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Multiphase Systolic Algorithms for Spectral
Decomposition
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Abstract—In this paper, we propose two multiphase systolic
algorithms to solve the spectral decomposition problem based
on the QR algorithm. The spectral decomposition is one of the
most computationally intensive modern signal processing op-
erations. While the QR algorithm is well known to be an
effective method to solve the eigenvalue problem, there is still
no single systolic array architecture that can compute the uni-
tary 0 matrix readily and perform the QR algorithm efficiently.
Previous methods using the QR algorithm had communication
problems among different architectures. In this paper, two ar-
rays, a triangular and a rectangular, are presented to imple-
ment the multiphase algorithms. Details on these multiphase
operations of the QR algorithm as well as architectural conse-
quences and performance evaluation are discussed in the pa-
per. Efficient fault-tolerant schemes for these multiphase op-
erations are also considered.

[. INTRODUCTION

OMPUTING the spectral decomposition of a matrix
is an important issue in many modern signal process-
ing and system applications. The feasibility of real-time
processing for sophisticated modern signal processing
systems depends crucially on efficient implementation of
parallel processing of the algorithms and associated ar-
chitectures needed to perform these operations [4], [21].
While many variations exist in the literature for solving
these matrix problems, all these iterative methods are
based either on the Jacobi-like method or the QR algo-
rithm [10], [40], [43]. While there are some fundamental
differences between these two approaches, both algo-
rithms have good numerical stability and convergence rate
properties and thus are desirable for possible implemen-
tation. Since present VLSI technology is capable of build-
ing a multiprocessor system on a chip, many researchers
have proposed different parallel processing architectures
to solve eigenvalue and singular value decomposition
(SVD) problems.
For any complex-valued m X n matrix A, the classical
spectral decomposition [41] of the n X n Hermetian ma-
trix A¥ A, is given by

n
A4 = ,21 Noolh = vavt (1)
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where V = [vy, * - - , p,] is an n X n unitary matrix, A
= diag [A;, * ** , N\,], and H is the complex conjugate
transpose operator. The A/ s are the eigenvalues satisfying
A = A, -+ - = N, = 0 and the v/ s are the eigenvectors
satisfying A” A4v; = \;v;. The decomposition of 44 fol-
lows from the SVD [10] of 4 given by

A = UsvH 03}

where U = [uy, -+ , u,] is an m X n matrix with or-
thogonal column vectors, S = diag [sy, - * - , 5,], and V
is an n X n unitary matrix. The s/ s are the singular values
satisfying sy = s, = - - - = 5, = 0 and are the positive
square roots of \/s such that A = S In this paper, we
shall use spectral decomposition in the broad sense of not
only including the decompositions of (1) and (2), but also
including the eigenvalue decomposition of an arbitrary
complex-valued n X n matrix 4 given by

AX = AX 3)

where X is an n X n matrix of eigenvectors and A = diag
[N, « ¢, A,] is the matrix of eigenvalues of A.

Luk [24], Brent and Luk [3], and Gao and Thomas [7]
have effectively used the Jacobi-like method to solve these
problems for either a multiprocessor system or systolic
array. The basic problem concerns the diagonalization of
a2 X 2 matrix by the rotation matrices J(#) and K(¢) in

Jw)T[W 1 K@) =[d‘ 0} @)
y z 0 4,

where w, x, y, and z are elements in two corresponding
rows and columns of A. A two-stage procedure is then
used to find 6§ and ¢ [24]. To find the SVD of a square
matrix A, an appropriate sequence of 2 X 2 matrices is
computed by using the basic Jacobi transformation in

T;: A < J[AK; 'S)

where J;; and K;; are rotations in the (i, j) plane chosen to
annihilate the (i, j) and (j, i) elements of A, respectively
[24]. While the Jacobi-like method, as considered in [24],
is currently known as one of the most effective parallel
SVD algorithm for full dense matrices, the computations
required to obtain the rotational matrices needed in this
approach to obtain the singular vectors are not simple
(either through broadcast in the array or by slowing down
the operations) [24]. Moreno and Lang [29] also consid-
ered some alternatives to the algorithms in [3].
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On the other hand, other researchers have used the QR
algorithm to solve the eigenvalue problems. Heller and
Ipsen [13], [17] performed the QR iteration for banded
matrix based on an orthogonal systolic network, and
Schreiber [35] combined their network with Gentleman
and Kung’s QR array to compute the OR algorithm. These
methods required the computation of the unitary matrix
Q. However, problems exist in the concurrent computa-
tion of Q and the pipeline operation of the QR iteration
[17]. In [28], Moldovan et al. studied the mapping of a
large QR algorithm onto a fixed size array. Torralba and
Navarro [42] further purposed a size-independent linear
array for QR iteration and Hessenberg reduction. While
this approach can provide an efficient computation of one
iteration of the QR iteration, it is not obvious how to pipe-
line the iteration.

For some system applications, such as matrix rank de-
termination and system identification [20], the efficient
computation of singular values is sufficient, while in other
applications such as antenna beamformation [27], [38],
spectral estimation [19], [34], direct finding [11], [30],
etc., the eigenvectors are crucially needed. This makes
the practical implementation of the systolic arrays dis-
cussed above difficult for many applications since they
either cannot compute the eigenvector or cannot obtain
the eigenvector without broadcast. For example, for the
MUSIC algorithm [12], once we determine the signal
subspace and noise subspace from the eigenvectors, the
sample spectrum is then determined by

1

5@ = A o X X5

where Xy is the matrix of eigenvectors which generate the
noise subspace and

s(@) = [1, 7, -+ e D]

with K being the dimension of the matrix Xy. A system
which consists of several systolic modules to compute the
MUSIC algorithm has been proposed in [33]. However,
communication problems among the modules and the dif-
ficulty of matching the pipeline rates and timings among
different modules may pose difficulties for practical im-
plementation.

Presently, there is no known simple efficient systolic
array approach for the generation of eigenvectors. The
main reason is that there is no single architecture that is
capable of handling all the steps required in the algorithm
such that we can pipeline the successive iteration readily.
The communication cost among different architectures is
high and the interface problem for an efficient data flow
is demanding. In this paper, we propose two multiphase
systolic algorithms to solve the spectral decomposition
problem based on the QR algorithm. By multiphase op-
erations we mean that the processing cells can perform
different arithmetic operations in different phase of the
computations. Two systolic arrays, one triangular and the
other rectangular, are designed based on the multiphase
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concept. A key feature in our method for the successful
application of the QR algorithm is that the Q matrix of the
OR decomposition can be computed explicitly by multi-
phase operations. With the proper feedback of this @ ma-
trix, the QR algorithm can be computed and pipelined ef-
fectively in a single systolic array. From the accumulation
of those Q matrices in another array, eigenvectors can be
computed without needing global communication inside
the array.

In Section II, some preliminary matrix operations use-
ful for the multiphase operations are discussed. In Section
IIT, we review the QR algorithm and show the evaluation
of the eigenvector from cumulative multiplications of the
Q matrices. Then two multiphase systolic arrays for the
OR algorithm and the Hessenberg reduction are presented
in Section IV. Their performances, numerical stabilities,
and convergence rates are studied in Section V. Finally,
some efficient fault-tolerant schemes that can be incor-
porated with the arrays are discussed in Section VI. A
brief conclusion is given in Section VII.

II. SysToLiIC ARRAY MATRIX PROCESSING

In this section, we consider some preliminary matrix
and associated systolic array operations needed in the
multiphase systolic algorithms for spectral decomposi-
tions.

A. QR Decomposition

A nondegenerate m X n rectangular matrix A can be
factored into two matrices Q and R such that A = QR,
where Q is an m X m unitary matrix and Ris anm X m
upper triangular matrix. The matrix Q can be computed
using sequences of Givens rotations. An elementary Giv-
ens transformation has the form of

[ c sjl[Ow-O roTis -Hrk}
=s cil0 -0 x5 x4 " X%

0---0 r e pl
={: T, +1 k} ©)

0--0 0 x4y - x;
where
Ti _ Xi
_\/r?+x?’ \/r,?+x,2.

Several different OR systolic arrays have been considered
by Gentleman and Kung [9], Heller and Ipsen [14], and
Luk [25]. In particular, the computation of the Q matrix
without broadcast is difficult for the array considered in
[24, p. 266]. On the other hand, {9] has shown that a
triangular systolic array can be used to obtain the upper
triangular matrix R based on sequences of Givens rota-
tions. This approach also leads to an efficient method for
performing recursive least 'squares computation [26], and
is also useful for finding the singular value of a matrix
[8]. This systolic array is shown in Fig. 1 and the opera-
tions of the cells are described in the first column (i.e.,
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TABLE 1
OPERATIONS OF THE PROCESSING CELLS FOR DIFFERENT PHASES
Phase
Cell Phase 1 Phase 2 Phase 3
Xin If x;, = O then
ce 18+ 0;
(c, 5) otherwise
> =N+ xl; § < Xin/r S < Xjnr
cer/ris < x,/r
rer
end
Xin
(c, 5) (c, 5)
Xou < CXin — SF
- T | Xout & Xin — ST Sout  Sin + Xl

re sx, +cr

Kout

Fig. 1. Triangular systolic array for QR decomposition.

phase 1) of Table I. While the rotation parameters are
propagated to the right, the Q matrix will not appear di-
rectly at the right as originally suggested by [36]. In order
to demonstrate this point, denote G;; as the Givens rota-
tion matrix of the (i, j) plane. Then matrix Q can be ob-
tained as

HHG

i=m-1 j=i+1

Q" = @]
where II is an ordered matrix produced defined by
I.,_,Ci=Cu_,C,_, -+ - C,, while II denotes a con-
ventional product, where the ordering of the terms are not
relevant. From Table 1I, we can see, fora n X n QR
triarray, the first rotation parameter coming out at the right
edge occurs at a time n + 1. After that, rotation param-
eters for different plane rotation come out successively. If
assuming that the operation of II discussed above can be
obtained immediately, then there are m — 1 operations of
IT to be processed when all of II are available and need to
be multiplied. This observation leads to the conclusion
that we cannot obtain the Q matrix by cumulatively mul-
tiplying the rotation parameters propagated to the right
edge unless an additional rectangular array is used to ac-

cumulate the rotation matrices. Thus, this is not an effi-
cient way to obtain the Q matrix.

B. Computation of R "x

In [6], Comon and Robert presented a rectangular sys-
tolic array for the computation of B~' A, where B and A
are square and rectangular matrices, respectively. The
computation takes two phases. First, the matrix B is fed
into the array and B™' is computed. In the second phase,
the matrix A4 is input to produce B™'A. For the special
case where B is an upper triangular matrix denoted by R,
instead of a full dense matrix, McWhirter and Shepherd
[27] used the property that a triangular array can compute
R "x in one phase with the matrix R prestored in the triar-
ray. Since this property is needed in phase 2 of our work,
and no full derivation was given in [27], we present a
bnef derivation of this result. Define ry = (R);and rj; =
(R™ ),,, where r; = 0 and rj; = 0 fori > j, then it can be
shown that

1/ry, i=j
r; = i1 ®
’ Z rkrkj/ i<j=n
Let [y, « - * ,yn]T = R "x, then
Zxr,,, j=1,,n )
In particular, y; can be expressed in terms of r; as
1 j=1 j—1
yj = ;_H . <x — ,21 X; Z_: r,kr,g>
1 =
= — - < Z Z X; rlkrk]> (10)
Tij =
From (9), y; is given’ by
1 =
v= (x,— -z ykrkj). an

m &)
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Fig. 2. Computation of R~ Tx using a triarray.

Thus, y; can be computed recursively according to the
above equation in the following algorithm:

Recursive algorithm for computing y = R Tx
yo=Urg-x

forj=2ton
begin
Zj = X

fork=1toj— 1
4 =%~ Yy
Y =zl
end.

The corresponding systolic array to implement the
above algorithm is the same as the one shown in Fig. 1.
The operations of the cells are shown in the second col-
umn of Table I. The first part of (11), i.e., the division,
is performed by the boundary cell while the second part
of (11) is accumulated by the internal cells. With R pre-
stored in the triarray, Fig. 2 shows the data flow of the
input x and the output y.

C. Triangular-Matrix Multiplication
The multiplication of a triangular matrix R and an rect-
angular full dense matrix B is given by
)y = RB); = 2 ruby (12)
where r; and by; are elements of matrices R and B. Using
the same array as in Fig. 1, with R prestored in the triarray
and the operations shown in the third column of Table I,

this multiplication can be easily obtained if B is input row
by row as in Fig. 3.

D. Matrix Multiplication

There are many ways to implement a full matrix-matrix
multiplication in a systolic array [21]. In Fig. 4, we show
a typical architecture that can be incorporated with the
multiphase operations to obtain eigenvectors. With input
matrices Q and A4 arranged as in Fig. 4, the matrix BT,
where B = AQ, will reside in the rectangular array when
the computation is completed. Details on this issue will
be discussed in later sections.
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Fig. 3. Multiplication of a triangular matrix R and a rectangular full dense
matrix B with C = RB using a triarray.

Fig. 4. Matrix-matrix multiplication in a rectangular array.

III. QR ALGORITHM

In this section we review briefly the basic operation of
the OR algorithm and show the evaluation of the eigen-
vectors from the cumulative multiplication of successive
Q matrices. For a complex-valued n X n matrix 4, it states
that there is a unitary transform U such that R = UAU "
is a upper triangular matrix with diagonal eigenvalues of
descending order. This follows from the QR algorithm
[10], [40], [43] where by setting A, = 4, we have A4; =
QR and Ay = R Qi = oF A0 k=1, -+, with
unitary O, and upper triangular R;. Furthermore, A, con-
verges to the upper triangular matrix with diagonal eigen-
value elements. However, it is not obvious how to com-
pute the eigenvectors from those Q, and R, we have
calculated. With a derivation similar to that used in [43],
here we shows how to obtain the eigenvector associated
with the largest eigenvalue from cumulative multiplica-
tions of Q,. From the above discussions, we have

Ay = OO, Q7A,0/0, - O (13)
Define
k
Qk'_-,_gl 0 =00, Ok
1
R =1 R=RR_, R (14)

i=k
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Then we have

QkAk+l = A]Qk- (15)
Thus the multiplications of J; R, can be expressed as
QkRk =00, QkRk‘Rk—l R
=0 1 AR = A0 R, = A = A (16)

Let the eigenvalues of 4 satisfy, |N\,| > | A, > - - -
> |\,|. Denote the matrix eigenvectors and eigenvalues
of A by X and A, respectively. Then 4 is given by

A = XA a7
Let the OR decomposition of X be X = QR and the LU
decomposition of X' be X' = LU, where L is a unit-
lower triangular matrix. Then
A = QRA'LU = QR(A'LA™H A*U (18)
where
ALA™* =T+ E, 19)
and
lij(>\i/)\j)k9 i>j
Eny = {0, otherwise. @0

Since we have lim, _, o, E; = 0 thus A*LA~* approaches the
identity matrix. Then (18) can be rewritten as

A* = ORAMU. 21

Since the term RA* U is an upper triangular matrix, com-
paring to (16) we can see that O, — Q when k is large.
That is, the Q matrix of the QR decomposition of A ap-
proaches that of the Q matrix of the QR decomposition of
the matrix of eigenvector X. Define

Oc=141, @ " . G

X =[x, %, ,xl 22)

and r; as the (i, j) element of R. From 0, — Q, we find
ri g " x; when k is large. Since x, is the eigenvector
associated with the largest eigenvalue, we conclude that
the first column of the matrix J; approaches the eigen-
vector with the largest eigenvalue of matrix A when k is
large. If the matrix A4 is symmetric, which is often the case
for signal processing applications, the similar transfor-
mation A; , | = QHAQk is also symmetric. Since Ay 4 ap-
proaches the upper triangular matrix by the QR algorithm,
Ay 1 approaches a diagonal matrix. That is

A, — A (23)

and
oA - X (24)
In this case, for large k, the columns of §; become pro-
portional to the columns of eigenvector in X.
If A is real, then A, will converge to a real block upper

triangular matrix with 1 X 1 and 2 X 2 main diagonal
blocks. The complex conjugate pairs of eigenvectors of

the 2 X 2 blocks can be solved easily using the quadratic
formula. When A is not a square matrix, the singular val-
ues and vectors are of interest. For a m X n matrix B,
where m > n, the SVD of B shows B = ULV, where U
is a m X n matrix of orthogonal columns, Visan X n
unitary matrix, and I is a n X n diagonal matrix with
diagonal singular values given in descending order. For
many situations where high condition numbers are not en-
countered, a simple symmetric n X n matrix C = B'B
can be formed and the matrix ¥ can be found by direct
use of the QR algorithm. Similarly, U can be found by
using D = BB,

IV. MULTIPHASE SYSTOLIC ALGORITHMS

In this section, we introduce the multiphase systolic al-
gorithms to compute the QR algorithm. Two arrays, tri-
angular and rectangular, can be used to compute the QR
algorithm with some advantages and disadvantages for
each. We shall show that our methods compute the Q ma-
trix explicitly without requiring any global communica-
tion within the array. Before we consider the multiphase
algorithms, two communication switches are first dis-
cussed. A circular multiplexer is a device which takes its
inputs and distributes them in different output positions as
shown in Fig. 5. We use a skewed row to represent the
circular multiplexor. A first in/first out (FIFO) buffer is a
buffer which takes its input to output in a first in first out
manner as shown in Fig. 6. Both devices are commonly
used in computer and microprocessor systems for data ar-
rangement [16]. The computation of a QR algorithm con-
sists of two basic steps. Initially, set A; = A, then

1) fork =1, 2, , compute A; = Oy Ry;
2) compute Ay .| = Rk Q. stop if converge, otherwise
go back to step 1.

A. Multiphase Triangular Systolic Array

The QR decomposition triarray proposed by Gentleman
and Kung [9] is used in our approach. The R matrix is
stored in the triarray after the computation. To compute
the matrix A, ., in step 2, the Q, matrix has to be com-
puted first. Let us call the computations in step 1 and 2
an iteration. Several iterations are required for 4; to con-
verge. For each iteration, we propose a three phase op-
eration on a triarray as follows:

e Phase 1: QR Decomposition for A;: Compute the OR
decomposition of the matrix 4; = QO Ry, with the upper
triangular matrix R, being stored in the triarray [9]. The
data in A, is input row by row and skewed in time as shown
in Fig. 7.

® Phase 2: Computing the Qk Marrix: From the OR
decomposition, we have R, TAT = Of. Let the ith column
of matrices A] and Q7 be denoted by a; and g;, respec-
tively. Then

Rk_T[ah Q, ", an] = [qla q qn] (25)

Section II showed that R; " x can be computed in the same
triarray that was used in phase 1. Since the ith column of
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N

T

Fig. 5. A circular multiplexor.

LT
1l

Output 4—| ]4— Input

Fig. 6. A first in/first out buffer.

Fig. 7. Phase 1: The QR decomposition.

Al is the ith row of A,, then with A, inputted row by row
and skewed in time as shown in Fig. 8, the operations of
the processing cells are given in the second column of
Table I. The triarray computes the Q; matrix of 4,. The
matrix @, is then output row by row as shown in Fig. 8.
In order to start phase 3, the matrix Q, has to be in the
form of Fig. 9. Observe that the output Q, of phase 2
shares the same snapshot order as the desired arrangement
of O, in phase 3 after a transpose operation. A circular
multiplexer is used to distribute each column output of Q;
into row input as indicated in Fig. 8.

® Phase 3: Computing R,Q,: With the operations of
the processing cell as shown in the third column of Table
I and the @, obtained in phase 2, Fig. 9 shows the com-
putation of A; . ; = R, QO in the triarray. Then the matrix
Ay 4+ comes out column by column from the right side of
the triarray. Again, we observe that A4, , ; shares the same
snapshot order as the desired arrangement of A; in phase
1 after a transpose operation. If not convergent, a new
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G
a3 Ay Ay /S
> Q3 &y A& )
Ay A A S

Fig. 9. Phase 3: Computing the matrix product RQ.

iteration is repeated by feeding back A, . ; into the triarray
after using a circular multiplexer as shown in Fig. 9. Then
phase 1 operation begins as in Fig. 7.

An attractive property of this multiphase operation is
that the feedback requirements of the matrices in different
phases are identical. Thus, only a circular multiplexer is
needed for each row outside the array. Observe that each
column of the matrices input in all of the phases needs n
time steps to process and the next phase can be started at
time n + 1. We find once the result is output at the right-
hand side of the triarray, after passing through the circular
multiplexer, it can be piped into the array for the next
phase computation without suffering any delay. If we as-
sume the multiplexer is ideal such that the delay through
it can be ignored, it takes 3n + (2n — 1) = 5n — 1 system
clocks for one iteration. The (2n — 1) term represents the
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initial time to feed the data into the array. If the number
of iterations required for convergence is S, then the total
number of system clocks needed is 3Sn + (2n — 1). Thus,
the converge rate of this algorithm is of the order of O((3S
+ 2)n). After the convergence of the A, matrix, those
values on the boundary cell are the eigenvalues of the A4
matrix.

B. Multiphase Rectangular Systolic Array

The above method requires the use of the R~” operation
in the computations. From a numerical stability point of
view, we may want to consider an alternative that uses a
square matrix for cumulative multiplication of the rotation
parameters. Fig. 10 shows a square matrix which is an
extended version of the Gentleman-Kung’s triangular ar-
ray with two delay elements (represented by black dots in
Fig. 10) in the vertical communication links of the lower
triangular part of the array. The processors in the lower
triangular part are identical to the internal cells in the up-
per triangular part. In [32], Reilly ef al. used the same
array for a QRD array processing application. Denote

[A/IT] = [ay; €1, @y; €3, = =+, 0,5 €] (26)

as the parallel combination of matrix 4 and I, where 4 =
[a;, @y, -+ + , @,] and ] is a n X n identity matrix with e;
as its ith column. The square array taKes the input [A//I].
While rotating 4 into an upper triangular matrix, it uses /
to accumulate the rotation parameters by

Qla/imn = [RI1Q]). 27

We note that processors in the upper triangular part not
only rotate the matrix 4 but also cumulatively multiply
the rotation parameters with /. Thus, its work load is, in
general, twice that of Gentleman-Kung’s internal cell.
Processors in the lower part, on the other hand, only ac-
cumulate Q from the propagated rotation parameters. A
two phase operation for QR iteration is proposed as fol-
lows:

® Phase 1: QR Decomposition: Compute the OR de-
composition of matrix 4, = Q;R,; both @, and R, are
obtained and stored. Then each row of @, is piped out and
fed back to the array through a FIFO buffer as shown in
Fig. 10.

® Phase 2: Computing R, Q,: In this phase, the opera-
tion is identical to that of the phase 3 in the triangular
array. A circular multiplexer is used to transform 4, .,
from row output into column input. Continue this itera-
tion until converged.

Due to the delay elements at the lower triangular part
of the array and the work load of each processor (except
those in the lower triangular part) being twice that of the
triangular array, the time to obtain the ith row of the Q,
matrix, #;, is

t; =max Q(n + 3i — 3),22n +i — 2)

where 2(n + 3i — 3) is the time for the leftmost cell of
the ith row to obtain its Q element and 2(2n + i — 2) is

[A/T]

Fig. 10. Multiphase rectangular array for the QR iteration.

the time for the rightmost cell to finish. Obviously, when
i= [n+1/2],14 = 2(n + 3i ~ 3). Thus, the time
required to obtain the whole Q matrix is ¢, = 81 — 6. By
assuming that it takes time n to sequentially pipe out the
Q, matrix, this algorithm takes (9n — 6) + n + 2n — 1)
to complete an iteration in the worst case. Again, denot-
ing the number of iteration as S, this algorithm converge
in the order of O(S(10n — 6) + 2n — 1) = O((10§ +
2)n). Of course, the performance can be improved by pip-
ing out each row of O matrix when it is available instead
of waiting for the whole Q matrix to be available. With
this, the performance can reach to the order of O((9S +
2)n).

C. The Hessenberg Reduction

In order to perform the QR algorithm efficiently in con-
ventional Von Neumann type serial computers, we usu-
ally transform the data matrix 4 into an upper Hessenberg
matrix before applying the QR iteration. With this trans-
formation, the amount of work per iteration is reduced
from O(n’) to O(rn?) [10]. However, this motivation may
not be relevant for parallel processing architectures. The
reasons for twofold:

1) Due to the hardware resources in a parallel process-
ing architecture, the computations can be performed con-
currently without hindering the processing time. For ex-
ample, the computation time of the two multiphase arrays
discussed above are of the order O(n).

2) The data matrix is usually not in the Hessenberg
form. The preprocessing of the data matrix to Hessenberg
form may possibly not be incorporated with the following
computations. That is, the.preprocessing must be done
separately.

Both reasons may lead to the conclusion that the Hes-
senberg form is not of practical interest in parallel pro-
cessing of the QR algorithm unless the Hessenberg form
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can be obtained easily by using the same paraliel pro-
cessing architecture. Many prior works avoid this issue
by assuming that the Hessenberg form (or sometimes the
tridiagonal form) is already available from the beginning.
Fortunately, the Hessenberg form can be obtained easily
in conjunction with the above proposed multiphase algo-
rithms and architectures.

To obtain the Hessenberg form, we can choose a uni-
tary similarity transformation U such that 4, = U7 AU is
an upper Hessenberg matrix [10]. The transformation U
can be obtained from sequences of Givens rotations. De-
note G; as the product of the Givens rotation matrices
which zero out the proper positions of the ith column.
Since the first i rows will not be affected by G;, the matrix
G; is of the form G; = diag (I;, G;), where [; is an identity
matrix of dimension i. Suppose the Hessenberg form
through its first k — 1 columns has been obtained

B,y By, By
Gy -+ Ge_)WAG, -+~ G,_y) = | Byy By By
0 B, By

(28)

where By, and Bz are (k — 1) X (k — 1) and (n — k) X
(n — k) matrices, respectively. Then

G, - - Gk)HA(Gl e Gy

B\, By, Bi3G,
= | By By By Gy (29)
0 EkHBn (_;kHBssék
is a Hessenberg form through its first & columns. Thus
A =G - G_)'AG - G (0)
is an upper Hessenberg matrix and
U=G,---G,,_l=[1 OT}. a1
0 G
Denote
HECE AR
A=|_ |=UA= _ 32)
A 0 G R

where A = GR and R is of the form of an upper triangular
matrix without the lowest right element. Then 4, = AU
= U" AU. Obviously, this is similar to the computations
in the QR iteration. To obtain G and R, let

i= oot
- 0,0, ---,1]

The QRD of A is

G o R
A‘:"Rz .
¢ [0 1} [0,0,---

(33)

} . (34
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Fig. 11. (a) System configuration of the multiphase triarray. (b) System
configuration of the multiphase rectangular array.

Now we can use the multiphase operations to obtain the
upper Hessenberg form. We call this phase 0, with three
internal operations.

® Phase 0: The Hessenberg reduction.

1) Use phase 1 operation for ORD of A. From A =
OR, we obtain R in the triarray.

2) Use phase 2 operation for computing the G matrix.
From 0 = R™TAT, we obtain matrix G.

3) Use phase 3 operation for computing the Hessen-
berg matrix A4,. By forming

]
f2]

we obtain the Hessenberg matrix 4, = AU.

and

D. Computing the Eigenvectors

To compute an eigenvector, a matrix multiplication
systolic array can be incorporated with the multiphase ar-
ray such that those matrices Q,, - - * , Qy are accumulated
to form the 0, matrix. Noted that §, = O, _ O, and the
matrix J,_, is available at the start of the kth iteration,
while the matrix Q; is coming out at phase 2 operation of
the kth iteration. Then @, is obtained by multiplying
O,_, and @, as shown in Fig. 4. A system configuration
for triangular array is shown in Fig. 11(a) and that for
rectangular is shown in Fig. 11(b). As discussed in Sec-
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tion III, for a symmetric A matrix, when A4, converged,
O, yields the matrix of eigenvectors. For a nonsymmetric
A matrix, the first column of §, yields the eigenvector
associated with the largest eigenvalue.

V. PERFORMANCE COMPARISONS
A. Comparisons of the Arrays

Although there are three phases of operations, the arith-
metic operations in phases 2 and 3 form a subset of the
operations executed in phase 1. Therefore we do not in-
crease the cell complexity in the multiphase arrays. The
performance and characteristics of both triangular and
rectangular arrays considered above are summarized in
Table III. The triangular array has several advantages: it
requires less computational time and fewer cells, 1/O
ports, and communication devices. Furthermore, all of the
processing cells are fully utilized. However, due to the
computation of R~ in phase 2 of the operation, it may be
numerically less stable for certain highly ill-conditioned
data. For example, consider the matrix given by

0.7601 —0.3967  0.6060
—0.3967 1.7475 —0.1962
0.6060 —0.1962  0.4924

with eigenvalues {2.0, 1.0, 107'2}. If the triarray algo-
rithm (which uses R™7 to obtain Q") is used, the eigen-
values are obtained as {2.0, 1.0, 3.6818 - 107}, On the
other hand, based on the rectangular array (where the RT
is not explicitly computed), the eigenvalues are obtained
as {2.0, 1.0, 9.9999 - 10~ "}. All these results are ob-
tained using MATLAB with double precision computa-
tions. As a result, we have a complexity versus numerical
stability tradeoff for the two multiphase arrays.

B. Rate of Convergence
As in Luk [24], by convergence of the upper triangu-
larity of A, we mean the parameter off (4;) defined as

2
2 aju
i<j ij k)

off (Ay) N (35)
where N is a number of off-diagonal elements, has fallen
below some prechosen tolerance value. As indicated in
[24], it is difficult to monitor off (4;) in the parallel com-
putation. Luk then proposed that the iteration be stopped
after a sufficiently large number S of iterations. In the
studies of Brent and Luk [3], [24], they found that S < 9
for random symmetric matrices of order n < 230 and §
< 6 for n < 24. Therefore, they chose § = 10 forn <
100 for the Jacobi-like method. Similar to their approach,
we apply the QR algorithm to random n X n symmetric
matrices (a;), where the elements g for 1 =< i<j<n
were uniformly and independently distributed in [—1, 1].
The tolerance to meet the stopping condition is off (4;) =
10719, We can see from Fig. 12 that the number of iter-
ations for a QR algorithm to converge is in the order of

TABLE II
THE TIMING TABLE FOR THE ROTATION PARAMETERS TO REACH THE RIGHT
EDGE OF THE QR TRIARRAY

Time n+1 n+2 n+3 n+4 n+S5 n+ 6
First row 1,2 (1,3 1, 4) 1, 5) (1, 6) 1,7
Second row 2,3) 2,4 2,5 2,6)
Third row 3,4 (3,5)

TABLE III
COMPARISONS OF THE MULTIPHASE TRIARRAY AND RECTANGULAR ARRAY
Triangular
Array Rectangular Array

Computation time O((3S + 2)n) O((10S + 2)n) worst case

Numerical stability fair stable
Number of cells n(n + 1)/2 n? plus (n> — n) d-clements
1/0 ports 2n 3n
Utilization 1 <1
Communication devices 1 2

100

Pl

8 : //

60.

L7

20 n/

lteration

0
0 10 20 30
n

Fig. 12. The number of iterations for a OR algorithm to converge versus
the matrix size.

10 for matrix size smaller than 20 X 20. Even though we
can reduce the matrix to Hessenberg form for full dense
matrix or tridiagonal form for symmetric matrix, and the
OR iteration with origin shift can accelerate the conver-
gence rate [15], [39], [44], the number of iterations is still
on the order of 10. As an example, the 4 X 4 tridiagonal
matrix

120
2 3 4
045
006 7

still requires eight iterations to converge when the sym-
metric OR algorithm is used, [10, p. 424]. This kind of
property is not desirable for parallel processing imple-
mentation. It is known that the Jacobi-like method may
require more flops than the symmetric QR algorithm.
However, due to parallel implementation, many rotations
may take place at the same time. The computations in-
volved in OR algorithm and Jacobi-like method are gen-
erally of the same complexity. From these discussions,
the one which requires fewer iterations is more attractive

a © O
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from the parallel implementational point of view. Fur-
thermore, the convergence rate of a QR iteration depends
on the ratio of the eigenvalues. In our simulations, in more
than 10% of the cases, the randomly generated symmetric
matrices required significantly more iterations to con-
verge. As pointed out before, it is difficult to monitor the
quantity off (4,) to decide when the algorithm converges
in the parallel computations. Since the convergence rate
is highly dependent on the ratio of eigenvalues, there is
no general rule for choosing a sufficient number of itera-
tions S to insure convergence. This is an undesirable in-
trinsic property of the QR algorithm for parallel imple-
mentation as compared to the Jacobi-like method.

VI. EFFICIENT FAULT-TOLERANCE SCHEMES

Reliable implementation is quite essential in parallel
processing architectures. For a complex parallel process-
ing system, a single fault from any part of the system can
make the whole system useless. For various critical ap-
plications using spectral decomposition, highly reliable
computations are demanded. Fault-tolerance is therefore
needed in many of these problems. A simple and cost ef-
fective fault-tolerant scheme is the checksum and
weighted checksum proposed by Abraham et al. [1]. This
scheme is one of the typical examples of the algorithm-
based fault-tolerance which has been applied to various
signal processing and linear algebra operations [22]. De-
fining the checksum vector el=101,1, -, 1], the col-
umn, row and full checksum matrices 4, 4,, and A;of a
square n-by-n matrix A are defined as

° e A

A, =[A Ae]

{A Ae }
Ar = .
4 eTA e'Ae

If any fault occurs during the computation, the checksum
criterion is not met and thus the fault is detected. The
weighted checksum scheme can be further used to correct
errors [18]. It has been suggested in [5] that a (weighted)
checksum scheme can be incorporated into the QR itera-
tions for error detection. These properties as well as oth-
ers are considered here for the multiphase arrays.

Since there are different operations in different phases,
the inherent natures of the operations of each phase are
thus different and should be examined for possible fault-
tolerant implementation individually. The fault-tolerant
schemes for each phase of the multiphase triangular array
are given as follows:

® Phase 1: As pointed out in [5], [22], row checksum
is invariant for the QR decomposition. It can be seen

A, = [A Ae] = O[R Re] = QOR,. (36)
This means that the QR decomposition of a row check-

sum matrix results in a row checksum upper triangular
matrix. Fig. 13 shows the implementation of this scheme.
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Fig. 13. Row checksum for 4, = QOR,.

Fig. 14. Column checksum for ™74 = Q[.

e Phase 2: Due to the nature of computations in this
phase, row checksum is no longer valid. Fortunately, col-
umn checksum is possible as given by

RTAT = RT[AT ATe] = [Q" QTel = Ql. (37)

An implementation of this scheme is shown in Fig. 14.

® Phase 3: Although a row checksum upper triangular
matrix R, and a column checksum unitary matrix Q. are
obtained in the above phases, unfortunately, R, Q. does
not yield any relevant use. By defining the trace operation
as the sum of the diagonal elements in a square matrix,
we obtain tr [AB] = tr [BA], where A and B are square
matrices. Therefore,

tr [Ap 1] = tr [Re Q] = tr [QR,] = tr [A,] = .:ZJI N

(38
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where \; is the eigenvalue of matrix A4;. This invariant
property can be used to check the result of the phase 3
operation. If the trace of A, is different from the trace
obtained before, a fault is then detected durihg the phase
3 computation.

For the rectangular array, the phase 2 operation is the
same as the phase 3 operation of the triangular array. For
its phase 1 operation, an interesting feature of this com-
putation is given by

Ql4,/11] = [R,//Q,]. (39)

That is, a row checksum of the parallel combination of
matrices A and [ gives a row checksum of the upper tri-
angular matrix R, and a row checksum of the unitary ma-
trix Q,.

VII. CONCLUSIONS

The multiphase systolic algorithms proposed in this pa-
per can be used efficiently to solve the eigenvalue and
SVD problems based on the QR algorithm. In particular,
the eigenvectors can be obtained without global commu-
nication within the arrays using the multiphase opera-
tions. We showed that the QR algorithm can achieve a
parallel implementation on a single architecture. Two sys-
tolic arrays, a triangular and a rectangular, are proposed
for multiphase implementation. Efficient algorithm-based
fault-tolerance schemes can be incorporated with both ar-
rays easily. Since the operations in each phase belong to
the same types of computation, the cell complexity is thus
not increased by multiphase operations. There is a trade-
off between numerical stability and complexity for both
arrays. Each iteration takes O(n) time units while the time
required for convergence is O(Sn), where S is the number
of iterations. Unlike the Jacobi-like inethod, the conver-
gence rate of the QR algorithm depends on the ratio of the
eigenvalues. As a consequence, S may vary for matrices
of the same size, with or without origin shift to accelerate
the convergence. Generally, S is in the order of 10 for the
QR algorithm. From the parallel processing point of view,
we have demonstrated the advantage of the QR algorithm
that can yield two multiphase systolic algorithins imple-
mentable on single architecture without requiring global
connections, while from the intrinsic convergence rate
point of view, the QR algorithm is somewhat less attrac-
tive as compared to the Jacobi-like method. Depending
on specific system and hardware requirements, one ap-
proach may be more desirable than the other. Of course,
it is most meaningful to have two basic approaches to
choose from for real-time VLSI signal processing based
on spectral decomposition.

REFERENCES

[1] J. A. Abraham et al. “‘Fault tolerance techniques for systolic array,”’
IEEE Comput. Mag., vol. 20, p. 65, July 1987.

[2] G. Bienvenue and H. F. Mermoz, ‘‘New principle of array processing
in underwater passive listening,”’ in VLSI and Modern Signal Pro-
cessing, S. Y. Kung ef al., Eds. Englewood Cliffs, NJ: Prentice-
Hall, 1985.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 1, JANUARY 1992

[3]1 R. P. Brent and F. T. Luk, ‘‘The solution of singular-value and sym-
metric eigenvalue problems on multiprocessor array,”” SIAM J. Sci.
Stat. Comput., vol. 6, pp. 69-84, Jan. 1985.

K. Bromley and J. M. Speiser, ‘“Signal processing algorithm, archi-

tectures, and applications,’’ Proc. SPIE Int. Soc. Opt. Eng., vol. 431,

pp. 2-6, 1983.

[5] C.-Y. ChenandJ. A. Abraham, ‘‘Fault-tolerant systems for the com-
putation of eigenvalues and singular values,”” Proc. SPIE Int. Soc.
Opt. Eng., vol. 696, 1986. .

[6] P. Comon and Y. Robert, ‘A systolic array for computing BA™',”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp.
717-723, June 1987.

[71 G. R. Gao and S. J. Thomas, *‘An optimal parallel Jacobi-like solu-
tion method for singular value decomposition,’” in Proc. Int. Conf.
Parallel Processing, 1988, pp. 47-53.

[8] G. D. de Villiers, ‘‘A Gentleman-Kung architecture for finding the
singular value of a matrix,”” in Proc. Int. Conf. Systolic Array (Ire-
land), 1989, pp. 545-554.

[9]1 W. M. Gentleman and H. T. Kung, ‘‘Matrix triangularization by sys-
tolic array,’’ Proc. SPIE Int. Soc. Opt. Eng., vol. 298, p. 298, 1981.

[10} G. H. Golub and C. F. Van Loan, Matrix Computation, 2nd ed.
Baltimore, MD: Johns Hopkins Press, 1989.

[11] S. Haykin, ‘‘Radar array processing for angle-of-arrival estimation,’’
in Array Signal Processing, S. Haykin, Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1985, pp. 194-292.

[12] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1986.

[13] D. E. Heller and 1. C. F. Ipsen, ‘‘Systolic networks for orthogonal
equivalence transformations and their application,”” presented at the
1982 Conf. Advanced Res. VLSI, M.1.T., Cambridge, MA, 1982.

[14] D. E. Heller and 1. C. F. Ipsen, ‘‘Systolic networks for orthogonal
decomposition,’’ SIAM J. Sci. Stat. Comput., vol. 4, pp. 261-269,
June 1983.

[15] W. Hoffmann and B. N. Parlett, ‘‘A new proof of global convergence
for the tridiagonal QL algorithm,”” SIAM J. Numer. Anal., vol. 15,
Oct. 1978.

[16] K. Hwang and F. A. Briggs, Computer Architecture and Parallel
Processing. New York: McGraw-Hill, 1984.

[17] 1. Ipsen, ‘Singular value decomposition with systolic array,”’ Proc.
SPIE Int. Soc. Opt. Eng., vol. 495, pp. 13-21, 1984.

[18] J.-Y. Jou and J. A. Abraham, ‘‘Fault-tolerant matrix arithmetic and
signal processing on highly concurrent computing structures,’’ Proc.
IEEE, vol. 74, p. 732, May 1986.

[19] S. M. Kay, Modern Spectral Estimation.
Prentice-Hall, 1988.

[20] K. Konstantinides and K. Yao, ‘‘Statistical analysis of effective sin-
gular values in matrix rank determination,”’ /EEE Trans. Acoust.,
Speech, Signal Processing, vol. 36, pp. 757-736, May 1988.

[21]1 S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NJ: Pren-
tice-Hall, 1988.

[22] K. 1. R. Liu and K. Yao, ‘‘Gracefully degradable real-time algo-
rithm-based fault-tolerant method for QR recursive least squares sys-
tolic array,”” in Proc. Int. Conf. Systolic Array (Killarney, Ireland),
May 1989, pp. 401-410.

[23] F. T. Luk, ‘‘A parallel method for computing the generalized singular
value decomposition,”’ J. Parallel Distributed Computing 2, pp. 250~
260, 1985.

[24] F. T. Luk, ‘‘A triangular processor array for computing singular
value,”” Linear Alg. Its Appl., vol. 77, pp. 259-273, 1986.

[25] F. T. Luk, ‘A rotation method for computing the QR decomposi-
tion,”” SIAM J. Sci. Stat. Comput., vol. 7, pp. 452-459, Apr. 1986.

[26] J. G. McWhirter, ‘‘Recursive least squares minimization using a sys-
tolic array,”’ Proc. Int. Soc. Opt. Eng., vol. 431, 1983.

[27] J. G. McWhirter and T. J. Shepherd, ‘‘An efficient systolic array for
MVDR beamforming,”’ in Proc. Int. Conf. Systolic Array, 1988, pp.
11-20.

[28] D. I. Moldovan, C. I. Wu, and J. A. B. Fortes, ‘“Mapping arbitrary
large QR algorithm into a fixed size VLSI array,’” in Proc. Int. Conf.
Parallel Processing, 1984, pp. 365-373.

[29] J. H. Moreno and T. Lang, ‘‘A multilevel pipelined processor for the
singular value decomposition,”” Proc. SPIE, 1986.

[30] N. L. Owsley, *‘Sonar array processing,”” in Array Signal Process-
ing, Haykin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1985, pp.
115-193.

[31] C. C. Paige, ‘‘Computing the generalized singular value decompo-
sition,”” SIAM J. Sci. Stat. Comput., vol. 7, Oct. 1986.

[32] J. P. Reilly, W. G. Chen, and K. M. Wong, ‘‘A fast QR-based array

4

Englewood Cliffs, NJ:




LIU AND YAO: MULTIPHASE SYSTOLIC ALGORITHMS

processing algorithm,”* Proc. SPIE Int. Soc. Opt. Eng., vol. 975, pp.
36-47, 1988.

[33] W. Robertson and W. Phillips, *‘A systolic MUSIC system for VLSI
implementation,’’ in Proc. IEEE ICASSP, 1989, pp. 2577-2580.

[34] R. O. Schmidt, *‘A signal subspace approach to multiple emitter lo-
cation and spectral estimation,’’ Ph.D. dissertation, Stanford Univ.,
1981. )

[35] R. Schreiber, ‘‘Systolic array for eigenvalue computation,”” Proc.
SPIE Int. Soc. Opt. Eng., vol. 341, 1982.

[36] R. Schreiber, ‘‘Systolic linear algebra machines in digital signal pro-
cessing,”” in VLSI and Modern Signal Processing, S. Y. Kung et al.,
Eds. Englewood Cliffs, NJ: Prentice-Hall, 1985, pp. 389-405.

[37} R. Schreiber, ‘‘Solving eigenvalue and singular value problems on an
undersized systolic systolic array,”’ SIAM J. Sci. Stat. Comput., vol.
7, p. 441, Apr. 1986.

[38] R. Schreiber, *‘Implementation of adaptive array algorithms,’” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1038-
1045, Oct. 1986.

[39] G. W. Stewart, ““‘Incorporating origin shifts into the OR algorithm for
symmetric tridiagonal matrices,”” Commun. Ass. Comput. Mach. , vol.
13, June 1970.

[40] G. W. Stewart, Introduction ro Matrix Computations.
Academic, 1973.

[41]1 R. A. Thisted, Elements of Statistical Computing.
man and Hall, 1988.

[42] N. Torralba and J. J. Navarro, “*Size-independent systolic algorithms
for QR iteration and Hessenberg reduction,’’ in Proc. Int. Conf. Sys-
tolic Array, 1989, pp. 166-175.

{43} J. H. Wilkinson, Algebraic Eigenvalue Problem. New York: Ox-
ford, 1965.

[44] J. H. Wilkinson, ‘‘Global convergence of tridiagonal QR algorithm
with origin shift,”” Linear Alg. Its Appl., vol. 1, pp. 409-420, 1968.

[45] K. J. R. Liu and K. Yao, *‘Spectral decomposition via systolic tri-
array based on QR iteration,” in Proc. IEEE ICASSP, Apr. 1990, pp.
1017-1020.

New York:

London: Chap-

KuoJuey R. Liu (S°86-M’90) received the B.S.
degree in electrical engineering from the National
Taiwan University, the M.S.E. degree in electri-
cal engineering and computer science from the
University of Michigan, Ann Arbor, in 1983 and
1987, respectively, and the Ph.D. degree in elec-
trical engineering from the University of Califor-
nia, Los Angeles, in June 1990.

During 1983-1985, he served in the Signal
Corps, Taiwan, as a Communications Officer. He
then became a Teaching/Research Assistant at the
University of Michigan and the University of California, Los Angeles. He
is currently an Assistant Professor of electrical engineering in the Depart-
ment of Electrical Engineering and Systems Research Center of the Uni-
versity of Maryland, College Park. His research interests include parallel
processing algorithms and architectures for signal/image processing and

201

communications, adaptive signal processing, video signal processing, fault-
tolerant computing in VLSI systems, design automation for DSP VLSI sys-
tems, and fast algorithms.

Dr. Liu was awarded the President Research Partnership from the Uni-
versity of Michigan in 1987, and the University Fellowship and the Hor-
tense Fishbaugh Memorial Scholarship from UCLA in 1987-1988 and
1989, respectively. He was also awarded the Outstanding Graduate Student
Award in Science and Engineering from the Taiwanese-American Foun-
dation.

Kung Yao (S°59-M’65-SM’91) was born in Hong
Kong on November 24, 1938. He received the
B.S.E. (Highest Honors), M.A., and Ph.D. de-
grees in electrical engineering from Princeton
University, Princeton, NJ, in 1961, 1963, and
1965, respectively.

During the summers of his college years, he
worked at the Princeton-Penn Accelerator in Penns
Neck, NI, the Brookhaven National Laboratory in
Upton, NY, and the Bell Telephone Laboratories
in Murray Hill, NJ. While attending Princeton
University, he held a Princeton Engineering Predoctoral Fellowship and an
IBM Fellowship. In 1965-1966, he was an NAS-NRC Postdoctoral Re-
search Fellow at the University of California, Berkeley. Since September
of 1966, he has been with the University. of California, Los Angeles. Pres-
ently, he is a Professor in the Electrical Engineering Department. In the
fall of 1969, he was a Visiting Assistant Professor at the Massachusetts
Institute of Technology and a Visiting Senior Research Associate at the
NASA Electronics Research Center, Cambridge, MA. In 1973-1974, he
was a Visiting Associate Professor at Eindhoven Technical University in
Eindhoven, the Netherlands. In 1985-1988, he served as an Assistant Dean
of the School of Engineering and Applied Science at UCLA. His research
interests include stochastic processes, digital communication theory, sat-
ellite communication systems, simulation, radar systems, systolic and VLSI
algorithms and systems, and digital signal processing. He is the coauthor
of a book, Processing and Algorithms in Communication and Radar Sys-
tems, now under preparation.

Dr. Yao is a member of Phi Beta Kappa, Sigma Xi, and the American
Association for the Advancement of Science. He has served as Program
Chairman, Secretary, and Chairman of the IEEE Information Theory Group
in Los Angeles and served two terms as a member of the Board of Gover-
nors of the IEEE Information Theory Group. He was the Cochairman of
the 1981 International Symposium on Information Theory held at Santa
Monica, CA, and the representative of the IT-BOG in the organization of
the 1987 IEEE Information Theory Workshop held at Bellagio, Italy. He
was also the Chair of the Technical Program of the 1990 IEEE Workshop
on VLSI Signal Processing. He has served as an Associate Editor for Book
Reviews of the IEEE TRANSACTIONS ON INFORMATION THEORY and was a
member of the Editorial Board of the journal, Probability in the Engineer-
ing and Informational Sciences, published by the Cambridge Press. He is
an Associate Editor on VLSI Signal Processing for the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS.




