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A Simple and Unified Proof of 
Dyadic Shift Invariance and the 

Extension to Cyclic Shift Invariance 
K. J. Ray Liu. 

. ibstruct- In this paper, a simple and unified proof of the 
dg idic shift invariance and the extension to cyclic shift invariance 
an' presented. First, the concept of the dyadic shift invariance 
(DSI) and cyclic shift invariant (CSI) functions is proposed. Basic 
priqerties of the DSI and CSI functions are considered. Then, 
wt can show that the Walsh-Hadamard transform (WHT) and 
discrete Fourier transform @lT) are, in fact, special cases of the 
DS I and CSI functions, respectively. Many properties of the WHT 
and DFT can then be obtained easily from DSI and CSI points 
of view. The proposed unified approach is simple and rigorous. 
WI! will show that the properties of the WHT and DFT are the 
coiisequence of the basic principles of the DSI and CSI functions. 

I. INTRODUCTION 
HERE are many signal processing applications where 
the use of effective transformation such as the 

Mi ilsh-Hadamard transform (WHT) and discrete Fourier 
tr'insform (DFT) is essential [ 11-[5]. Basically, there are three 
di Terent kinds of orderings for the WHT, specifically, the 
W ilsh ordering, the Hadamard ordering, the Dyadic/Paley 
orlering [l], [2], and the Cal-Sal ordering [7]. It is well 
hi own that the power spectrum of the WHT is invariant to 
a lyadic shift of the data sequence. Unfortunately, up to now, 
thxe is still no unified proof of the invariance for all of the 
o r  lerings. The only proof available is of show-by-example 
t l  ,e illustration [l], [2], [4], [5] which, though demonstrates 
tb ; invariant property, does not provide a rigorous treatment 
of the dyadic shift invariance. As an example, let { T }  be an 
12'-periodic sequence and { T , }  be the sequence subjects to a 
J \  adic shift of size k ,  and { X }  be the WHT of {x} and { X , }  
bc. the WHT of { z k } .  respectively. When N = 8 and k = 1, 
I t  can be shown [l, p. 1171 that 

{ X I }  = diag(1,  -1,l. -1,1,-1,1.-1}. { X }  

U iere diag (1, -1,1, -1,1, -1.1, -1) is a diagonal matrix 
U th diagonal elements 1, - 1, 1, - 1, 1, - 1, 1 , - 1. Therefore 
th: power spectrum remains the same after the dyadic shift. 
' r lk  property is well known and well accepted. However, a 
SI nple proof for general N and k is still not available. In the 
cl issroom teaching, students always have questions such as: 
hc w do we know if N = 128 will work? Do we have to show 
t h a t  all different k will work? 
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To answer these questions, here, we not only propose a 
simple but rigorous treatment of the subject, but also provide 
a more general way to look into various properties of the WHT. 
We first propose the concept of dyadic decomposition and 
present some properties of the dyadic shift invariant function. 
Then, based on these, we will show that all the WHT's are 
dyadic shift invariant functions and present unified treatments 
for various known properties of the WHT. This unified ap- 
proach provides a deep insight into various properties of the 
WHT. The results can be easily extended to other transform 
functions such as DFT which, on the other hand, is a cyclic 
shift invariant function. This extension is also considered in 
this paper. We will see that all the well-known properties of' 
the WHT and DFT are the consequence of the basic principles 
of the special functions. In fact, the WHT is a special case of 
the dyadic shift invariant function and the DFT is a special 
case of a cyclic shift invariant function. 

The dyadic shift invariance is presented in Section I1 fol- 
lowed by the cyclic shift invariance in Section 111. 

11. DYADIC SHIFT INVARIANCE 

A function h(m,n) is said to be dyadic decomposable if 
it satisfies 

where CB is the modulo 2 addition. A transformation is said 
to be dyadic shift invariant (DSI) if the transform function is 
dyadic decomposible with unity norm. That is 

1. 
2. 
where * is the complex conjugate operation. Let { ~ ( m ) )  

be a real-valued N-periodic sequence and { X ( n ) }  be the DSll 
transformation of { z (m)} .  We have 

Ilh(m,n)112 = h(m,n ) .  h*(m,n) = 1 
h(m $ I C ,  n )  = h(m, n )  . h ( k ,  n )  

. N - 1  
1 

X ( n )  = - z(m)h(m,n). 
m=O 

N 

Theorem 1: The power spectrum of a DSI transform func- 
tion is dyadic shift invariant. 

Let { X k ( n ) }  be the transformation of { ~ ( m  61 
k ) } ,  where {x( m @ k ) }  is the sequence obtained by subjecting 
{ ~ ( m ) }  to a dyadic shift of size k .  Since the modulo 2 addition 

Proof: 
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TABLE I 
TTRUTH TRUTH FOR ( m ,  ;E k , ) n ,  AND msns  + k s n s  

As ll(-l)(m+)/12 = 1, one concludes that WHT function is a 
DSI function. 7 

In general, the WHT is defined as 

( 7) X ( n )  = - z(m)(-l)(nl>r(n)) 

where r ( n )  is a function which depends on the ordering of 

(m.r(n))  = msrs (?L)  

1 
N 

N-l  

m=O 0 0 
1 
0 WHT. Let 

A- - 1 

S = O  
TABLE- I1 

TRUTH TABLEFOR ( - l ) " n s  I n ,  AND (-1)" '~+"s where r , ( 7 ~ ) ,  s = 0,1, . . . , N - 1 is the binary representatim 
of ~ ( n )  as in (3). For the Hadamard ordering, r,(n) = 7 1 , ~ .  

For the Walsh ordering, 
n N - s  + nN-s-l for s # 0 

2 1 1 nN-1 for s = 0. c r,(n,) = 
1 1  0 

IS the same operation as the modulo 2 subtraction, one obtains 

~ N-1 

and the power spectrum of { X k ( n ) }  is 

The power spectrum is dyadic shift invariant. U 
Let m, n be any two real-valued parameters which have the 

binary representation 

nz = mN-12N-1 + mN-22"-' + . . . + mlP + m,02O 
n = nN-12N-1 + n ~ N - 2 2 " ~ ~  + ' '  ' + n22l  + no2'. (3) 

The bit-valued inner product (m, n,) is defined as 
N-1 

(m,, n,) = mlsns. (4) 
s=o 

Lemma 1: The WHT function (-l)(m>n) is DSI. 
N - l  

proof: Since (-l)(m@k>n) = ( - l ) c s = o  ( m s @ k . 5 ) n 5 ,  and 
from Table I, the Boolean function (m, @ k s ) n s  is equivalent 
to the function msns @ ksns .  We have 

For the DyadicPaley ordering, r,(n) = n,\~-1-,. We have 
the following theorem. 

Theorem 2: The power spectrum of all orderings of Ihe 
WHT are dyadic shift invariant. 

Proof: By Lemma 1, we know the function ( -l)(m>r( ')) 

is DSI. From Theorem 1, the power spectrum of WHT is 

Lemma 2: Let { X }  be the WHT of { : E }  and { X I , }  be ihe 
transform of (2;) subjected to a dyadic shift of size I C ,  whcre 
{ x }  is an N-periodic sequence. Then the relationship betwc,en 
X I ,  and X is 

dyadic shift invariant. 0 

X k ( n )  = X ( n ) .  ( - l ) ( k , n ) .  (8) 

Proof: Since X k ( n )  = 1 /N z ( m  e k ) ( - l ) ( m > n ) ,  
by Lemma 1, we have 

1 "l 
X I , ( n )  = - z ( ~ , ) ( - l ) ( & ~ ~ ) ( - l ) ( I , . ~ )  

7n=o 
N 

= X ( n ) .  ( -1)("n)o 

With Lemma 2, we can interpret that for the WHT, the dyadic 
shift in the time domain results in a "phase shift" of either 0 
or T in the frequency domain. 

The dyadic cross-correlation function of two real-valued N 
-periodic sequences { x ( m ) }  and {y(m)} is defined as 

(9) 
1 N-l 

.(m) = - z(h)y(m CB h). 
h=O 

N 

Let the DSI transform of z ( m )  be Z ( n )  and the DSI transform 
of sequences z (m)  and y ( m )  be X(n, )  and E-(n), respectiv'dy. 
We have 
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uhele x* (DSl (z*) )* .  If it is a real DSI function such as 
WH", then Z ( n )  = X(n).Y(n).  Obvious, the power spectrum 

Proof: Let {z(m)} be a real-valued N-periodic se- 
quence and {x(n)> be transformation of {z(m)}. w e  have 

is djadic shift invariant in the way that N - 1  

X ( n )  = 1 z(m)h(m, (18) 
m=O llZ(n>1I2 = IIX(n)1I2 . llY(41I2. (12) 

A 2-D transformation which is said to be DSI if the 

1. Ilh(m1,m2,n1,n2)Il2 = 1 

k t  {Xk(n)} be the transformation of { z ( m  + k)}, where 
{z(m + k)} is the sequence obtained by subjecting {z(m)} 
to a cyclic shift of size k. One obtain 

tram form function satisfies 

2 .  h(m1 CB k,m2 EB 4721,n2) = h(m11m2,n1,n2) . x, < 

h ( k  l , n l , ~ t 2 ) .  
Analogous to the 1-D case, it can be shown that the 

pow er spectrum of a two-dimensional (2-D) DSI transform 
function is dyadic shift invariant. The 2-D WHT function is 
( -  1 )(m1 . n l ) + ( m 2 , n z ) .  Since 

. i v - - 1  
1 

Xk(n) = .(m + k)h(m,n)  
m=O 
N-1 

cas:. For instance, denote Xk,i(n1, n2) as the transformation 
of z(m1 @ k,m2 @ 1 ) )  which is the sequence obtained by 
subletting {z(ml,m2)} to a dyadic shift of size IC in ml  
dirt ction and of size 1 in m2 direction. It can be easily obtained 
tha defined as 

= l l ~ ( ~ ) 1 1 2  . 11q-1~~ .)112 E 1lx(~)112.0 

The cyclic cross-correlation (or convolution) function Of hrJ0 
real-valued N-periodic sequences {z(m)} and { ~ ( m ) }  is 

Xb,J(nl,  n2) = X(n1, n2)(-1)("'~"+("2(1). (14) 

From the analogy in the 1-D case, the 2-D cross-correlation 
function can be defined as 

Lx the 2-D DSI transform of z , z ,  and y be Z , X ,  and Y, 
rerpectively. With the same derivation as before, we can show 
thzit 

. N-1 

(20) 
1 

z(m) = - z(h)y(m + h). 
h=O 

N 

Let the CSI transform of z (m)  be Z ( n )  and the CSI transform 
of sequences z (m)  and y(m) be X ( n )  and Y(n) ,  respectively. 
We have 

N-I N-1 

m=O l = O  
1. 

N-1 N-1  

N-1 
1 N-l 

= x*(n). Y ( n )  

Z(n1,nz) = XC(n1,n2) .Y(n1,n2). (16) Z ( n )  = 2 z ( l )h*( l ,  n )  y(m + I)h(m + 1. n)  
l=O m=O N 

Af,ain, if the 2-D DSI transform function is real-valued such 
as 2-D WHT, then Z(n1,nz) = X ( n 1 , n z )  . Y ( n l , n z ) .  

- 
(22) 

where x* (CSI(x*))*. It can be easily shown that the 
discrete Fourier transform (DFT) function exp (-jZxkn/N) 
is a CSI function. Therefore, the power spectrum of DFT ia 
cyclic shift invariant. Many well-known properties of the DFT 
can then be easily obtained by the same derivations as in 

111. CYCLIC SHIFT INVARIANCE 
The above results can be extended to cyclic shift invariance. 

A N-periodic function g(m, n) is cyclic decomposable if it 
sa :isfies 

A transformation is said to be cyclc shift invariant (CSI) if the 
t i  insform function is cyclic decomposable with unity norm. 
T iat is 

1) 119(m7n)Il2 = 1 
2) 
Theorem 3: The power spectrum of a CSI transform func- 

IV. CONCLUSION 

Simple and unified proofs of basic properties of the dyadic 
shift invariance and the cyclic shift invariance are presented 
in this paper. As we have shown, the WHT and DFT are 
the special cases of the DSI and CSI functions, respectively. 
Therefore, all the properties of the DSI and CSI functions are 

d m  + k ,  n)  = g(m, .) . dk, n). 
t r  In is cyclic shift invariant. 
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I ireserved in the WHT and DFT, respectively. Many properties 
;.re then easily derived by using this approach. In conclusion, 
the properties of the WHT and DFT are the consequence of 
the basic principles of the DSI and CSI functions. 
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Analysis of Robot Dynamics and Compensation 
Using Classical and Computed Torque Techniques! 

J. A. Tenreiro Machado, J. L. Martins de Carvalho, and Alexandra M. S. F. Galhano 

Abstract-A classical analysis of the dynamics of robot ma- 
nipulators is presented. It is shown that these systems have 
configuration-dependent properties and can be open-loop unsta- 
ble. Due to this fact, present day linear controllers are inefficient. 
On the other hand, nonlinear hardware and software compensa- 
tion methods also are shown to have some limitations. Controllers 
based on the direct design algorithm and the computed torque 
method have superior performances. These algorithms have non- 
linear loops yet, our paper shows that a linear analysis is still 
feasible. Therefore, classical design tools can be adopted in order 
to develop practical implementations. 

VI. INTRODUCTION 
HE dynamics of robot manipulators is highly nonlinear T which makes difficult their efficient control. Classical 

control methods are well known; however, they are inadequate 
in the presence of strong nonlinearities. On the other hand, 
nonlinear controllers [ 11-[4] produce better results but the 
nonlinear analysis and design is not as systematic and clear 
as the linear case. Some work has been done on relating 
linear methods to manipulator dynamics [5]-[ 141. However, 
the complexity of the problem has not allowed yet methods 
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which permit general conclusions to be drawn about stability, 
imperfect modeling effects, etc. This paper intends to link 
classical linear methods with robot modern nonlinear control 
schemes. Having this idea in mind we organize the paper 
as follows. In Section I1 we analyze the dynamics of a 
two degrees of freedom (d.0.f.) manipulator from a classical 
(Laplace-based) point of view. Using this approach we derive 
a set of transfer functions (TF’s) that characterize the dynaniics 
of robot manipulators. The TF’s reveal that manipulating sys- 
tems are intrinsically unstable. Therefore, in order to render the 
system stable, we need appropriate compensation techniq ies. 
In this line of thought, in Section 111, we analyze both hardvrare 
and software compensation methods. These compensations 
have limitations which make necessary the developmen1 of 
complementary control strategies. In Section IV we analyze, 
from a classical perspective, model-based nonlinear algorit ims 
that accomplish not only a dynamic compensation but alsc the 
control action. Finally, in Section V, conclusions are drawn. 

VII. DYNAMICS OF A N O  DEGREES 
OF FREEDOM MANIPULATOR 

The dynamic equations of the two d.0.f. manipulator (Fig. 
1) can be easily obtained from the Lagrangian [15], [16] 
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