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Novel Parallel Architectures for 
Short-Time Fourier Transform 

K. J. Ray Liu 

Abstroct4ovel parallel architectures for short-time Fourier transform 
based on adaptive time-recursive processing is proposed for efEcient VLSI 
implementation. Only N-1 multipliers and N+1 adders are required. 
The proposed approach can be easily extended to multi-dimensional 
cases without the transpose operation. Various properties of the proposed 
architectures are also presented. 

I. INTRODUCTION 

The short-time Fourier transform (STIT) has played a signifi- 
cant role in digital signal processing, including speech, music, and 
radar/sonar applications [I], [5] ,  [6]. Due to the demand of high 
throughput of these applications, efficient parallel architectures that 
enable real-time implementation of the STFI' are quite essential [3], 
141. 

The expression for the discrete-time STFT is given by 
00 

 no, w )  = r (n)w(no  - n)e-Jwn (1) 
n=-m 

where w(n)  is an analysis window. At each time instant, the STFT 
is a discrete-time Fourier transform or discrete Fourier transform 
(DFT). Many DFT computing algorithms and architectures have been 
proposed. However, the direct use of the DFI' without considering 
the special sliding window effect of STFT is not an efficient approach. 
There are two major approaches for STFT. One is based on the filter 
bank approach and another is the FFT-based approach [l]. 

The filter bank approach can be described by the following two 
convolution sum equations, 

or 

x ( n ,  uo) = e--3won[z(n) * u ~ ( n ) e - ~ ~ ~ ~ ]  (3) 

where * denotes the convolution sum. Equations (2) and (3) can be 
implemented as DF Formatted Filterbanks [I]. It can be seen that 
each channel of the filter bank requires a convolution sum that needs 
O(N2)  operations. If the throughput rate is N, then N multipliers 
are required. Accordingly, the total number of multipliers required 
for the STFI' system is on the order of O ( N 2 ) .  

The FFT-based approach is well known [2]. The major dis- 
advantage is the need of global interconnections in the butterfly 
computations. This is a disaster in VLSI implementation, especially 
when hundreds (or even thousands) of channels are required in the 
applications. Besides, the total number of multipliers is on the order 
of O(N1ogN).  
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Recent advancement of VLSMJLSI technologies has made it prac- 
tical to build low-cost and high-density application-specific integrated 
circuits (ASIC) to meet the demands of speed and performance of 
signal processing. In this paper, novel parallel architectures for STFT 
are proposed for efficient VLSI implementation. 

11. THE NOVEL ARCHITECTURES 

As mentioned before, the STFT is mainly used in real-time 
applications where new data keep arriving so that the on-line com- 
putation is definitely essential. Note that the high complexity in the 
existing approaches results from the direct computation of each newly 
windowed data. Old information is not adequatedly used to reduce the 
computational complexity. To reduce the complexity, the concept of 
adaptive processing can be exploited, especially in the applications 
where new data keep arriving. 

For simplicity, let us assume a rectangular window first. Suppose 
ng+N-1 

X ( n o ,  U )  = z ( n ) e - P ( " - - n o )  

n = n g  

has been obtained, the relation between X ( n 0  + 1, w)  and X(no ,  w )  
can be shown to be 

n o f N  

X ( n o  + 1, U )  = Z(n)e-Jw(n-no-l) 

n=ng+l 

= eJ4[X(no ,  w) - ~(71.0) 
+ x(no + N)e-lWN]. (4) 

If the discrete Fourier transform (DFT) is considered, i.e., W k  = 
2 ~ k / N ,  k = 0, 1 , .  . . , N - 1, then 

X(no  + 1, k )  = e3(2"k/N)[X(no,  k )  +  no + N )  - x(no))I, 
k = 0, l , . . . ,  N - 1. (5) 

The architecture for the above equation is given in Fig. 1. The total 
number of multipliers required for the STFT system is N - 1 (since 
the first channel does not need one) and the number of adders is N+1. 
The throughput rate is 1 to obtain X ( n o  + 1, k )  from X(n0 ,  k)  and 
the throughput rate of obtaining nonoverlapped windowed STFT is 
N. A downsampling can be added as shown in Fig. 2 if it is used as 
a DFT-based analysis filter bank which found lots of application is 
subband coding and transform-domain filtering [31, [4]. 

For the two-dimensional (2-D) STFT, suppose the STFT of 
X ( m o ,  no, k,  1 )  is available and the window is moving along 
the m direction as shown in Fig. 3, the update relation between 
X(m0 + 1, no, k, I )  and X ( m o ,  no, k, I) can be obtained as 

X ( m o  + 1,120, k ,  I )  = [X(mo ,  no, k ,  I )  + 
N-1 

( ~ ( m o  + N ,  n)  
n=D 

- x(mo, n))e-J(2"n'/N) le 3(2"k/N) . (6) 

Here a 1-D STFT (with rectangular window) of the error term 
Ax = z(mo + N ,  n)  - z(m0, n)  needs to be computed first. The 
architecture is given in Fig. 4 which contains a 1-D architecture given 
in Fig. 1 to perform the 1-D STFT and an update loop to obtain the 
new 2-D transform. There are N linear arrays of size N to store the 
columns(Z= 0, l , . . . , N - l ) o f X ( m o ,  no, k,  Z).Thecomputation 
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Fig. 1. New architecture for short-time Fourier transform. 
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Fig. 2. Application to multirate filter bank and windowing obtained from the shift-add-add network 
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Fig. 3. Moving window of 2-D short-time Fourier transform 
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Fig. 4. Parallel architecture for 2-D short-time Fourier transform. 
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of each column spectrum is independent of each other. An interesting 
property of this approach is that no transpose operation is required. 
The total number of multipliers is 2 N -  1 and that of adders is 2N+1. 
The throughput rate is 2Ar for the 2-D STFT. 

In general, for a M-D STFT, the update equation is given by 

where F M - I  denotes an ( M  - 1)-D STFT. The computational 
structure from (A4 - 1)-D to M - D  STFT is the same as in Fig. 4. 

Equations (2), (3), and (4) involve the multiplication of a complex 
exponential factor. If real operations are to be used, the implemen- 
tations using (2) and (3) are obtained in Fig. 6(a) and Fig. 6(b), 
respectively [ 11. Obviously, each complex channel becomes two real 
channels. However, in our approach as shown in Fig. 1 using (4), a 
CORDIC processor [lo] is enough to handle the case. To see this, 
denote the input to the multiplier in Fig. 1 as n ,  + j n L  and the output 
as b ,  + j b , ,  we have 

c o s y  -sin= [:I] = [sin% cos$ ] [%:I 

Fig. 5. Implementation of (2) and (3) using real operations. 

This is a simple planer rotation which can be easily carried out by 
using CORDIC processor without explicitly performing the multipli- 
cation. 

This approach can also be viewed as a STFT IIR filtering. The filter, 
as shown in Fig. 1, consists of two parts: a FIR section and an IIR 
section. It is because of the IIR part that simplifies the computational 
structure of the STFT which is basically a FIR system in nature. The 
transfer function of the IIR section is given by 

e J ( 2 k IN 1 
k = 0, 1.. ..,AV - 1. (9) 

The poles are on the unit circle for all channels. This may cause 
the instability. Fortunately, the poles are at cos @ k  + j sin @ k ,  k = 
0, 1,. . . , N - 1. Hence, by quantizing the coefficients cos Bk and 
sin@k, we directively quantize the real and imaginary parts of the 
poles so that they can be always guaranteed to locate inside the 
unit circle. Such phenomenon is similar to that of the normal-form 
structure of an IIR filter [9]. 

A disadvantage of the proposed architecture is that not all the 
well-known windows are applicable. Equation (5) serves as the 
most fundamental formula for this approach with the assumption of 
rectangular window. If it is not a rectangular window, then there is not 
as simple as update equation as (5). For windows such as the Hanning 
window given by W H ( ~ )  = $[l - cos(27rn/IV)], the relation of the 

H k ( Z )  = 1 - @ ( 2 a k / N ) _ - - l  ’ 

spectrum of the windowed and nonwindowed (rectangular window) 
data is X H ( ~ )  = - $ X ( k  - 1) + i X ( k )  - $ X ( k  + 1). Only 
shift-and-add operation is needed to modified from X ( k )  to XH(IC) 
without explicitly performing the multiplication, where X (IC) is the 
rectangular-windowed spectrum that can be easily obtained. There are 
many such kinds of windows that provide excellent performance with 
only shift-and-add operation required to he modified from X ( k )  [8]. 
A shift-and-add network can be added as shown in Fig. 2 to obtain the 
windowed STFT. The shift-and add network is locally interconnected 
and regular so that it is not a problem for VLSI implementation. 

111. CONCLUSIONS 

The proposed architectures are very efficient in term of hardware 
complexity and throughput rate. In particular, since the hardware 
complexity is on the order of N and 2N for 1-D and 2-D STIT, 
respectively, the architectures are very suited for VLSI implementa- 
tion of STFT with large number of channels. The approach is also 
applicable to multirate signal processing, especially the DFT-based 
filter bank. 
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Fig. 1. A IO-bit maximal-length LFSR pseudo-random sequence generator. 
Huang Qiuting and George S. Moschytz 

Absh.act-Tbo adaptive FIR filter configurations are proposed for 
implementing the LMS algorithm with no along delay elements or 
multipliers. The first uses a linear feedback shift register (LFSR) to 
generate pseudorandom binary sequences for applications where white 
noise has been traditionally used. The binary signals are delayed by a shift 
register and multiplied by odoff switching so that the resulting structure 
is free of analog delay lines and multipliers. For applications where inputs 
are colored, the second configuration uses a E-A modulator as front-end 
for converting the adaptive filter’s input into a binary sequence. Such a 
filter tends to adapt itself into a low-pass characteristic to remove the 
high frequency noise due to the modulator. 

I. INTRODUCTION 
Adaptive signal processing has many applications such as system 

modeling, identification, adaptive control, equalization, and interfer- 
ence canceling [ l ,  21. The ease with which digital circuits can be 
programmed has made the implementation of adaptive algorithms an 
essentially digital subject. In recent years, however, there is growing 
interest in implementing various adaptive algorithms in analog form, 
in order to take advantage of the lower power consumption, smaller 
silicon area, and higher speed of monolithic analog circuits [3]-[7]. 
The least mean-square (LMS) algorithm is the most commonly used 
because it is easiest to implement in hardware. Analog configurations 
have been proposed for both recursive (IIR) and nonrecursive (FIR) 
LMS algorithms [3], [4]. Like their digital counterparts, the IIR 
implementation of the LMS algorithm is efficient but its stability 
is difficult to control. By contrast, an LMS FIR filter is intrinsically 
stable because its error surface is quadratic, and convergence therefore 
guaranteed. The latter is therefore more popular despite its higher 
cost of implementation. 

When an analog LMS adaptive FIR filter takes on essentially 
the same configuration as its digital counterpart [3], it requires an 
analog delay line, multipliers, integrators, and a summer circuit. In 
terms of cost, at least one analog delay element consisting of an 
op-amp and a few capacitors, one integrator, and two multipliers 
are required per filter tap-coefficient. The corresponding silicon area 
restricts the number of taps that can be integrated on a single chip 
to a very small number, which limits its range of useful applications. 
The analog components also introduce various imperfections such as 
noise, power-supply coupled interference, clock feedthrough, offset, 
and component mismatch. While the component mismatch can be cor- 
rected by the adaptive mechanism of the filter itself, the interferences, 
which accumulate from all the taps, contribute to the excessive mean- 
squared error (MSE) of the filter. Analog adaptive FIR filters therefore 
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still have some way to go before their implementation becomes 
feasible in monolithic form. It is toward this goal, however, that 
this paper explores new structures that are more feasible as adaptive 
filters in analog integrated circuit form. 

11. MULTIPLIERLESS LMS CONFIGURATION 
FOR SYSTEM MODELING AND IDENTIFICATION 

In order to stimulate an unknown “plant” with an impulse (i.e., sine 
waves at all frequencies), white noise is typically used as the signal 
source for applications such as system modeling and identification. 
In digital adaptive filters elaborate pseudorandom number (PN) 
generators are used to generate such inputs [l], [2 ] .  However, storing 
and propagating white noise in multibit digital or analog form and 
multiplying it using multibit digital or analog multipliers is highly 
inefficient compared to binary PN sequences which can be generated 
by very simple digital circuits. The latter have autocorrelation and 
spectral characteristics closely approximating those of true white 
noise [8], [9]. Fig 1 shows such a binary PN sequence generator based 
on the maximal length linear feedback shift register (LFSR). Binary 
PN sequences are sometimes found in adaptive filter applications such 
as in communications systems, but their use seems more dictated by 
communications requirements such as minimizing multipath effects, 
etc., than a clear realization that binary PN signals can be used in 
any adaptive filter where white noise is required at the input. 

A switched-capacitor (SC) based multiplierless adaptive filter con- 
figuration with a binary delay line is shown Fig. 2. The binary input 
signal X to the adaptive filter may be a pseudorandom sequence 
specially generated by an LFSR or it may happen to be binary code 
words in certain applications, such as adaptive path identification in 
spread-spectrum communications [ 11 or binary signals representing 
the sign of the input to an echo cancellor [6].  In Fig. 2 the 
binary sequence is shifted down a binary delay line whose outputs 
d l , .  . . , d,, . . . , d ,  control whether the plus or minus error signal e 
is added to the corresponding weight-integrators. They also control 
whether plus or minus integrator output tuzr representing the ith 
weight (tap-coefficient), is added to the SC summer circuit. The 
integrator symbol in Fig. 2 designates the SC circuit shown in Fig. 
3, which contains additional features compared to a standard SC 
integrator for offset and clock feedthrough compensation [lo]. The 
filter coefficients are represented in the form of analog voltage tuw1 
at the op-amp output in Fig. 3. The overall algorithm implemented 
by Fig. 2 is 

e ( k )  = ~ ( k )  - wol(k - I )  - Ctuz(k - l )d t (k ) ,  
t = l  

d,(k) = f l  (1) 

where Y is the “plant” output shown in Fig. 2. The weight update 
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