N-lt+lV-l 
. 4721, 712. n3) 

n l = O n L = O  ns=t 

By introducing another 3-D transform xczs(ki ,  k2, k 3 ,  t )  
defined as 

By following the time-recursive approach, we can show that 
the 2-D DCT of each frame can be computed first and store it 
in a shift register array of size ( N  + 1) x N 2 .  The difference 
between the 2-D DCT of the tth frame and (t  + N)th frame 
is then computed. The 3-D DCT can be generated by feeding 
the 2-D DCT of the updating vector into a lattice module as 
shown in Fig. 10. The size of the shift register in the lattice 
module is N 2  because for a specific kg there are N 2  values 
( k l  = O , . . . ,  N - 1; IC2 = O , . . . ,  N - 1) to be updated. A 
similar updating relation exists for the 2-D DCT and the 1-D 
DCT [17]. The number of shift registers in the lattice module 
for 2-D and 1-D DCT are N and 1 respectively. Therefore, 
the time-recursive 3-D DCT lattice structure consists of three 
lattice arrays which are used to produce the 1-D, 2-D and 3-D 

Reset 

X 

Reset 

Fig. 10. The lattice module. 

N data - k=even 

k=odd 
Filter Array Block i, i=0,1,2,3 ,..., N-1. 

Fig. 11. The structure for Lattice Array Blocks. 

DCT individually. The 3-D DCT can be implemented using 
either the lattice or the IIR filter structures as described below. 

VI.1.a. The 3-0 DCT Architecture 
The architecture of the frame-recursive lattice 3-D DCT 

consists of three Array Blocks (ABO, AB 1, and AB2) whose 
configurations are depicted in Fig. 11. The Array Block AB1 
consists of a shift register array, two adders, and a lattice or IIR 
array; the shift register array is of size ( N +  1) x N 2  and is used 
to store the intermediate values. The function of the adders is 
to update the effect of the new data and eliminate the effect of 
the previous data. The structure of the lattice array is shown 
in Fig. 10. The difference between different lattice arrays is 
only in the number of delays in the feedback loop. There are 
N z  delay elements in the ith lattice array. For the case of the 
direct form implementation, the lattice array is replaced by the 
IIR array whose configuration, same as what in Fig. 2 except 
the delay in the feedback path is z-”‘ instead of z-’. 

The operation of this architecture can be viewed as follows. 
Input data is scanned row by row and frame by frame and sent 
to the first module AB0 which generates the 1-D DCT of each 
row on every input frame. When the last datum of each row is 
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k=even to even module to even module 

X 

-1 

to odd module to odd module 

Fig. 12. The architecture for block 3-D DCT 

available, the 1-D DCT of each input row vector is obtained. 
These N 1-D DCT transformed data are loaded in parallel 
into the second module AB1 every N clock cycles. The AB1 
module is used to generate the 2-D DCT of each data frame. 
After N 2  clock cycles, when the last datum of each frame 
arrives, the 2-D DCT of each frame is available. These values 
are loaded in parallel into the AB2 module to generate the 3-D 
DCT recursively. The difference between the 2-D DCT of the 
parity of the ( t  + N)th and tth frame is used as the input to 
the AB2 module. There are N 2  shift registers in the feedback 
loop of AB2 to store the transformed data of each frame. It 
takes N 2  cycles to finish updating a new 3-D block and this 
is the period required to obtain a new 2-D DCT data block. It 
is easy to verify lhat the system is fully-pipelined. 

In applications where only block multi-dimensional trans- 
forms are required, the above architecture can be simplified. 
Intermediate values stored in the shift registers are not nec- 
essary. The purpose of the shift registers required is to store 
the current data obtained from filter arrays, hence its size is 
reduced to Ni for Lattice Array Block %. Since the updating 
is unnecessary, the two adders can be eliminated. The lattice 
block 3-D DCT structure is shown in Fig. 12. 

V1.2. Time-Recursive Structures for Multi-Dimensional DXT 

In this section. we generalize the ti me-recursive concept 
to any multi-dimensional DXT and derive the fully-pipelined 
block structures. Denote by [x( f id ,  t ) ]  the input data file at 
time t ,  and by [:~(6~l, t + l)] the data file at time ( t  + 1) 
which is obtained by shifting [ x ( f i d :  t ) ]  in a direction of one 
of the axes of n'd by one unit. For simplicity, let us assume 
that the data file is shifted in the direction of the last axis, 
' n d .  The d-dimensional DXT of the input data file [x(G,l, t ) ]  
is defined as 

A-1N-1 t+N-1 

x,yd(&, t )  = ...  x(sd, t)PZd(zd)' (64) 
nl=ona=O n d = t  

I I- 

Here, we assume that the transform kernel Pi;, ( i d )  is sepa- 
rable.2 . That is 

p Z d  (&) = pn, (Al)pn,  ( k 2 )  ' . . pncf ( k d ) .  (65) 

From the analys$ in Section VI.l, we see that the updated 
transfoyn x , - d ( k d ,  t + 1) is related to the previous transform 
X X d  ( ICd,  t )  by the following equation [ 171: 

X2yd(zd, t + 1) 

= { x x d ( z d !  t )  + x , d - L  

. [id--l, ~ ( t  + N ,  t ) ] ~ ~ ( k ) } r ~ ( k ) ~  (66) 

where A(t + N ,  t )  is the difference between the data files at 
time t and ( t  + N ) ,  and D,(k) and r , (k )  are coefficients that 
depend only on the transform kernel and index IC. The above 
equation indicates that the d-dimensional DXT can be up_dated 
recursively using the previous transformed data X-yd  ( kd ,  t )  
and the (d - 1)-D DXT of A(t + N ,  t ) .  This relation can 
be used recursively such that any d-D DXT can be generated 
from the 1-D DXT using d filter array blocks. 

As described in the previous section, there are two kinds of 
time-recursive DXT architectures, the moving frame d-D DXT 
and the block d-D DXT. The structure of the basic building 
block in the moving-frame DXT is shown in Fig. 11, where 
the filter array can be either the lattice or the filter form. The 
function of each block is to shift the ( d  - 1)-dimensional data 
into a data bank, then distribute the difference of the first and 
last frame of the data bank to the second stage DXT array. 
The dimension of the shift register array is ( N  + 1) x N" and 
the delay in filter array i, is N ' .  The time required to obtain 
the (d  - 1)-dimensional DXT is N d - l ,  which is also the time 
required to obtain the N d  elements of the transformed data. 

In the case of block DXT, the size of the shift register 
array can be reduced and adders can be eliminated because 

2This is true for all the discrete sinusoidal transforms considered in this 
paper. 
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k=even 

N 

Shift 
Register 
Array 
“ 

k=odd 

Filter Array BLock i, i=0,1,2,3 ,... 3 - 1 .  

Fig. 13. The basic structure of the block DXT. 

intermediate transformed data do not have to be stored. The 
size of the shift register array is NZ. The structure of the LAB 
is shown in Fig. 13. The lattice array i is reset every N i f l  
cycles. 

V1.2.a. Area-Time Complexity Analysis 

Our architecture for computing the d-dimensional transform 
DXT over N d  points consists of d blocks, each block is com- 
posed of a shift register array followed by a one-dimensional 
lattice or IIR structure made up of N DXT modules. The ith 
shift register array is of size (N+1) xNib, where 0 5 i 5 d-1 
and b is the number of bits used to represent each number. 
The output is generated in a shift register array of size Ndb.  
Therefore the total number of multipliers and adders used is 
O ( d N )  = O ( N ) ,  and the total amount of memory is O(Ndb) .  
The next lemma states that the area of any chip that computes 
the d-dimensional DFT transform must be R(Ndb) ,  and hence 
our design asymptotically optimal in its use of area. The same 
holds true for the remaining transforms. We are using the 
standard VLSI model as introduced by Thompson [30]. 

Lemma 6: Any VLSI system that computes the d- 
dimensional DFT on N d  points requires area A = Q(Ndb) ,  
where b is the number of bits required to represent each input 
number. 

The proof of the lemma can be derived from a result in 
[29] in a straightforward way. Hence our design uses the least 
amount of memory asymptotically. The speed of our VLSI 
design cannot be improved asymptotically since it processes 
the input in real time. Hence our design is asymptotically 
optimal in both speed and area. 

VII. CONCLUSION 

In this paper, we proposed optimal time-recursive unified 
architectures for computing the DCT, DST, DHT, DIT, LOT, 
and CLT using only half as many multipliers as the unified 
lattice structure described in [l] .  In the lattice structure, two 
transforms are dually generated simultaneously, while this 
optimal architecture has the flexibility of generating either 
one transform or both together. The basic configuration of 

the optimal unified architectures has a second order autore- 
gressive model. It is optimal in the sense that the number 
of the multipliers used is minimum and both speed and 
area are asymptotically optimal. We also gave a theoretical 
justification of the unified time-recursive architecture using the 
Fundamental Recurrence Formula. We show that to generate 
the DCT and DST, only 2N - 2 multipliers are necessary, 
while in the case of dual generation of the DCT and DST, 
only 1.5N multipliers are required for each transform on 
average. Finally, we generalized the time-recursive concept 
to multi-dimensional transforms. The resulting architecture is 
fully-pipelined, modular, and regular. It requires only d 1-D 
arrays for computing a d-D DXT. 
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