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pendent of gap length over the range tested and were the best for 
gap lengths greater than 20%. 
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Fast Orthogonalization Algorithm and Parallel 
Architecture for AR Spectral Estimation Based 

on Forward-Backward Linear Prediction 

K. J. Ray Liu and S. F.  Hsieh 

Abstract-The truncated QR methods have been shown to be com- 
parable to the SVD-based methods for the sinusoidal frequency esti- 
mation based on the forward-backward linear prediction (FBLP) 
model. However, without exploiting the special structure of the FBLP 
matrix, the QR decomposition (QRD) of the FBLP matrix has the com- 
putational complexity on the order of 2(6m - n ) n 2 / 3  + O(n2)  for a 
2m x n FBLP matrix. Here we propose a fast algorithm to perform 
the QRD of the FBLP matrix by exploiting its special Toeplitz-Hankel 
form. The computational complexity is then reduced to 10n2 + 4mn + 
O ( n ) .  The fast algorithm can also be easily implemented onto a linear 
systolic array. The number of time steps required is further reduced 
to 2m + 5n - 4 by using the parallel implementation. 

I. INTRODUCTION 

High-resolution spectral estimation i s  an important subject In 

many applications of modem signal processing. The fundamental 
problem in applying various high-resolution spectral estimation al- 
gorithms is the computational complexity. In the pioneering paper 
of Tufts and Kumaresan [ l ] ,  a SVD-based method for solving the 
forward-backward linear prediction (FBLP) least squares (LS) 
problem was used to resolve the frequencies of closely spaced si- 
nusoids from a limited amount of data samples. By imposing an 
excessive order in the FBLP model and then truncating small sin- 
gular values to zero, this truncated SVD method yields a low sig- 
nal-to-noise ratio (SNR) threshold and greatly suppresses spurious 
frequencies. However, the massive computation required by SVD 
makes it unsuitable for real-time superresolution applications. 

Recently, the truncated QR methods [4] have been shown to be 
comparable to the SVD-based methods in various situations. It is 
very effective for the sinusoidal frequency estimation based on the 
FBLP model. However, without considering the special structure 
of the FBLP matrix, the QR decomposition (QRD) of  the FBLP 
matrix still has the computational complexity on the order of 0 ( n 3 ) .  
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Seeking fast algorithms for specially structured matrices has cap- 
tured lots of attention recently, especially the Toeplitz-structured 
matrices are used in many signal processing applications [ 2 ] ,  [ 3 ] ,  
[ 7 ] - [ l o ] .  However, exploiting the special structure of the FBLP 
matrix for fast algorithm implementation has not yet been consid- 
ered so far. Here we propose a fast algorithm to perform the QRD 
of the FBLP matrix. The computational cost of the truncated .QR 
methods can be further reduced from O(n3) to O(n2)  which makes 
it more attractive than the SVD-based methods. Without exploiting 
the special structure of the FBLP matrix, the straightforward QRD 
of the FBLP matrix has the computational complexity on the order 
of 2(6m - n ) n 2 / 3  + O(n2)  for a 2m X n FBLP matrix. The pro- 
posed fast algorithm reduces it to the order of 10n2 + 4mn + O ( n ) .  
We will also show that the proposed fast algorithm is amendable 
to parallel processing. A fully pipelined linear systolic array based 
on the multiphase operations is used to implement the fast algo- 
rithm parallelly. The required time steps is further reduced to 2m 
+ 5 n  - 4 .  

The idea of FBLP was originated by Burg 1.51 for the lattice pre- 
dictors. To improve the performance, Tufts and Kumaresan [ l ]  de- 
veloped a modified FBLP method which is very effective for esti- 
mating closely spaced frequencies. The FBLP method is to 
minimize the sum of the FBLP errors energy, 

N 

min C [Jef(i)l2 + l eb( i )12~ (1) 
i = M + I  

where e, and eb are the forward, and backward residuals, respec- 
tively. The FBLP method is to solve the LS problem [ 1 3 ] :  

I 
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min ) )AV - b J J 2  
w 

with 

and 

u(M + 1) u(M) . . . 

T = [  u ( N  ' - 1) u ( N  - 2 )  . . . 

u ( N )  u(N - 1) . . .  

where J is an exchange matrix. The matrix of the form as given in 
( 3 )  is called the Toeplitz-Hankel matrix. In fact, the augmented 
matrix of the FBLP problem is of the Toeplitz-Hankel form with 
a special property, i .e. ,  H = TJ. This special property can be used 
for developing a fast algorithm that will be considered in the fol- 
lowing sections. 

11. EXPLOITING THE TOEPLITZ-HANKEL STRUCTURE 

In using the truncated QR method for the high-resolution AR 
spectral estimation, the key computational issue is to solve the 
FBLP LS problem based on the QR decomposition (QRD). Without 

considering the special structure, a conventional QRD requires 
= 4 ( N  - M ) M '  + O ( M 2 )  multiplications to obtain the upper tri- 
angular matrix R.  This is on the order of O ( N M 2 )  since usually N 
>> M .  Thus, a reasonable approach is to find a fast algorithm for 
the FBLP LS problem by exploiting its special Toeplitz-Hankel 
structure. This problem has not been considered so far, though the 
LS problem with Toeplitz structure has been studied extensively 
121, (31. [61-t101. 

The Toeplitz part of the Toeplitz-Hankel matrix can be parti- 
tioned as 

where 

L u ( N -  1 )  u ( N -  2 )  . . . u ( N  1 M ) ]  

x T  = [U(M), . . . , u ( 2 ) .  u ( l ) ]  

Y T  = [ u ( M  + 2 ) ,  . * . , u ( N  - l ) ,  u ( N ) ]  

[ ~ ( l ) ,  u ( 2 ) ,  * * . , u ( N  - M - l ) ]  U T  = 

U T  = [ u ( N ) ,  u ( N  - l ) ,  . . . , u ( N  - M + l ) ]  

and the Hankel part of the Toeplitz-Hankel matrix can be parti- 
tioned as 

H X B T  u(M+ 1 )  

[ I ( N  - M )  vBT] = [ H  y 
H = T J =  

where 

H = TJ 
vBr = [ u ( N  - M + l ) ,  . . . , u ( N  - I) ,  u ( N ) ]  vTJ 

u ( N  - M + 1 )  u(N - M )  

(4) 

and 

XBT = [ u ( l ) ,  u ( 2 ) ,  . . . , u ( M ) ]  = x T J .  

Here B denotes the backward arrangement of a vector. 

can be partitioned as follows: 
Now, from the above partitions, the Toeplitz-Hankel matrix K 

( 7 )  

and 

+ u'(N - M )  + u'(M + 1 )  + y'y u'H + u ( N  - M ) v B T  + u(M + l ) x T  + y r T  

HTu + v B u ( N  - M )  + xu(M + 1 )  + T3 HTH + FrT + vBvBT + x x T  

__ ._ 
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Also, the matrix K can be partitioned as R:R? = R: R~ + vB vB1 

R:R~ = R:R? - U V ~  

(9) R ~ R ,  = R ~ R ,  - r,rT (19) 

I where RI ,  Rh, and R, , i = 1, 2 ,  3, 4 are all M X M upper triangular 
matrices, and all of the vectors involved are M-dimensional. In 

and with this partition, we have 

(10) 
xTxBT + H T H  + F7F + V V ~  xBu(M + 1) + Hry  + F7u + VU(N - M )  

u(M + 1 ) ~ ~ ’  + y7H + uTT + u ( N  - M)v‘ u’(M + 1) + y7y  + U’U + u L ( N  - M )  
K ~ K  = 

Let the QRD of the matrix K be K = QR, where R E 

IS an upper triangular matrix and it can also be par- @ M + l ) X ( M + I )  ’ 

titioned as follows: 

where Rh E aMxM is the principal bottom submatrix of R,  RI E 

(RM is the principal top submatrix of R, and 

rT = tr1.2, r1.5 . * . 7 T I . M +  I 1  

rT = [TI .M+ I ,  T?.M+ I .  . . . 3 TM.M+ I1 

order to start the above recursions, the first row of R, (or R )  must 
be available. In general, there is no shortcut for obtaining this row 
and it can be done by a sequence of Givens rotations on the matrix 
K to zero out the first column of K ,  except its leading element on 
the diagonal. By denoting # as  a “don’t care” element or vector, 
the fast algorithm is summarized in Table I. 

As we can see, for the initialization (obtaining the first row of 
R ) ,  the computational cost is = 4 ( N  - M ) M  multiplications (since 
only half of the rotation needed to be done). Following this, the 
recursions in the main iterations are then started. As there are five 
rotation-like upidowndatings, the computational cost is 

Note that both Rb and RI are upper triangular matrices. Since the 
matrix Q is orthogonal, we have 5 x ( 4 M + 4 ( M -  1 ) +  . . .  + 4 .  I )  

K ~ K  = R ~ R  (12) 

and 

(for multiplication). Therefore, the total computational complexity 
is = 10M’ + 4 ( N  - M )  M (for multiplication) for a 2 ( N  - M )  X 
M Toeplitz-Hankel matrix. As mentioned before, without consid- 
ering the special structure, by using the conventional QRD, the 
computational complexity is of = 4 N M 2  + O(M2).  Obviously, the 
proposed fast algorithm has an improvement of an order of mag- 
nitude. In general, for the QRD of a 2m X n Toeplitz-Hankel ma- 
trix, the fast algorithm needs Ion2 + 4mn + O ( n )  multiplications, 
while a conventional implementation needs 2(6m - n ) n 2 / 3  + 
O(n’), where m >> n. 

It the least squares weight vector is of interested, a backward 
substitution can then be used for computing the weight vector. For 
the truncated QR method, a truncation of the noise subspace is nec- 
essary before computing the weight vector [4]. 

(13) 

d.1 r1.1.T 

d R ,  rTr2 + r L + I . M + I  

Define 

- A  
K = [-+-I (I4) 

then we have 

K T K  H T H  + t T 7 .  (15) 

From the lower right submatrices of (8) and (13), we obtain 

RLRb + r l  r r  = KTrt + x x T  + vB v”. 

Also, from the upper left submatrices of ( IO) and (13), we have 

(16) 

RTR, = K T K  + + x B x B T .  (17) 

Substituting (17) to (16), we obtain the relation between Rb and RI 
as given by 

RIRb = RYR, + x x T  - x B r B T  + vBvBT - vuT - r , r : .  (18) 

111. THE FAST ALGORITHM 

It is clear how to perform the updating and downdating of the 
Cholesky factors [2]. As we can see, in [18], there are two rank-I 
updatings and three rank-1 downdatings. Let us split (18) into a 
sequence of five upldowndating equations given by 

R:R, = R:R, + XXI 

R ~ R ,  = R ~ R ,  - x B x B 1  

IV. PAKALLFL IMPLEMENTATION 

The fast algorithm obtained in the previous section not only re- 
duces the computational complexity, but is also amenable for par- 
allel implementation. From the fact that only the first row of the 
upper triangular matrix R has to be obtained first, a linear array of 
M + 1 processing cells, as shown in Fig. I ,  can be used to rotate 
the matrix K such that the first column can be zeroed out and when 
the initialization phase is finished, the first row of the matrix R is 
kept in the linear array. Fig. 2 shows the initialization to obtain the 
first row of R. The operations of the processing cells are given in 
Table 11. The data matrix is arranged in a skewed manner for the 
systolic array implementation. The idea is similar to the triangular 
array for the QRD proposed by Gentleman and Kung [ I  11. The 
difference is that their scheme is a general one without considering 
any special structure of the data matrix. Accordingly, a full trian- 
gular array is needed. 
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TABLE I 
SUMMARY OF THE FAST ALGORITHM 

(Initialization) 
X7'(ll = [U(M), u(M - l ) ,  . . . , u ( l ) ]  
xBr"" = [ u ( l ) ,  u(2), . . . , u(M)] 
U""' = [ u ( N ) ,  u ( N  - I ) ,  . . ., u(N - M + I)] 
u ~ ~ " ' '  = [ u ( N  - M + I ) ,  u(N - M + 2), . . . , u ( N ) ]  

kli = kt 
F o r i = I t o 2 ( N - M ) -  1 ,  

End For; 
[rl.l. rrl = rr;. # I 7  = k L , N - M i )  
r;'"' = rT, 
(Main Iterations) 
Fori = 1 t o M  - 1, 

(Phase 1 )  

[ O,;:l,l] = I 

(Phase 2)  

(Phase 3) 

(Phase 4) 

(Phase 5) 

U:'+ I = r f r  excluding the last one, 

End For. 

X X 
I 

Y 

Fig. 1. The linear systolic array and its processing cells 

K 

f 
Fig. 2 .  The initialization. 

Due to the consideration of the special Toeplitz-Hankel struc- 
ture, once the first row of the matrix R is available, the subsequent 
rows of R can be generated one by one by the main iterations given 
in the fast algorithm. T o  start the main iterations, r',' is needed. 
Fortunately, it is the first M elements of the first row of R that are 
stored in the first M processing cells. The main iterations are now 
started with inputs x r"", xRT"", x""", uT"", and r; '"' ,  and the outputs 

, and r:"',  respectively, as illustrated in 
Fig. 3. The outputs have one less dimension than their inputs do. 
The vector rp' can now be obtained on the linear array. 

As given in the main iterations, there are five different phases. 
The operations of the processing cells for different phases are given 
in Table 11. Based on the multiphase concept proposed in [12], the 
outputs are fedback to the input ports for another iteration of dif- 
ferent phases. Note that the outputs are obtained from PE2 to PEM. 
The feedback is, however, directed to the processors from PE1 to  
PE(M - I ) .  Since r r  take the first M - 1 elements of rir, it oc- 
cupies the first M - 1 processing cells. The second iteration is 
started once the fedback data are available. It is fully pipelined 
without any intermediate data arrangement and interrupt. The it- 
erations are then continued until all the rows of R are obtained. The 
overall data arrangement is given in Fig. 4. Since only a left shift 
is performed in the feedback loop, it is obvious that a linear array 
as shown in Fig. 5 can be used without the need of feedback. 

The number of time steps required for this linear array imple- 
mentation is now being further reduced to 2 ( N  - M )  + (5  ( M  - 
1) + 1) = 2N + 3M - 4 (or 2m + Sn - 4 for a 2m X n Toeplitz- 
Hankel matrix) which is linearly proportional to either M or N (m 
or n ) .  

If the LS weight vector is of interest, another phase for the back- 
ward substitution can be started easily since all the data are now 
available in the linear array. The details of the operations of the 
backward substitution using a linear array can be found in [ I  11. 

are To' x B T ' t t  Xb'T'll , 

V .  CONCLUSIONS 

In this correspondence, we propose a fast algorithm for the QRD 
of a Toeplitz-Hankel matrix. The computational complexity for the 
QRD of a 2m X n Toeplitz-Hankel matrix is 10n2 + 4mn + O ( n )  
multiplications, which has an order of magnitude improvement over 
conventional algorithms. This algorithm can also be implemented 
onto a fully pipelined multiphase linear systolic array. The number 
of time steps required is further reduced to 2m + 5 - 4 for the 
parallel implementation. An interesting point for the QRD of the 
specially structured matrices such as Toeplitz and Toeplitz-Hankel 
forms is that there is no need to store all the generated rows of the 
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TABLE I1 
THE OPERATlOlS  OF THF PROCESSING CELLS IN DIFFERFNT PHASES 

Initialization Phases 1 and 3 Phases 2,  4 ,  and 5 

PE 1 d = m  d = . F s  d = ./,= 
c' = r / d .  s = . r / d  
r = (I r = d  r = d  

c = r / d ,  s = . r /d  c = d / r ,  s = x / r  

PEi. 1 C- i 5 M + 1 r = ( 'r + sx r = cr + sx 
v = - s r  + ex J = - s r  + ex 

r = ( r  - sx)/c 
v = -.sr + cx 

1 

c 
Fig. 3 .  The first iteration with five different phases 

-M- 
Fig. 4. The overall data arrangement 



1458 

I 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993 

Fig. 5. The linear array for parallel implementations without feedback 

upper triangular matrix R .  As long as the first row of R is known, 
all the subsequent row can be generated recursively, and this is also 
the basic principle of the proposed fast algorithm. 
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The Relationship Between Instantaneous Frequency 
and Time-Frequency Representations 

Brian C.  Lovell, Robert C .  Williamson, and Boualem Boashash 

Abstract-We give the relationship between instantaneous frequency 
estimation via the derivative of the phase of the analytic signal and the 
first moment of general time-frequency representations from Cohen’s 
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class in both the continuous and discrete-time domains. Many re- 
searchers have applied the standard linear definition of first moment 
to discrete-time time-frequency representations although this leads to 
biased instantaneous frequency estimators with high variance; we show 
that periodic (circular) definitions of moments must be used to account 
for the periodization of the frequency variable due to sampling. 

I. INTRODUCTION 

Several authors [3], [9] have investigated the possibility of using 
the first moments of time-frequency representations with respect to 
the frequency variable as estimators of instantaneous frequency. 
This correspondence derives the relationships between instanta- 
neous frequency and the first moments of the general class of time- 
frequency representations for both continuous and discrete-time 
signals. 

11. CONTINUOUS-TIME ESTIMATION 

Consider a frequency modulated sinusoidal signal of the form 
x ( t )  = a, ( t )  cos 4( t ) ,  where a, represents the envelope function 
and 4 is the cumulative phase of the signal. We  define the instan- 
taneous frequency of this signal by 

1 X ( ( t )  = 
2a dt 

If x is sufficiently narrow band, a good estimate of the cumulative 
phase reduced modulo 27r may be obtained from the phase of the 
analytic signal defined as follows: 

Definition 1 :  Analytic Signal: The analytic signal z associated 
with the real signal x is defined by z = A [x], where A [x] = x + 
j H ( x ]  is the operator which forms the analytic signal and H [ ]  is 
the Hilbert transform defined by 

We use the derivative of the phase of the analytic signal to define 
the following instantaneous frequency estimator. 

Definition 2 :  Analytic Derivative Estimator: Let z = A [ x ] ,  
where x is a real signal. Then the instantaneous frequency of x at 
time t is estimated by 

where (( )),= denotes reduction modulo 27r and ((dldt)),, denotes 
the appropriate differentiation of a quantity which is reduced mod- 
ulo 21r as  shown above. 

The spectrogram (or magnitude-squared short-time Fourier 
transform) and time-frequency distributions such as the Wigner- 
Ville, Bom-Jordan-Cohen, Margenau-Hill-Rihaczek, and Choi- 
Williams exponential distributions can all be examined within the 
framework of Cohen’s general class of time-frequency represen- 
tations [ 2 ] .  

Definition 3: Cohen ’s Class of Time-Frequency Representations 
for Analytic Signals: Each member of this class of bilinear rep- 

- 


