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Unified Parallel Lattice Structures for Time-Recursive 
Discrete Cosine/Sine/Hartley Transforms 

K. J .  Ray Liu, Member, IEEE, and Ching-Te Chiu, Member, IEEE 

Abstract-The problems of unified efficient computations of 
the discrete cosine transform (DCT), discrete sine transform 
(DST), discrete Hartley transform (DHT), and their inverse 
transforms are considered. In particular, a new scheme em- 
ploying the time-recursive approach to compute these trans- 
forms is presented. Using such approach, unified parallel lat- 
tice structures that can dually generate the DCT and DST 
simultaneously as well as the DHT are developed. These struc- 
tures can obtain the transformed data for sequential input time- 
recursively with throughput rate one per clock cycle and the 
total number of multipliers required is a linear function of the 
transform size N .  Furthermore, there is no constraint on N .  
The resulting architectures are regular, modular, and without 
global communication so that they are very suitable for VLSI 
implementation for high-speed applications such as ISDN net- 
works and HDTV systems. I t  is also shown in this paper that 
the DCT, DST, DHT and their inverse transforms share an al- 
most identical lattice structure. The lattice structures can also 
be formulated into prelattice and postlattice realizations. Two 
methods, the SISO and double-lattice approaches, are devel- 
oped to reduce the number of multipliers in the parallel lattice 
structure by 2N and N ,  respectively. The tradeoff between time 
and area for the block data processing is also considered. The 
concept of filter bank interpretation of the time-recursive si- 
nusoidal transforms is also discussed. 

1. INTRODUCTION 
RANSFORM coding has found many applications in T image, speech, and digital signal transmission and 

processing. Due to the advances in ISDN networks and 
high definition television (HDTV) technology, high speed 
transmission of digital video signal has become very de- 
sirable. Among the many transforms, the discrete cosine 
transform (DCT), discrete sine transform (DST), and dis- 
crete Hartley transform (DHT) are very effective in trans- 
form coding applications to digital signals, such as speech 
and image signals. The DCT is the most widely used 
transform in speech and image processing for data 
compression. This is due to its better energy compaction 
property and its near optimal performance which is clos- 
est to that of the Karhunen-Loeve transform (KLT) among 
many discrete transforms for highly correlated signals, es- 
pecially for the first-order Markov process [ 11-[3]. It was 
shown by Jain that the performance of the DST ap- 
proaches that of the KLT for a first-order Markov se- 
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quence with given boundary conditions, especially for 
signal with low correlation coefficients [4], [5]. In 1983, 
Bracewell introduced the DHT [6] which uses a transform 
kernel similar to that of the discrete Fourier transform 
(DFT), except that it is a real-valued transform. There- 
fore, it is simpler than the DFT with respect to the com- 
putational complexity [7]. Like the DCT and DST, the 
DHT has found many applications in signal and image 
processing [6], [SI, [24], [28]. 

Since the DCT was introduced, many algorithms were 
proposed to improve the computation speed and to reduce 
the hardware complexity. These algorithms can be class- 
ified into the following categories: 1) indirect computa- 
tion, 2) matrix factorization, 3) recursive computation, 
and 4) systolic structure implementation. The indirect 
computation [9], [lo]-[ 131 applies the existing fast algo- 
rithms in the DFT or the Walsh-Hadamard transform to 
the DCT. It is not particularly efficient because the inher- 
ent properties of the DCT are not exploited. The matrix 
factorization [ 141, [ 151, 1251, [26] decomposes the DCT 
into multiplications of many sparse matrices, therefore the 
numbers of multiplications and additions can be substan- 
tially reduced. The recursive computations [ 161, [7] cal- 
culate higher order DCT coefficients from lower-order 
ones, but their signal flow architectures need global com- 
munication which is not suitable for VLSI implementa- 
tion. By using the recursive properties effectively, this 
kind of DCT algorithms has fewer multipliers and adders, 
while additional multiplexers are required. As for the sys- 
tolic structure implementation [ 171, [ 181, [27], it uses ex- 
isting systolic architectures for the DFT or other trans- 
forms to implement the DCT in a systolic manner. But 
some of the methods require that the number of samples 
of the signal must be decomposed into mutually prime 
numbers. Like the DCT, many fast algorithms have been 
proposed to improve the performance of the DST and 
DHT [8], [19], [20], [4], [5]. Basically, they can be class- 
ified in the same ways as those of the DCT and similar 
advantages and disadvantages can also be found. 

In this paper, we propose unified time-recursive lattice 
structures that can be used for the discrete orthogonal 
transforms mentioned above, i .e . ,  the DCT, DST, and 
DHT. We consider the orthogonal transforms from a time- 
recursive point of view instead of the whole block of data. 
We do so because in digital signal transmission, data ar- 
rive serially. Also, many operations such as filtering and 
coding are done in a time-recursive way. Based on this 
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approach, the resulting architectures are almost identical 
for the DCT, DST, and DHT, and their inverses. Our 
structures decouple the transformed data components, 
hence, there is no global communication needed. Besides, 
the number of multipliers in these structures is a linear 
function of N, so they require fewer multipliers than most 
other algorithms when N is large. Therefore, our archi- 
tectures are very suitable for VLSI implementation. One 
of the important characteristics of these structures is that 
the transform size N can be any integer, which is not the 
case for most of the fast algorithms for discrete transforms 
which do have certain constraints on N. Another impor- 
tant result is that based on the time-recursive approach, 
the dual generation properties of the DCT, DST, and 
DHT, as well as some related inverse transforms, can be 
obtained. 

The rest of the paper is organized as follows. In Section 
11, the dual generation of lattice structures for the DCT 
and DST with the time-recursive approach is considered. 
The inverse discrete cosine transform (IDCT) and the in- 
verse discrete sine transform (IDST) based on the lattice 
structures are discussed in Section 111. In Section IV, the 
time-recursive lattice structure for the DHT is presented. 
All the above time-recursive properties are derived by up- 
dating the time index by one. With block data processing, 
the time index is updated by more than one. The detailed 
effects and results of the block data processing are dis- 
cussed in Section V. Denormalized methods to reduce the 
number of multipliers in those lattice structures are con- 
sidered in Section VI. Then we compare these kinds of 
lattice structures with other architectures in terms of the 
number of multipliers and adders in Section VII. The syn- 
thesis bank structures based on the time-recursive concept 
is discussed in Section VIII. Finally, we give the conclu- 
sion in Section IX. 

11. DUAL GENERATION OF DCT AND DST 
We will show an efficient implementation of the DCT 

from the time-recursive point of view as an alternative to 
find fast algorithms through matrix factorizations or con- 
vert the DCT to DFT, which can be implemented on var- 
ious existing architectures. Focusing on the sequence in- 
stead of the block of input data, we can obtain not only 
the time-recursive relation between the DCT of two suc- 
cessive data sequences, but also the fundamental relation 
between the DCT and DST. In the following, the time- 
recursive relation for the DCT will be considered first. 

A .  Time-Recursive Discrete Cosine Transform 
The one-dimensional (1-D) DCT of a sequential input 

data starting from x ( t )  and ending with x ( t  + N - 1) is 
defined as 

where 

I f k  = 0 

otherwise. 
C(k) = (1) 

Here the time index t in X, (k, t )  denotes that the transform 
starts from x ( t ) .  Since the function C(k) has a different 
value only when k = 0, we can consider those cases that 
C(k)’s equal one (i.e., k = 1, 2, , N - 1 )  first and * 

reexamine the case for k = 0 later on. In transmission 
systems data arrive seriesly , therefore we are interested 
in the 1-D DCT of the next input data vector [ x ( t  + l ) ,  
x ( t  + 2), , x ( t  + N)]. From the definition, it is given 
by 

XAk, t + 1) 

( 2 )  

n[2(n - t - 1) + l lk [ 2N 
2 
N n = t + l  

k = l ; . * , N - l .  

- _  - C x ( n )  cos 

This can be rewritten as 

X,(k, t + 1) = X,(k ,  t + 1) cos ($) 

where 

1 2 t + N  [ ~ [ 2 ( n  1;) + Ilk x,(k, t + 1) = - c x ( n )  cos 
N n = t + ~  

(4) 
and 

( 5 )  

As we can see, a DST-like term x,(k, t + 1) appears in 
the equation. This motivates us to investigate the time- 
recursive DST. 

B. Time-Recursive Discrete Sine Transform 
There are several definitions for the DST. Here we pre- 

fer the definition made by Wang in [20] since it is of the 
form completed with the following derivations. The 1-D 
DST of a data vector [ x ( t ) ,  x ( t  + l ) ,  * * , x ( t  + N - 
l ) ]  is defined as 

k = l ; * . , N  

where 

I f k = N  
D(k) = 

1 otherwise. k = 0 ,  1, - * e  , N -  1, 
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Note that the range of k is from 1 to N .  Again, we con- 
sider those cases that D(k)'s equal one first, i .e. ,  

k =  1 , 2 ,  , N -  1 .  (7) 
The DST of the time update sequence [x ( t  + l ) ,  x ( t  + 
2 ) ,  - , x ( t  + N ) ]  is given by 

.. r + N  

a[2(n  - t - 1 )  + l ] k  
sin [ 2N 

= z , ( k ,  t + 1 )  

(8) 
Here the terms X, ( k ,  t + 1 )  and x , ( k ,  t + 1) that are used 
in ( 3 )  to generate X,(k,  t + 1 )  appear in the equation of 
the new DST transform X,(k,  t + 1 )  again. This suggests 
that the DCT and DST can be dually generated from each 
other. 

C. The Lattice Structures 
From ( 3 )  and (8), it is noted that the new DCT and DST 

transforms X ,  ( k ,  t + 1 )  and X, ( k ,  t + l ) ,  can be obtained 
from x , ( k ,  t + 1 )  and x , ( k ,  t + 1) in the lattice form as 
shown in Fig. 1 .  The next step is to update x , ( k ,  t + 1 )  
and x , ( k ,  t + 1) from the previous transforms X,(k, t )  
and X,(k, t ) .  We notice that X ,  ( k ,  t )  and x , ( k ,  t + 1) have 
similar terms except the old datum x ( t )  and the incoming 
new datum x ( t  + N ) .  Therefore x , ( k ,  t + 1) and X , ( k ,  t 
+ 1) can be obtained by deleting the term associated with 
the old datum x ( t)  and updating the new datum x ( t  + N )  
as 

X,(k ,  t + 1 )  = X,(k, t )  - x ( t )  

a ( 2 N  + 1)k 

(;)cos (g) 
and 

- X , ( k ,  t + 1) = X,(k ,  t)  - x ( t )  (i) sin ($) 
+ x ( t + N )  ($)s in[  a ( 2 N  2N + 1)k ] 

= X , ( k ,  t )  + [-X(t)  + (- l)kX(t + N ) ]  

(9) 

From ( 3 ) ,  (8 ) - ( lo ) ,  the new transforms X,(k,  t + 1 )  and 
X,(k,  t + 1) can be calculated from the previous trans- 
forms X , ( k ,  t )  and X , ( k ,  t )  by adding the effect of input 
signal samples x (t) and x ( t  + N ) .  This demonstrates that 
the DCT and DST can be dually generated from each other 
in a recursive way. The time-recursive relations for the 
new transforms X,(k,  t + 1 )  and X,(k,  t + 1) as well as 
the previous transforms X ,  ( k ,  t )  and X ,  ( k ,  t)  are given by 

Xc(k ,  t )  + [ - x ( t )  + (-l)%(t + N ) ]  

+ 1 X,(k, t )  + [ - x ( t )  + ( - l ) k ~ ( t  + N ) ]  

2 .  
* (i) sin (g) 1 sin (g ) 

and 

X,(k, t + 1 )  = i X,(k, t )  + [ -x( t )  + (-l)kx(t + N ) ]  

(i) sin (g) ] cos ($ ) 
- [X,(k,  t )  + [ - x ( t )  + ( - l ) k ~ ( t  + N ) ]  

(;) cos ($)I sin ($) 
Now, let us consider the cases for k = 0 in the DCT and 
k = N in the DST respectively. According to ( l ) ,  the 
1-D DCT of the time-update input vector [ x ( t  + l ) ,  x ( t  
+ 2 ) ,  e * -  , x ( t + N ) ] f o r k  = O i s  

,. r t N  

C x ( n > .  (13) X,(O, t + 1) = - 
L 

N J Z  n = r + l  

The relation of X,(O, t + 1) with the old transformed da- 
tum X,(O, t )  is 

2 
Xc(O, t + 1) = X,(O, t)  + - 

N J Z  

. [ - x ( t )  + ~ ( t  + N ) ] .  (14)  

And, the time-recursive relation between the new trans- 
forms X,(N,  t + 1) and the previous transforms X,(N,  t )  
is 

X,(N, t + 1 )  = - 

= -X,(N, t )  + -5- 
N J Z  

* [ ~ ( t )  + ( - l ) N - ' ~ ( t  + N ) ] .  (15 )  

The complete time-recursive lattice modules for ( k  = 1, 
2 ,  * * , N - 1 . )  are shown in Fig. 2 .  It consists of a N 

- (i) sin ($). 
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Fig. 2. 

X r ( k , t +  

rc(n )=c os  ( TI k n / 2 N ) , TS(n )=s 1 n( TI k r; / 2N ) 

Fig. 1 .  The lattice module. 

The lattice structure for the DCT and DST with coefficients C(k)’s and D(k)’s, k = 1, 2,  . . . , N - 1 .  

+ 1 shift register and a normalized digital filter perform- 
ing the plane rotation. The multiplications in the plane 
rotation can be reduced to addition and subtraction for k 
= 0 in the DCT and k = N in the DST, respectively, these 
two cases can be simplified and combined together as 
shown in Fig. 3 .  

The following illustrates how this dually generated 
DCT and DST lattice structure works to obtain the DCT 
and DST with length N of a series of input data [ x ( t ) ,  x ( t  

+ l ) ,  - 1  for a specific 
k. The initial values of the transformed signals Xc(k, t - 
1) and X, ( k ,  t - 1) are set to zero; so are the initial values 
in the shift register in the front of the lattice module. The 
input sequence [x((t), x ( t  + l ) ,  * * ] shifts sequentially 
into the shift register as shown in Fig. 2. Then the output 
signals Xc(k, t) and X,(k, t ) ,  k = 0, 1, , N - 1, N ,  
are updated recursively according to (1 l), (12), (14), and 
(15). After the input datum x ( t  + N - 1) shifts into the 
shift register, the DCT and DST of the input data vector 
[ x ( t ) ,  x ( t  + l),  * , x ( t  + N - l)] are obtained at the 
output for this index k. It takes N clock cycles to get the 
X,(k, t)  and X,(k, t )  of the input vector [ x ( t ) ,  x ( t  + l ) ,  
* , x ( t  + N - l)]. Since there are N different values 

* * , x ( t  + N - l ) ,  x ( t  + N ) ,  - 

* 

for k, the total computational time to obtain all the trans- 
formed data is N 2  clock cycles, if only one lattice module 
is used. In this case, the delay time and throughput are 
the same N 2  clock cycles. 

A parallel lattice array consists of N lattice modules can 
be used for parallel computations and it improves the 
computational speed drastically as shown in Fig. 4. Here 
we have seen that the transform domain data X(k, t) have 
been decomposed into N disjoint components that have 
the same lattice modules with different multiplier coeffi- 
cients in them. In this case the total computational delay 
time decreases to N clock cycle. It is important to notice 
that when the next input datum x ( t  + N )  arrives, the 
transformed data of the input data vector [ x ( t  + l ) ,  x ( t  
+ 2), * * * , x ( t  + N ) ]  can be obtained immediately. 
Likewise, it takes only one clock cycle to generate the 
transformed data of subsequent inputs. That is, the la- 
tency and throughput of this parallel system are N and 1, 
respectively. 

It is obvious that this lattice structure is quite different 
from the signal flow graph realization obtained from the 
fast DCT algorithms [14], [15]. Since there is no global 
communication and the structure is modular and regular, 
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-Xc( N- 2, t ) 

- Xs( N-2, t ) 

z-' p 
Fig. 3 .  The lattice structure of k = 0 for the DCT and k = N for the DST with coefficient C(0) and D(N) 

Xc(O,t) 

X c ( l , t )  

XS' 1 , t )  

XC' 2, t j 

x42, t j 

Xs(N,t) 

-Xc(N-l,t) 
M(N- 1 )  

-Xs(N-l , t )  

Fig. 4. The parallel lattice structure for the DCT and DST. 

it is suitable for practical VLSI implementation. The most 
interesting result is that this architecture can be applied to 
any value of N .  From this point of view, it is more at- 
tractive than existing algorithms. In fact, most algorithms 
[21], [18] are limited to the sequence length N which 
either must be power of 2 or must be decomposable into 
mutually prime numbers. In addition, this lattice structure 
reveals some interesting properties of the DCT and DST, 
i.e., the DCT and DST can be generated simultaneously. 
The DCT is near optimal to the KLT transform in highly 
correlated signals, while the DST approaches the KLT in 
signals with low correlation coefficient. As we are able to 
obtain the DCT and DST at the same time, this lattice 

use a single lattice module with only 6 multipliers and 5 
adders to recursively compute any N-point DCT and DST 
simultaneously. To obtain the transformed data in paral- 
lel, we need N lattice modules. As mentioned before, it 
is suitable for VLSI implementation since all the modules 
have the same structure except the 0th module which can 
be simplified as shown in Fig. 3 .  This parallel lattice 
structure requires 6N - 4 multipliers and 5N - 1 adders. 

111. INVERSE DISCRETE COSINE TRANSFORM (IDCT) 
AND INVERSE DISCRETE SINE TRANSFORM (IDST) 

A .  Time-Recursive IDCT 
structure is very useful especially when we do not know 
the statistics of the incoming signal. Furthermore, we can 

According to the definition of the DCT in ( l ) ,  the IDCT 
for the transform domain sequence [ X ( t ) ,  X ( t  -t- I ) ,  * * * , 
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X(t + N - l)] is 
r + N -  I 

xc(n ,  t)  = c C(k - t)X(k) cos 
k = r  

(16) n = 0 , 1 , * . .  , N - 1 .  

The coefficients C(k)'s are given in (1). From the time- 
recursive point of view, the IDCT of the new sequence 
[X(t + l ) ,  X(t + 2), * - , X(t + N ) ]  can be expressed 
as 

t + N  

xc(n, t + 1) = c C(k - t - l)X(k) 

n(2n + l)(k - t - 1) 

k = t +  1 

1. (17) cos [ 
2N 

Similar to the previous sections, we can decompose (17) 
into 

x,(n, t + 1 )  = Y,(n, t + a(2n + 1) [ 2N 1 
a(2n + 1 )  [ 2N ] + Fas(n, t + 1) sin 

where 
r + N  

Zc(n, t + 1 )  = C(k - t - l)X(k) 
k = t + l  

and 
f + N  

Fus(n, t + 1) = c C ( k  - t - l)X(k) 
k = t +  I 

- sin [ a ( 2 n  t 2 ; ( k  - t )  

In order to be a dually generated pair of the IDCT given 
in (16), we define the auxiliary inverse discrete sine trans- 
form (AIDST) as 

n = O , l ; * *  , N - 1 .  (21) 
Although this definition utilizes the same sine functions 
as the transform kernel, it is not the inverse transform of 
the DST. To differentiate it from the IDST, we call this 
the AIDST. Compared to the IDST defined in (26), we 
observe that the AIDST has the special coefficients C(0) 
= I/&' associated with the first term, while the IDST 
with the last term. The AIDST for the data sequence [X(t 
+ l ) ,  X(t + 2 ) ,  * * , X ( t  + N ) ]  can be written as 

t + N  

xas(n ,  c + 1) = c C(k - t - l)X(k) 
k = r + l  

a(2n + l)(k - t - 1 )  
2N 

* sin 

By using the trigonometric function expansions, xas(n ,  t 
+ 1 )  becomes 

"1 x,(n, t + 1) = Fas(n, t + 1) cos 

a(2n + 1) [ 2N 1. (23) 
- Z,(n, t + 1) sin 

I) Lattice Structure for IDCT: Combining (18) and 
(23), we observe that the IDCT and AIDST can be gen- 
erated in exactly the same way as the dual generation of 
the DCT and DST. Therefore, the lattice structure in Fig. 
1 can be applied here except that the coefficients must be 
modified. Since the coefficients C(k)'s  are inside the 
expression in the inverse transform, the relation between 
x,(n, t) and F,(n, t + 1) will be different from what we 
have in the DCT. Equations (16) and (19) as well as (20) 
and (21) have the same terms fork E { t  + 2, t + 3 ,  * * , 
t + N - 1 } . After adding the effects of the terms for k = 
t and k = t + 1 ,  we obtain 

and 

T,,(n, t + 1) = xUs(n,  t) + (-l)"X(t + N) 

The complete lattice module for the IDCT and AIDST is 
shown in Fig. 5 .  This IDCT lattice structure has the same 
lattice module as that of the DCT except for the input 
stage where one more adder and one more multiplier are 
required. The procedure to calculate the inverse trans- 
formed data is the same. Therefore, this IDCT lattice 
structure has the same advantages as that of the DCT. To 
obtain the inverse transform in parallel, we need N such 
IDCT lattice modules where 7 N  multipliers and 6N adders 
are required. Again, we see that the numbers of adders 
and multipliers are linear functions of N .  Here we should 
notice that to obtain the inverse transform of the original 
input data sequence, for example, [x (0), x ( l ) ,  x (2), * * , 
x(N - 1)] and [x(N), x ( N  + l ) ,  , x ( 2 N  - l ) ] ,  it is 
sufficient only to send the transformed data corresponding 
to these two blocks, i.e., [X(O), X(1), - - , X ( N  - l ) ]  
and [X(N), X(N + l), , X(2N - l)] respectively, 
although we have all the intermediate transformed data. 
Then by applying the time-recursive algorithm mentioned 
above, we obtain the original data after X(N - 1) and 
X ( 2 N  - 1) arrive, the intermediate data obtained by the 
inverse transform are redundant. 
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.L + , t+ 

, t+  

r c ( n ) - c o s i n [ 2 ~ +  I )  2y1 r5:n1=sin(n(2n+l ) / 2 N )  

Fig. 5 .  The lattice structure for the IDCT and AIDST 

B. Time-Recursive IDST Same as before, we can decompose ( 2 8 )  and ( 2 9 )  to 
From the definition of the DST in (6) ,  the IDST for the 

, transform domain sequence [ X ( t  + l ) ,  X(t + 2 ) ,  * - 
X(t + N ) ]  is given by 

n = 0 , 1 ; * .  , N - 1 .  ( 2 6 )  
The coefficients D(k) 's  are given in ( 6 ) .  Analogous to 
Section 111-A, we define the auxiliary inverse discrete 
cosine transform (AIDCT) 

f + N  

xac(n, t )  = c D(k - t ) X ( k )  
k = r + l  

a(2n + l ) ( k  - t )  
'Os [ 2N 

n = 0, I ,  * , N - 1 (27) 

which is the dually generated counterpart of the IDST. 
The IDST and AIDCT of the new sequence of trans- 
formed data [ x ( t  + 2 ) ,  X(t + 3 ) ,  * * * , X ( t  + N + I)] 
are given, respectively, by 

r + N + I  

x , (n ,  t + 1) = c D(k - t - l ) X ( k )  
k = t + 2  

1 

1 

a ( 2 n  + l ) (k  - t - 1) 
2N 

sin 

and 
t + N + l  

xac(n ,  t + 1) = C ~ ( k  - r - I ) x ( ~ )  

a ( 2 n  + l)(k - t - 1) 

k = f + 2  

2N 
. cos [ 

"1 x , ( n ,  t + 1) = x,(n,  t + 1) cos 

Y2:; - Xc(n, t + 1) sin 

and 

i*(2nzN+ "1 xac(n, 1) = X,(n, t + 1) cos 

+ X,(n, t + 1) sin Y2:N+ "1 
where 

f + N +  I 

Xa,(n, t + 1) = c D ( k  - t - l)X(k) 
k = f + 2  

I a ( 2 n  + l ) ( k  - t )  
* 'Os [ 2N 

and 

t + N + I  

( 2 8 )  X , ( l t ,  t + 1) = k = t + 2  C D(k - t - l)X(k) 

1 . sin 

1 )  Lattice Structure for  IDST and AIDCT: If we em- 
ploy the time-recursive derivation in the previous section 
to exploit the relations between x s ( n ,  t + 1) and X,(n, t 
+ 1) as well as x,,(n, t + 1) andz,, (n ,  t + l ) ,  the results 

( 2 9 )  
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are 

Z,(n, t + 1 )  = x , (n ,  t )  - sin 

- (5 - 1 )  ( -  

1 + - (-1)" cos d5 
* X ( t  + N + 1) 

l)"X(t + N )  

1 a(2n + 1) 
2N 

(34) 
and 

Xac(n, t + 1) = x,,(n, t )  - cos y2;; "1 X(t + 1) 

1 a ( 2 n  + 1) 
Jz: - - (-1)nsin [ 

2N 1 
* X ( t  + N + 1). (35) 

Equations (30), (31), (34), and (35) reveal that to dually 
generate the IDST and AIDCT requires 9 multipliers and 
7 adders, more than that required for the IDCT and 
AIDST. The result is shown in Fig. 6 .  To reduce the num- 
ber of multipliers and adders, substitute (34) and (35) into 
(30) and (31) and rearrange (30) and (31), we have 

a (2n  + 1) 
x,(n,  t + 1) = cos [ 2N j xs(n,  

- ($ - 1 )  (- 1)" 

a(2n + 1)  
cos [ 2N ]X(t + N )  

and 

a(2n + 1)  
xac(n, r + 1) = COS 

a(2n + 1 )  + sin [ 2N j x , (n ,  t )  - x ( t  + 1) 

* X(t + N )  + ($) (-1Y 

* X(t + N + 1). (37) 
The lattice module of this rearranged IDST and AIDCT 
is shown in Fig. 7 .  This structure differs from all the pre- 
vious lattice modules in that the input signals are added 
at the end of the lattice. From now on, we call this lattice 

structure a postlattice module and the previous ones pre- 
lattice modules. This postlattice module needs 7 multi- 
pliers and 7 adders, less than required for the correspond- 
ing prelattice module. A parallel post-lattice structure, 
which generates N transformed data simultaneously, re- 
quires 7N multipliers and 7N adders. All the forward and 
inverse transform pairs mentioned above have prelattice 
and postlattice structures. Not all postlattice structures are 
superior to their prelattice counterparts in the hardware 
complexity. For example, the IDCT and AIDST postlat- 
tice form can be expressed as 

n(2n + 1 )  
x,,(n, t + 1) = cos [ 2N ] X U S ( k  t )  

Y2,+ "1 + (-l)"X(t + N )  COS 

(38) 
and 

- X(t + 1) + ($ - 1 )  X ( t  + 1) 

(39) 

This postlattice module has 9 multipliers and 7 adders 
which are more than its prelattice realization. As to the 
DCT and DST, the postlattice form can be expressed as 

+ (5) cos (g) 
* [ - ~ ( t )  + ( - l ) k ~ ( t  + N ) ]  (40) 

and 

- (5) sin (g) 
[ - ~ ( t )  + ( - l ) k ~ ( t  + N ) ] .  (41) 
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x,c(n, t 1 

Fig. 6.  The prelattice structure for the IDST and AIDCT. 

In this case, the prelattice and postlattice modules have 
the same numbers of multipliers and adders. 

IV. DISCRETE HARTLEY TRANSFORM (DHT) 
According to Bracewell's definition of the DHT in [ 6 ] ,  

the data sequence x (n) and the DHT transformed data X ( k )  
have the following relation: 

1 f + N - l  a k ( n  - t )  
x,(k, t )  = - c x(n> cas ( 2  

N n = t  ) 
2 a k ( n  - t )  

N n = f  

+ sin ( 2 a k ( ~ -  '))I, 

The DHT uses real expressions cos (27rk(n - t ) / N )  + 
sin ( 2 a k ( n  - t ) / N )  as the transform kernel, while dis- 
crete Fourier transform (DFT) uses the complex exponen- 
tial expression exp ( i2ak  (n  - t )  / N )  as the transform ker- 
nel. Because the kernel of the DHT is a summation of 
cosine and sine terms, we can separate them into a com- 
bination of a DCT-like and a DST-like transforms as fol- 
lows: 

X , ( k ,  t )  = X c ( k ,  t )  + Xx(k ,  t )  (43) 

where 

1 f + N - '  
X&, t )  = - c x ( n )  

N n = r  

and 
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x(t+N)- t - x, (O,t+ 1 )  - 

- 
- 1  

x(t+ 1 ) 

x(t )  - 
- 
1 

1 /N 

1 -  
X i  ( k , t )  

Fig. 8. The lattice structure for the DHT fork = 1 ,  2, . . . , N - 1. 

The Xc (k, t) is the so-called DCT-I and the Xs (k, t) is the 

DHT can be decomposed into the combination of the 
DCT-I and DST-I, the dual generation of both for the 
DHT is thus possible. The DCT-I and DST-I of the data 
sequence [ x ( t  + l ) ,  x ( t  + 2), 

and 

$(k ,  t + 1) = X s ( k ,  t + 1) cos (2:) 

(F) 
DST-I that are defined by Yip and Rao in [22]. Since the - - 

- 
- Xc(k ,  t + 1) sin * , x ( t  + N)] are (49) 

and 1 
= Xc(k ,  t )  + ~ [ - x ( t )  + ~ ( t  + N ) ]  (50) 

1- and 

1 
N n = r + l  

X s ( k ,  t + 1) = - C x ( n )  sin 

further expressed as 
= X,7(k,  t). 

The lattice module for the DHT is shown in Fig. 8. For 
the case of k = 0, the lattice structure can be simplified 
as shown in Fig. 9. From Fig. 8, we can see that the 
numbers of multipliers and adders are less than those of 

Xc(k ,  t + 1) = Z C ( k ,  c + 1) cos 

(48) + Zs(k, t + 1) sin 
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X,(k,O) 1 -  I 

Fig. 10. The lattice structure for block-size-two operation on the DCT and DST 

the dual generation of the DCT and DST. The total num- where 
bers of multipliers and adders in the parallel DHT lattice N +  1 

Xc(k, 2) = x(n) cos architecture are 5N - 4 and 5N - 3, respectively. 
n = 2  

V .  BLOCK PROCESSING 

are based on the block-size-one update which means the 
time index is updated by one. That is, at each iteration 
only the effect of one old datum is removed and the in- 
formation of one new datum is added. We are interested 

block size. This motivates us to discuss the effect on the 
lattice structure when the block size is increased. 

All the time-recursive discrete transforms derived above = Xc(k, 0) + [ -x(O) + (- l ) k ~ ( N ) ]  COS 

(s) + [-x(l) + (-l)k~(N + I)] COS 

in the relation between the area-time complexity (AT) and (56) 

and 

A. Block Processing of Time-Recursive DCT and DST 
We begin the discussion of block processing with the 

block-size-two update. Here we assume the time index t 
in (1)  is zero for simplicity, and we will use this in the 
following discussions. As before, the transformed data 
X ,  (k, 2) and X, (k, 2) are defined as the DCT and DST of 
the input vector [ x ( 2 ) ,  x(3), - , x(N), x(N + l)]. That 
is, 

N +  1 

Xc(k, 2) = x(n) cos 
n = 2  

and 
N + I  

X,(k, 2) = x(n) sin 
n = 2  

To obtain Xc(k, 2) from X,(k, 0) and X,(k, 2) from X,(k, 
0) directly, we can rewrite Xc(k ,  2) and X,(k, 2) as 

2 nk 2ak 
Xc(k, 2) = xc(k, 2) cos (7) + x,(k, 2) sin (7) 

(54) 

2ak 2ak 
X,(k, 2) = x,(k, 2) cos (7) - Xc(k, 2) sin (7) 

(55)  

a(2n + l)k N +  1 - 
X,(k, 2) = n = 2  c x(n> sin [ 2N ] 

(2) = X,(k, 0) + [-x(0) + (-l)kx(N)] sin 

(57) 

The lattice module for the block-size-two update is shown 
in Fig. 10. There are two more multipliers in the lattice, 
i.e., the total number of multipliers is eight. To obtain the 
transformed data in parallel, we need N such lattice mod- 
ules. The latency for this kind of parallel structure is N/2 
and the total number of multipliers is 8N.  Since there is 
no complex communication problem in the lattice struc- 
ture, the area-time complexity (AT) can be approximated 
by the product of the number of multipliers and the time 
latency, plus the area-time complexity of the adders, 
which is o(m log (m)) for adding m data. Next, let us 
consider the more general case for the block-size-m up- 
date, where m ranges from one to N. The 1-D DCT and 
DST of block-size-m update are to obtain the transform 
of [x(m), x(m + l ) ,  * - , x(N + m - I)] directly from 
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X,(k,O) 

rc(2m) 
( ( -  I ) k x(N)-x(O)) rcc I ) 

( ( - 1  ) X(N+ I ) - x (  I ))rc(3) 

Xc(k,m) 

k 
h 

a 
a 

k 
((- 1 ) x(N+m- 1 ) -x (m-  I ) ) rc (2m+ I ) 

( ( - 1  ) x(N)-x(o))  rsc I 
k 

+ 
k Xs(k,m) 

a 
a 

( ( - 1 )  x (N+m- I ) - x (m- l ) )Tc (2m+ l )  
k 

Fig. 11. The lattice structure for block-size-m operation on the DCT and DST. 

the transform of [x(O), x ( l ) ,  * * , x(N - l)]. We have 

1 
N + m - 1  

Xc(k,  m )  = x ( n )  cos 
n = m  

(58) 
and 

N f m - 1  

1- x , ( k ,  m )  = C x(n) sin 
n = m  

(59) 
Applying the same procedure in the case of block-size- 
two update, we can write (58)  and (59) as 

Xc(k ,  m )  = x c ( k ,  m )  cos (F) + x,(k, m) sin (F) 

a ( 2 n  + 1)k N + m -  1 

x c ( k ,  m )  = c x ( n )  cos [ 2N ] 
n = m  

m -  1 

= Xc(k ,  0)  - C ~ ( n )  COS 
n = O  

a ( 2 n  + 1)k N + m - 1  

n = N  

m -  1 

= Xc(k,  0) + C [-x(n) + ( - l ) ' k ( N  + n)] 
n = O  

a ( 2 n  + 1)k 
* 'Os [ 2N ] 

and 
a ( 2 n  + 1)k N + m -  1 

n = m  

m -  I 

= x , ( k ,  0) - C x(n> sin 
n = O  

a ( 2 n  + 1)k N f m - 1  

n = N  

m -  1 

= Xc(k ,  0) + n = O  C [ - ~ ( n )  + ( - l ) ! X ( N  + n)] 

a(2rz + 1)k 
sin [ 2N 1. 

Combining those input terms with same cosine and sine 
multiplier coefficients together, we can obtain the lattice 
module for block size m as shown in Fig. 11. To obtain 
the transform data X ( k )  in parallel, N lattice modules of 
Fig. 1 1  are required. The total number of multipliers of 
the parallel structure is (4 + 2m)N,  the total number of 
adders is (3m + 2 ) N ,  and the throughput is 1 .  The area- 
time complexity due to multipliers and adders are (4 + 
2m)N and (3m + 2)N log ( ( 3 m  + 2 ) N ) ,  respectively. De- 
note ATm as the area-time complexity of the block-size- 
m update, then ATm = (4 + 2m)N + (3m + 2)Nlog ( ( 3 m  
+ 2 ) N ) .  For example, AT1 = 6N + [5N log (5N)] and 
AT2 = 8N + [8N log ( S N ) ] .  In the limiting case of block- 
size N update, i.e., we move a whole block of the input 
data sequence, ATN = (4 + 2 N ) N  + 3 N 2  log ( 3 N 2 ) .  In 
general, the area-time product gets smaller as block size 
m decreases. We found that when m = 1 ,  the minimum 
AT complexity is achieved. 

VI. MULTIPLIER REDUCTION OF THE LATTICE 
STRUCTURE 

In the VLSI implementation, the number of multipliers 
is an important factor to the cost and complexity of the 
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l z - ’  J 
x p - 1 1  

Fig. 12. The general prelattice module. 

. x, (t-1) 

Fig. 13. The model ot multiplier reduction. 

system. In this section, we develop two methods to reduce 
the number of multipliers in our parallel lattice structures. 
The first scheme makes use of a series input series output 
(SISO) approach and 2N multipliers can be saved; the 
tradeoff is that the latency and throughput is increased. 
The second approach, which reconstructs the structure 
into a double-lattice realization, saves N multipliers and 
the latency remains intact. 

A.  SISO Approach 
Let us consider this problem through a general lattice 

structure as shown in Fig. 12. Denote the output and input 
data at time t as (X,(t), X,(t)) and (x,,, x, , ) ,  respectively, 
where the input and output have the following relations: 

By dividing both equations by r4, we have 

x,(t)/r, = [ U t  - 1) + rl-%,lr2/~4 

+ - 1) + r3xsiI 

x~(t>/r4 = - 1) + r3xstIr2/r4 

(65) - [ U t  - 1) + rlxcfl. 

The lattice structure manifesting the above relations is 
shown in Fig. 13. It is noted that only four multipliers 
exist in this structure and the outputs obtained differ from 
the original one by a factor r4. To examine the effect of 
this multiplier reduction on the recursive operation from 
X, (1)  to X, ( N ) ,  we start with the derivation from t = 1 .  
That is 

&(1)/r4 = [x,(o) + rix,l]r2/r4 

xs(1)/r4 = [x@) + r3xsi1r2/r4 - [X,(o) 

[x,(o) + r3&11 

~ I & I ] .  

(66) 
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Fig. 14. The multiplier-reduced lattice module. 

F o r t  = 2 

xc(2) / r4  = [xC(1) + r l x C 2 i r 2 / r 4  + [x,(i) + r3xs2i 

xS(2)/r4 = [xs(l) + b 2 1 b / r 4  - [xm + r l x C 2 i .  

(67) 

Because the outputs at time t = 1 are XC(l)/F4 and 
Xs(1)/r4, Xc(l) and Xs(l) at (67) should be replaced by 
XC(l) / r4  and XS(l) / r4 .  To keep the above equations 
valid, we can multiply both equations by 1 /r4 as shown 

xcm/r: = [Xc(l)/r4 + ( r l / r4)xc2l r2 / r4  

XS(2)/G = [Xs(l)/r4 + (r3/r4)xs21r2/r4 

+ [XS( 1) / r4 (r3 /r4 k 2  1 

- [Xs(l)P4 + (rl/r4)xc21. (68) 

The coefficients of the input multipliers are r1/r4 and 
r 3 / r 4 ,  instead of I', and r3 at times t = 1, and the out- 
puts are Xc(2) /I' : and Xs(2) /r:. For t = N ,  the recursive 

equations become 

From the above derivations, we observe that the two mul- 
tipliers can be removed by using variable multipliers in 
the in ut stage where the coefficients (rl, l?l/I'4, 
r1/I'F-') and (r3, r 3 / r 4 ,  - . , r3/F:-') are store; 
in shift registers. The structure is shown in Fig. 14. The 
output can be obtained by multiplying the factor l? :. This 
kind of rearrangement does not save multipliers. How- 
ever, for N such lattice structures, the number of multi- 

* 

- 
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M(N- I )  

t = O ,  I ,2 ,  ,N- I 

Fig. 15. The complete parallel multiplier-reduced lattice structure. 

pliers can be reduced by using variable multipliers at the 
output stage and the coefficients for each stage r:(i), i = 
0, 1, 2, - - , N - 1, are stored in the shift registers. 
Fig. 15 shows the final structure where the total number 
of multipliers is 4N + 2. This means that the number of 
multipliers for N parallel such lattice structures is reduced 
from 6N to 4N + 2. The tradeoff is that 4N + 2 shift 
registers are required and the latency becomes 2N instead 
of N .  Also, this resulting structure is a SISO system, while 
the original parallel structure is a S IP0  system. 

For example, the variable-multiplier method derived 
above can be applied to the lattice structure of the DCT 
and DST. There are no multipliers needed for t = 0, 
therefore the module remains the same. For t = 1, 2, 
. . .  , N - 1, the multiplier-reduced lattice structure is 
shown in Fig. 15, where the coefficients are = cos 
( k ~ / 2 N ) ,  r2 = cos ( k n / N ) ,  r3 = sin ( k a / 2 N ) ,  and r4 
= sin ( k ? r / N ) .  The total number of multipliers is 4N - 
2 and the latency for this SISO structure is 2N. 

It is readily seen that the SISO approach for multiplier 
reduction is in fact a denormalization of the orthogonal 
rotation in the lattice. It is well known that the orthogonal 

rotation is numerical stable so that the roundoff errors will 
not be accumulated. However, the denormalized lattice 
does not have such a nice numerical property in finite- 
precision implementation, i.e., the roundoff errors may 
continue to accumulate and lower the signal-to-noise ra- 
tio. This effect can be minimized by giving enough reg- 
ister length such as double precision in the implementa- 
tion. Also, we note that since r4 < l ,  I't could be very 
small. Not enough precision may result in bad numerical 
accuracy when is multiplied at the output stage. Thus, 
the registers that store I'f do need enough precision to 
avoid the accuracy problem. The problems addressed here 
are consequences of the tradeoff between complexity and 
performance. 

B. Double-Lattice Approach 

forms: 
Generally, a postlattice structure has the following 
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I I 
X s ( k - l )  

denotes  r igh t  s h i f t  one b i t  

Fig. 16. The double-lattice form of the postlattice realization 

The operational flow chart of ( 7 3 )  is illustrated in Fig. 16. 
Instead of calculating the outputs from ( 7 0 )  directly (that 
requires 6 multipliers and 4 adders), the first lattice adds 
and subtracts X,(k - 1) and X,(k - l ) ,  then multiplies the 
results by r2 + r4 and r2 - r4, respectively. The results 
are called t 1 and t 2  as defined in ( 7 4 )  and ( 7 5 ) .  The sec- 
ond lattice adds and subtracts t I and t 2  again, then di- 
vides the results by 2 ,  which can be achieved by right 
shifting. Finally, we complete the computations by add- 
ing the inputs FIXck and r3xck - 2r4X,(k - 1). This re- 
construction can save one multiplier. A parallel postlat- 
tice structure with N lattice modules requires 6N 
multipliers and 4N adders. As for this reconstructed par- 
allel structure, only 5N multipliers and 7 N  adders are 
needed. This approach can be applied to all the parallel 
postlattice structures of different orthogonal transforms. 
In general, this parallel double-lattice structure can save 
N multipliers, but requires 3N more adders. The latency 
is N clock cycles and the system remains SIPO. 

VII. COMPARISONS OF ARCHITECTURES 
From the previous discussions, we see that the pro- 

posed unified parallel lattice structures have many attrac- 
tive features. There are no constraints on the transform 
size N .  It dually generates the two discrete transforms 
DCT and DST simultaneously. Since it produces the 
transformed data of subsequent input vector every clock 
cycle, it is especially efficient for systems with series in- 
put data such as communication systems. Further, the 
structure is regular, modular, and without global com- 
munication. As a consequence, it is suitable for VLSI im- 
plementation. 

Here, we would like to compare our lattice structures 
of the DCT and DST with those proposed in [ 1 4 ] ,  [15], 
[ 7 ] .  The architecture in [14] uses the matrix factorization 
method which is a representative of fast algorithms. In 
[15], an improved fast structure with fewer multipliers is 
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TABLE I 
COMPARISON OF DIFFERENT DCT ALGORITHMS 

Chen [I41 
Liu-Chiul Liu-Chit12 et. al. Lee [ 151 Hou 171 

No. of Multipliers 6N - 4 4N N In ( N )  W/2)  In (N) N -  1 
-3N/2 f 4 

[In(W (in 0" - 1)1/2 
power of 2 

3N/2 (order) 
power of 2 

Latency N 2N N/2  

U0 operation SIP0 SISO PIP0 PIP0 SIP0 

Limitation on Transform Size N no no power of 2 
Communication local local global global global 

TABLE II 
COMPARISON OF THE NUMBER OF MULTIPLIERS 

No Liu-Chiul Liu-Chiu2 Chen Lee Hou 
~ 

8 4412 32/2  16 12 I 
16 92 / 2  6412 44 32 15 
32 188/2 128/2 116 80 31 
64 38012 25612 292 192 63 

proposed. Hou's architecture in [7] uses recursive com- 
putations to generate the higher order DCT from the lower 
order one. The characteristics of these structures are dis- 
cussed in the introduction. A comparison regarding their 
inherent properties is listed in Table I.  To be clear, the 
quantitative comparisons in terms of the parameters, 
which are the numbers of multipliers, adders, and the la- 
tency, are given in Tables 11-IV. 

The lattice architecture with six multipliers in the mod- 
ule as shown in Fig. 2 is called Liu-Chiul structure, the 
one in Fig. 15 is called Liu-Chiu2, and the parallel struc- 
ture with the double-lattice modules as shown in Fig. 16 
is called Liu-Chiu3. The structure in Liu-Chiul has 6N 
- 4 multipliers, 5N - 1 adders, and the latency is N. 
There are 4N multipliers, 5N - 1 adders, and the latency 
is 2N in the structure of Liu-Chiu2. The number of mul- 
tipliers is reduced by the order 2N in the expense of dou- 
bling the latency and the data flow becoming SISO. The 
Liu-Chiu3 architecture has 5N multipliers and 7 N  adders 
and the latency is N clock cycles. From these tables, it is 
noted that the number of multipliers in our architectures 
is higher than that of others when N is small. This is due 
to the dual generation of two transforms structure which 
is compatible with Lee's. Since the numbers of multi- 
pliers and adders of our structures are on the order N, our 
algorithms have fewer multipliers and adders than those 
proposed in [14], [15]. Although Hou's algorithm has the 
fewest multipliers, his architecture needs global commu- 
nications and the design complexity is much higher than 
ours. In addition, the operations of other structures cannot 
start until all of the data in the block arrive. 

A comparison for our DHT structure based on the lat- 
tice module in Fig. 8 and different DHT algorithms [23], 
[18] is listed in Table V. The architecture in [23], a rep- 
resentative fast algorithm, is developed base on the exist- 
ing FFT method. Chaitali-JaJa's algorithm in [18] de- 
composes the transform size N into mutually prime 
numbers and implements them in a systolic manner. Their 
structure needs extra registers and the latency is higher 

TABLE I11 
COMPARISON OF THE NUMBER OF ADDERS 

No Liu-Chiul Liu-Chiu2 Chen Lee Hou 
~ 

8 39/2 3912 26 29 18 
16 1 9 / 2  1 9 / 2  1 4  81 41 
32 159/2 15912 194 209 88 
64 319/2 31912 482 513 183 

TABLE IV 
COMPARISON OF THE LATENCY 

No Liu-Chiul Liu-Chiu2 Chen Lee Hou 

8 8 16 4 6 13 
16 16 32 6 10 21 
32 32 64 8 15 44 
64 64 128 10 21 1 3  

than others. It is easy to see that our structure is better 
than others in terms of hardware complexity and speed. 

VIII. FILTER BANK INTERPRETATION OF THE TIME- 
RECURSIVE SINUSOIDAL TRANSFORMS 

Multirate digital filters and filter banks find applications 
in communications, speech processing, and image 
compression. There are two basic types of filter banks. 
An analysis bank is a set of analysis filters Hk(z )  and N- 
fold decimators which split a signal into N subbands. A 
synthesis filter bank (the right part of Fig. 17) consists of 
N synthesis filters Fk (2)  and N-fold interjiolators, which 
combine N signals into a reconstructed signal i ( n ) .  As de- 
scribed in Section 11, the time-recursive approach decom- 
posed the transformed domain data into N different com- 
ponents. If we are interested in the block-size4 transform 
and perform the N-fold decimation in the outputs of every 
lattice modules, the analysis bank is simply the series- 
input-parallel-output filter bank described in Fig. 17. Un- 
der this condition, the analysis bank is equivalent to per- 
form a transformation and the synthesis bank to perform 
an inverse transformation on successive blocks of N data 
samples. In this section, we describe how to employ the 
time-recursive concept to generate the synthesis banks 
based on the DCT, DST, and DHT. 

A .  Synthesis Bank Structure Based on DCT 
To perform the inverse transform in the synthesis bank, 

we feed the DCT transformed domain components X,(k) 
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0 0 

0 0 

0 0 

TABLE V 
COMPARISON OF DIFFERENT DHT ALGORITHMS 

0 

0 

0 

Liu-Chiu Sorenson [ 2 3 ]  Chitali-JaJa [ 181 

No. of Multipliers 4 N  NIn ( N )  - 3N + 4 N I  + N 2  
No. of Adders 
Latency N N In ( N )  NI + N 2  
Limitation on Transform Size no 

Communication local global local 

5 N  - 2 3 N  In ( N )  - 3 N  + 4 

power of 2 

4 N  + & 

N = N I  * N 2 ,  N I  and N 2  
are mutually prime 

I/O operation SIP0 PIP0 SISO 

t 
I I  
/ I  

t 

I I  t 

Analysis Bank Synthesis Bank 
Fig. 17. The filter bank structure. 

into the synthesis modules and combine all the outputs of 
every synthesis modules to produce the original input se- 
quence x,(n). That is, the synthesis bank performs the fol- 
lowing inverse DCT operations: 

transform generated by a specific synthesis filter. We can 
obtain the following recursive-generated relations for 
Tc(n, k) and Za,(n, k) as 

1 [ * k m  + 11 
N -  I x,(n + 1, k) = C(k)X,(k) cos 1. (76) rk(V l) 

= x,(n, k)  cos (g) - x,(n, k)  sin (g) x,(n) = c C(k)X,'(k) cos 
k = O  

Since in the synthesis bank different transform compo- 
nents are sent to independent synthesis modules, we 
therefore focus on a specific transform component. De- 
note x,(n, k) as the output signal generated by a specific 
synthesis module 

(78) 
and 

1 x,(n + 1, k)  = C(k)X,(k) sin 
Xc(n, k) = C(k)X,(k) cos p2,".,+ "1. (77) L LN J 

The time-recursive concept can be applied here to update 
Fc(n, k) recursively. Use the result in Section 111-A that 
IDCT and AIDST can be generated from each other re- 
cursively and denote x&, k) as the auxiliary inverse sine 

Z,,(n, k )  cos (g) + F,(n, k)  

sin (g) . (79) 
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Fig. 18. The synthesis bank structure of the DCT 

Equations (78) and (79) suggest that the Zc(n + 1, k) and 
X&, + 1, k) can be dually generated from the previous 
values x,(n, k) and Fa,@, k) in a lattice form as shown in 
Fig. 18. Because the initial values for x,(O, k) and xns(O, 
k) are 

and 

1 %h -k '7 k, = D(k)xs(k) 'Os 

= Fac(n, k) cos (g) - %(n, k) 
E1 X,(O, k )  = X,(k) cos 

and 

[$I Em(O, k) = Xm(k) sin 

this means that the x,(n + 1, k) and x,,(n + 1, k) can be 
generated by sending a sequence with Xc(k)  as the first 
element followed by N - 1 zeros into the input of the 
synthesis module. This is exactly the up sampling proce- 
dure required in the synthesis bank structure. The 
XaS(n, k) output is reset every N clock cycles. The synthe- 
sis module diagram for the DCT is plotted in Fig. 18. The 
inverse transform is obtained by summing all the outputs 
of the synthesis modules. 

B. Synthesis Bank Structure of the DST and DHT 
In this section, we apply the same approach mentioned 

in the previous section to the DST and DHT. The results 
are summarized as below. By using the dual generation 
concept, the operation of the synthesis module for the DST 
is 

sin ($) . 
Because D(k)  and C(k) have the same values for k = 1, 
2 ,  * - , N - 1 and D(N)  = C(0). Therefore, the struc- 
ture of the synthesis modules for the DST are the same as 
that for the DCT except for k = N .  

As for the DHT, the IDHT is defined as 
N- I 

xh(n)  = c Xh(k)  cas 
k = O  

N -  I 

k = O  

n = 0, 1, * * , N -  1. (84) 

Again, we separate them into a combination of a DCT- 
like and a DST-like transforms as follows: 

xh(n) = xL(n) + x l ( n ) .  (85) 

The operation of the synthesis module for the DHT is gen- 
erated from x i  (n) and the x i  (n) by the following relation 

xL(n + 1, k) = xL(n, k) cos (?) 
- x i  (n, k) sin ( N) 2 n k  (86) 

and 

x i ( n  + 1, k) = x i ( n ,  k) cos (?> 
2?rk 

- x ;  (n, k) sin ( N) . (87) 
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To obtain the IDHT xh(n) we must sum up both of the 
outputs of the synthesis modules. It is noted that the mul- 
tiplier coefficients in the synthesis module for the DHT is 
different from that of the DCT and DST. 

IX. CONCLUSIONS 
In this paper, unified time-recursive algorithms and lat- 

tice structures that can be applied to the DCT, DST, DHT, 
and their inverse transforms, are considered. In fact, there 
are various forms of sin and cosine transform pairs (the 
DCTUDSTI, DCTIVDSTII, DCTIIUDSTIII, DCTIV/ 
DSTIV, and complex lapped transform (CLT)) as men- 
tioned in [22], [33]. They also have their time-recursive 
lattice realizations. The procedures to attain the lattice 
structures of different transforms are similar and the re- 
sulting S IP0  lattice structures differ only in the multiply- 
ing coefficients and the input stage. All the transform pairs 
have their pre- and postlattice realizations that differ in 
that the input signals are added in the front and the end of 
the lattice respectively. The hardware complexity of the 
pre-lattice realizations and their postlattice counterparts 
depends on the definitions of the transforms and it cannot 
be readily determined which one is better. The number of 
multipliers in all the parallel lattice structures is a linear 
function of the transform size Nand the latency is N clock 
cycles. Two methods, the SISO and double-lattice ap- 
proaches, are developed to reduce the number of multi- 
pliers for the parallel lattice structures. The SISO ap- 
proach can reduce 2N multipliers and the latency becomes 
2 N .  The dpuble-lattice approach can reduce N multipliers 
and the latency remains intact. From the discussion of the 
block processing, it is noted that the area-time complexity 
is efficient when the block size m is small, especially when 
m = 1. All the resulting parallel structures are modular, 
regular, and only locally connected. Further, there is no 
constraint on the transform size N .  It is obvious that the 
design complexity of these structures is relatively low 
compared with other algorithms. The characteristics of 
these algorithms are suitable for processing series input 
data since the transformed data for sequential input can 
be obtained every clock cycle. Therefore, it is very at- 
tractive to VLSI implementations and high speed appli- 
cations such as HDTV signal coding and transmission. 

Since the orthogonal rotation is the major operation in 
the lattice, it is noted that such rotation can be easily im- 
plemented using coordinate rotation digital computer 
(CORDIC) [29], [30] which is known as an efficient 
method for the computation of orthogonal rotations and 
trigonometric functions. 
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