
1128 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

JET: Dynamic Join-Exit-Tree Amortization and
Scheduling for Contributory Key Management

Yinian Mao, Student Member, IEEE, Yan (Lindsay) Sun, Member, IEEE, Min Wu, Member, IEEE, and
K. J. Ray Liu, Fellow, IEEE

Abstract—In secure group communications, the time cost
associated with key updates in the events of member join and
departure is an important aspect of quality of service, especially in
large groups with highly dynamic membership. To achieve better
time efficiency, we propose a join-exit-tree (JET) key management
framework. First, a special key tree topology with join and exit
subtrees is introduced to handle key updates for dynamic mem-
bership. Then, optimization techniques are employed to determine
the capacities of join and exit subtrees for achieving the best time
efficiency, and algorithms are designed to dynamically update
the join and exit trees. We show that, on average, the asymptotic
time cost for each member join/departure event is reduced to
(log (log)) from the previous cost of (log), where is

the group size. Our experimental results based on simulated user
activities as well as the real MBone data demonstrate that the pro-
posed JET scheme can significantly improve the time efficiency,
while maintaining low communication and computation cost, of
tree-based contributory key management.

Index Terms—Contributory key management, dynamic tree
topology, secure group communications, time efficiency.

I. INTRODUCTION

THE advances in communication and networking technolo-
gies have paved ways for people to share and disseminate

information. Along with the growing exchange of information,
the security of communications has drawn increasing attention.
An important aspect of communication security is content con-
fidentiality and access control [1], which becomes a necessity
in a wide range of applications, such as bank transactions, tele-
conferencing, and data collection in sensor networks [2], [3].
For secure group-oriented applications, access control is a chal-
lenging task due to the potentially large group size and dynamic
membership.

To achieve confidentiality in group communications, a key
known to all group members is used to encrypt the communica-
tion content [4], [5]. This key is usually referred to as the group
key [6]–[8]. In a group with dynamic membership, the group
key needs to be updated upon each user’s join to prevent the
new user from accessing the past communications. Similarly,

Manuscript received April 26, 2004, revised June 17, 2005; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor K. Calvert. This work was
supported in part by the Army Research Office under Award DAAD19-01-1-
0494 and the National Science Foundation under Award CCR-0133704. This
work was presented in part in IEEE INFOCOM’04, Hong Kong, China.

Y. Mao, M. Wu, and K. J. R. Liu are with the Department of Electrical and
Computer Engineering, University of Maryland, College Park, MD 20742 USA
(e-mail: ymao@Glue.umd.edu; minwu@eng.umd.edu; kjrliu@eng.umd.edu).

Y. Sun is with the Department of Electrical and Computer Engineering, Uni-
versity of Rhode Island, Kingston, RI 02881 USA (e-mail: yansun@ele.uri.edu).

Digital Object Identifier 10.1109/TNET.2006.882851

upon each user’s departure, the group key needs to be updated
to prevent the leaving user from accessing the future communi-
cations. Thus, group members need to agree upon the same key
management protocol for key establishment and update. Some-
times the group key management protocol is also referred to as
the group key agreement.

A group key management scheme follows either a centralized
or a contributory approach. The centralized approach uses a cen-
tral key server to generate and distribute keys for all group mem-
bers [6], [9], [10], whereas, in the contributory approach, each
group member contributes his/her own share to the group key
[11]–[13]. Since contributory schemes do not rely on a central
key server, they become necessary in situations where: 1) a cen-
tral key server cannot be established, such as in ad hoc networks;
2) group members do not trust another entity to manage their pri-
vate keys; or 3) members and server do not share any common
knowledge about each other’s secret keys beforehand. Contrib-
utory schemes remove the need for the key server at the ex-
pense of performing computationally expensive cryptographic
primitives, such as modular multiplication and exponentiation
[4], [14]. This poses a challenge to the design of efficient key
agreements.

In the literature, many group key management protocols have
been proposed [6], [7], [9]–[13], [15]–[24]. The early designs of
contributory key agreements mostly consider the efficiency of
key establishment [25]–[27]. Among them, Ingemarsson et al.
first introduced a conference key distribution system (CKDS)
based on a ring topology [25]. Later, Burmester and Desmedt
proposed a key distribution system (BD) that takes only three
rounds to generate a group key [28]. Steiner et al. extended the
two-party Diffie–Hellman (DH) protocol and proposed group
Diffie–Hellman protocols GDH.1/2/3 [26]. Becker and Willie
studied the minimum communication complexity of contribu-
tory key agreements and proposed the octopus and -octopus
protocols [27], which have proven optimality for key establish-
ment. While achieving efficiency in key establishment, most of
these early schemes encounter high rekeying complexity in ei-
ther member join or departure. Recent research on key manage-
ment became more aware of the scalability issue. As a means to
improve scalability, a tree-based approach for group rekeying
was first presented in the centralized scenario by Wallner et al.
in [9] and Wong et al. in [6], independently. Later, tree-based
schemes were also proposed for the contributory setting by Kim
et al. in their TGDH scheme [12] and by Dondeti et al. in their
DISEC scheme [13]. The tree-based schemes use a logical key
tree to organize the keys belonging to the group members and
achieve a rekeying complexity of [6], [12], [13], [21],

1063-6692/$20.00 © 2006 IEEE

MAO et al.: JET: DYNAMIC JOIN-EXIT-TREE AMORTIZATION AND SCHEDULING FOR CONTRIBUTORY KEY MANAGEMENT 1129

where is the group size. In addition, [12] and [13] also pointed
out that the rekeying cost is related to both the key tree structure
and the location of member join or departure in the key tree and
suggested a balanced key tree to reduce the rekeying cost based
on heuristics. In [23], Zhu et al. proposed two schemes to opti-
mize the rekeying cost in centralized key management. The key
tree structure is reorganized according to the temporal patterns
of the group members or the packet loss probability along the
route from the key server to each member.

In this paper, we investigate the time efficiency of contributory
keyagreement. The time efficiency is measuredby the processing
time in group key establishment and update. In order to partici-
pate in the group communications, a joining user has to wait until
thegroupkeysareupdated.Sincecomputingcryptographicprim-
itives and exchanging rekeying messages are time-consuming,
such waiting time is not negligible. Similarly, the amount of time
needed to recompute a new group key reflects the latency in user
revocation. Thus, from a quality of service (QoS) perspective,
the rekeying time cost is directly related to users’ satisfaction
and a system’s performance. Traditionally, the rekeying time
complexity is analyzed only for one join or departure event. The
design rationale of our scheme is to look into the combination of
multiple events and optimize the time cost over the dynamics of
group membership. To improve the time efficiency, we design
a new key tree topology with join and exit subtrees, which are
small subtrees located close to the root of the key tree. With
this key tree topology, we propose a set of algorithms to handle
the key update for join and leave events. In particular, we show
through analysis that the sizes of join and exit trees should be at
the log scale of the group size. The resulting scheme is called
join-exit-tree (JET) group key agreement. Analytical results
show that the proposed scheme achieves an average asymptotic
time cost of for a join event and
for a departure event when group dynamics are known a priori.
In addition to the improved time efficiency, our scheme also
has low communication and computation complexity.

The remainder of this paper is organized as follows. Section II
discusses the efficiency issues in contributory key agreements
and proposes a few performance metrics. Section III presents
the JET topology and algorithms in our scheme. These algo-
rithms are integrated into a unified protocol in Section IV. We
present the simulation results in Section V and then discuss pro-
tocol implementation and other efficiency aspects in Section VI.
Finally, the conclusions are drawn in Section VII.

II. EFFICIENCY ASPECTS IN CONTRIBUTORY KEY AGREEMENT

A. Background on Tree-Based Contributory Key Management

We briefly review rekeying operations for join and leave
events in tree-based contributory key agreements [13], [12],
which use the two-party DH protocol [29] as a basic module.

In a tree-based key agreement, three types of keys are or-
ganized in a logical key tree, as illustrated in Fig. 1(a). The
leaf nodes in a key tree represent the private keys held by in-
dividual group members. The root of the tree corresponds to the
group key. All other inner nodes represent subgroup keys, each
of which is held by the group members that are descendants of

Fig. 1. Notations for a key tree. (a) Key tree. (b) User join.

the corresponding inner node. We denote the th group member
by and the key associated with the th node in the key tree
by . In addition, and are the exponentiation base and the
modular base for the DH protocol, respectively.

To establish a group key, the keys in the key tree are computed
in a bottom-up fashion. Users are first grouped into pairs and
each pair performs a two-party DH to form a subgroup. These
subgroups will again pair up and perform the two-party DH to
form larger subgroups. Continuing in this way, the final group
key can be obtained. An example is shown in Fig. 1(a) with four
group members, and member has private key . The group
key corresponding to node 1 is computed in two rounds as

In a user join event, the new user will first pair up with an in-
sertion node, which could be either a leaf node or an inner node,
to perform a two-party DH. Then, all of the keys on the path
from the insertion node to the tree root are updated recursively.
An example is shown in Fig. 1. When member joins the
group, node 7 in Fig. 1(a) is chosen as the insertion node. Then,

(node 7) and (node 9) perform a DH key exchange to
generate a new inner node 8 in Fig. 1(b), followed by the key
updates on the path node node node .

Upon a user’s departure, the leaving user’s node and its parent
node will be deleted from the key tree. Its sibling node will
assume the position of its parent node. Then all the keys on the
path from the leaving user’s grandparent node to the tree root
are updated from the bottom to the top.

B. Time-Efficiency Issues in Contributory Key Agreements

The time efficiency of DH-based contributory group key
agreement is usually evaluated by the number of rounds needed
to perform the protocol during a key update [12], [13], [25],
[26]. However, in some schemes, the number of operations
may be different in distinct rounds. For example, in GDH.2
[26], modular exponentiations are performed in the th round.
To address this problem, the notion of “simple round” was
introduced in [27], where every party can send and receive at
most one message in each round. In our work, we apply the
notion of simple round in the tree-based contributory schemes.
In each round, each user can perform at most one two-party
DH operation. With the new definition of round, we propose
performance metrics for time efficiency below.

1) Average Join/Leave Time: We define the user join time
as the number of rounds to process key updates for a user join

1130 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

event. The average user join time, denoted by , is defined
as

(1)

where is the total number of DH rounds performed for
join events. Similarly, the user leave time is defined as the

number of rounds to process key updates for a user leave event.
The average user leave time, denoted by , is defined as

(2)

where is the total number of DH rounds performed for
leave events. Let and

. The overall average processing time is defined as

(3)

where can also be interpreted as a weighted average of
and as .

C. Communication and Computation Efficiency

The communication efficiency of a contributory key agree-
ment refers to the number of messages sent for a key update
during a join or leave event. The underlying assumption is that
sending each message incurs about the same communication
cost. In practice, the size of each message could be different.
However, the main cost in sending a rekeying message is the cost
in software and hardware to go through the protocol stack and
form a packet, along with the cost in networks while routing and
transmitting the packet. Similar to the case of time efficiency, we
choose the average number of messages per user join or depar-
ture as the performance metric for communication efficiency.

In a DH-based contributory group key agreement, the com-
putation of modular exponentiation dominates the total compu-
tation cost. Therefore, we use the average number of exponenti-
ations per join or departure event as the performance metric for
the computation efficiency.

III. JET ALGORITHMS

In this section, we present a new logical key tree topology
and the associated algorithms to achieve better time efficiency
in contributory key agreement. As shown in Fig. 2(a), the pro-
posed logical key tree consists of three parts: the join tree, the
exit tree, and the main tree. The proposed key tree is a binary
tree built upon the two-party DH protocol. We refer to the key
tree in Fig. 2(a) as a join-exit tree and a key tree without spe-
cial structures as a simple key tree. The prior works have shown
that, if a user joins the group at a location closer to the tree root,
fewer number of keys need to be updated, thus the join time will
be shorter. Similar reasoning applies to user departures. So the
join tree and exit trees should be much smaller than the main
tree. We define the join tree capacity and the exit tree capacity,
denoted by and , as the maximum number of users that
can be accommodated in the join and exit trees, respectively.
The number of users in the join tree and the main tree are de-
noted by and , respectively.

In the proposed scheme, a joining user will first be added to
the join tree. Later on, when the join tree reaches its capacity, all
users in the join tree will be relocated together into the main tree.

Fig. 2. Topology for the proposed join-exit tree. (a) Join, exit, and main trees.
(b) Join and main trees.

Fig. 3. User join at the join tree root. Note that the new userM becomes the
root of the join tree.

In addition, when users’ departure time is known, users who are
most likely to leave in the near future will be moved in batch from
the main tree to the exit tree. The design rationale of the join and
exit trees resembles that of memory hierarchy in computer de-
sign [30]. Furthermore, the capacities of the join and exit trees
can change over time, resulting in a dynamic key tree structure.
For example, when there is no user in the exit tree, the key tree re-
duces to a main tree and join tree topology, as shown in Fig. 2(b).

A. Join Tree Algorithm

The join tree algorithm consists of four parts: the join tree ac-
tivation, the insertion strategy, the relocation strategy, and the
join tree capacity update. When the group has only a few mem-
bers, the join tree is not activated. As the group size increases
and exceeds a threshold we activate the join tree and choose an
initial join tree capacity. Such a threshold condition is referred
to as the activation condition for the join tree. After the activa-
tion, any user joining the group is first inserted to a node in the
join tree. The insertion node is chosen according to the insertion
strategy. When the join tree is full, the members in the join tree
are merged into the leaf nodes of the main tree. Such a process
is called the batch relocation. Since the number of users in the
main tree is changed after the batch relocation, the join tree ca-
pacity is updated according to a rule that relates the join tree
capacity to the main tree user number. According to this rule,
the optimal join tree capacity in the sense of time efficiency can
be computed. We explain these four parts in details below.

1) User Insertion in the Join Tree: When the join tree is
empty and a new user wants to join, the root of the current key
tree is chosen as the insertion node. The insertion is done by
treating the entire existing group as one logical user, and per-
forming a two-party DH between this logical user and the new
user. This process is illustrated in Fig. 3, where the new user
becomes node 9, which is the root of the join tree. Member

MAO et al.: JET: DYNAMIC JOIN-EXIT-TREE AMORTIZATION AND SCHEDULING FOR CONTRIBUTORY KEY MANAGEMENT 1131

Fig. 4. Sequential user join strategy (only the join tree is shown).

is paired up with the original root of the key tree (node 1) to per-
form a DH key exchange and the new group key is established
as node 8. When the join tree is not empty, the insertion node
is determined by Algorithm 1, where returns
the number of users under a given node in the key tree. After
the insertion node is found, the new member node performs a
two-party DH key exchange with the insertion node. Then the
keys on the path from the insertion node to the tree root are up-
dated through a series of DH key exchange. Fig. 4 illustrates the
growth of the join tree from one user to eight users using the
insertion strategy.

Algorithm 1 Finding the insertion node

while for some integer do

end while

2) Batch Relocation: We present two relocation methods that
differ in whether the subgroup keys in the join tree are preserved.
In the first method, all users in the join tree are viewed as a log-
ical user during relocation, and this logical user is inserted into
the shortest depth leaf node of the main tree. Thus, the subgroup
keys among the users in the join tree are preserved. This process
is shown in Fig. 5(a). Then, all keys along the path from the in-
sertion node to the tree root are updated, which is indicated by
the dashed line in Fig. 5(a). The reason to choose the shortest
branch leaf node in the main tree as the insertion node is to guar-
antee that the relocation time is at most the log of the main tree
size (), because the shortest branch must be smaller
than or equal to the average length of the branches, which is

.1 The only exception comes when the main tree is a
complete balanced tree, and the relocation time is ,
because one more level of the key tree must be created to ac-
commodate the new logical user.

In the second relocation method, we find the shortest
depth leaf nodes in the main tree as the insertion nodes for

1Throughout this paper, log stands for base-2 logarithm and ln stands for
natural logarithm.

join tree user. These insertion nodes are found so that the imbal-
ance of the key tree can be alleviated by the relocation process.
Then, we relocate the join tree users simultaneously to the inser-
tion nodes. The keys on the branches from all original join tree
users to the tree root are updated in parallel and finally a new
group key is obtained. This process is illustrated in Fig. 5(b).
To analyze the time complexity, we note that this relocation
may fill up the empty nodes at the shortest depth leaf nodes
of the main tree. The maximum depth of any relocation path
would not exceed . Since the join tree is much
smaller than the main tree, the relocation time is upper bounded
by .

Although the two relocation methods have similar time com-
plexity, the first method will generally produce a skewed main
tree. Since users may leave from a branch longer than the av-
erage depth of the key tree, an unbalanced key tree may cause the
user departure time to be longer than the case when a balanced
key tree is used. The second relocation method helps maintain
the balance of the key tree, which reduces the expected cost of
leave events [12]. We shall choose the second relocation method
in this work because it takes into consideration both the join and
leave time cost.

3) Optimal Join Tree Capacity: Using the proposed insertion
strategy, the user join latency for the th user in the join tree is
measured as rounds, which is listed in Table I. We observe
a special property of the sequence , namely

(4)

where is a nonnegative integer and a positive integer. For
the user join latency in (4), the following inequality holds
for any positive integer , and equality is achieved when is of
power of 2

(5)

The proof is presented in Appendix I.
Consider the average join time for users joining the group

starting form an empty join tree. These users are inserted into
the join tree one by one, then they are relocated together into
the main tree. From previous analysis, we can see that, when the
main tree has users, the average join tree relocation time is

, where we relax the integer value of the tree height to

1132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

Fig. 5. Relocation methods for the join tree. (a) Method 1. (b) Method 2.

TABLE I
LATENCY OF SEQUENTIAL USER JOIN

a continuous value to simplify analysis. Taking into account the
relocation time, the average join time for these users is

(6)

Using (5), we obtain

(7)

Since it is not easy to minimize directly, we try to minimize
its upper bound over . The optimal join tree capacity that
minimizes the upper bound is given by

(8)

The above analysis shows that, for a given number of main
tree users and the insertion rule specified by Algorithm 1,
the optimal join tree capacity is . Since between two
consecutive join tree relocations, the main tree size is fixed at

, the join tree capacity should also be fixed during this time
at and the average join time is upper bounded by

(9)

This upper bound indicates that, on average, a user needs to
spend only rounds for a rekeying operation in
user join, where is the group size. We note that this asymptotic
performance is not affected by the variation of the relocation
time, because the relocation time of around rounds is
averaged over join events, contributing approximately
only one round to the average join cost. This validates the use
of the approximate average relocation time in the above
analysis.

For the joining users, since they can start to communicate
once they are inserted into the join tree, their waiting time do

not include the relocation time of rounds. We refer to
the waiting time for the joining users as user join latency. We
can see that the average user join latency is also upper
bounded as

4) Join Tree Activation: To decide whether to activate the
join tree, we compare the average join time with and without
employing the join tree. For a key tree structure with join tree,
adding each user in the join tree incurs at most a time cost of

rounds. Consider the average user join time for users
when the join tree changes from empty to full, followed by a
batch relocation of rounds. The average join time for
these users satisfies

(10)

If a simple key tree with only a main tree is used, the average
join time would be at least . Consequently, a reduction
in time cost can be obtained by using the join tree when the
following inequality holds:

or equivalently

(11)

We can see that, when the number of users in the group is large
enough, a join tree should be activated to reduce the average
join time. In Appendix II, we show that, when ,
the inequality (11) is satisfied for any . Thus, we have
found a threshold group size . When the group size
is smaller than or equal to 8, a simple key tree is used. Otherwise,
the join tree is activated.

B. Exit Tree Algorithm

In some group applications, users can estimate the duration
of their staying time according to their own schedule. Such in-
formation can help reduce the time cost of rekeying operations
in user departure. In the following analysis, we assume that we
can obtain accurate information about users’ duration of stay.
In later sections, the cases of inaccurate or unavailable staying
time will be discussed.

MAO et al.: JET: DYNAMIC JOIN-EXIT-TREE AMORTIZATION AND SCHEDULING FOR CONTRIBUTORY KEY MANAGEMENT 1133

Similar to the join tree algorithm, the exit tree algorithm con-
sists of four parts, namely, the activation condition, the batch
movement, the user insertion in the exit tree, and the optimiza-
tion of the exit tree capacity.

1) Batch Movement: The batch movement refers to the oper-
ations to move the users that are likely to leave in the near future
from the main tree to the exit tree. The group communications
is not interrupted since the old group key can still be used before
the batch movement is completed.

A batch movement takes place when there is a user leaving
from the exit tree and a batch movement condition is satisfied.
Denoting the number of users in the exit tree after the last batch
movement as and the current number of users in the exit tree
as , we propose a batch movement condition as

(12)

where is the exit tree residual rate (residual rate for
short), a predetermined parameter to control the timing of batch
movement. In a batch movement, the first users who are most
likely to leave soon are moved to the exit tree, where is re-
ferred to as the batch movement size. Starting from an empty
exit tree (), the number of users in the exit tree after the

th batch movement will be upper bounded by . As
goes to infinity, the number of users in the exit tree converges

to the upper bound . Therefore, the exit tree capacity
is related to the batch movement size by

(13)

We propose to use a priority queue [31] to keep the departure
time of all the users in the main tree. This queue is referred to
as the leaving queue. The users’ departure time is obtained from
their arrival time and their estimated staying time. The leaving
queue will be updated under two circumstances. First, after a
batch relocation of the join tree, the departure information of
the join tree users are added to the leaving queue. Second, after
the batch movement of the exit tree, the departure information
of the moved users are removed from the leaving queue.

2) User Insertion in the Exit Tree: The insertion locations for
the users being moved into the exit tree are chosen to maintain
the balance of the exit tree. For each user insertion, the leaf node
with the minimum depth in the exit tree is chosen as the insertion
node.

3) Optimal Exit Tree Capacity: Here we derive the optimal
exit tree capacity that minimizes an upper bound of the average
leaving time. Suppose that users are moved together into the
exit tree. A batch movement of these users will incur a time
cost of , where is the average height of the
main tree, and the addition of two refers to the additional two
levels above the main tree due to the use of the join tree and the
exit tree [refer to Fig. 2(a)]. If the exit tree capacity is , each
user leaving from the exit tree will incur at most a time cost of

. Thus, the average user leave time for these users
is bounded by

(14)

Using (13), , and minimizing the right-hand side
of (14), we obtain

(15)

When the capacity of the exit tree is computed as in (15), the
average leave time is bounded by

(16)

where . Combining (15)
and (13), we have

(17)

A few comments should be made to provide more insights
from the above analysis. First, the batch movement size is
only determined by the number of users in the main tree and
independent of the residue rate . Second, there are actually
only two parameters, and , in our system, since the exit tree
capacity is a function of and as in (13). Third, with per-
fect departure information, the average leave time is bounded
by , where is the group size, and the residue rate

should be set to 0 to minimize the upper bound in (16). How-
ever, in practice, the choice of is a tradeoff. When is 0,
a batch movement cannot be performed unless the exit tree is
completely vacant. If some users inaccurately estimate their de-
parture time and stay in the exit tree for a long period of time,
no other users can utilize the exit tree during that period. When

is close to 1, batch movements are frequently performed, re-
sulting in a large overhead. Based on experimental heuristics,
we suggest setting to around 0.5.

4) Activation of Exit Tree: The average leave time using a
simple key tree with users is . Comparing this result
with the upper bound in (14), a reduction in the average leave
time can be obtained if

(18)

Using (15), we simplify the above condition as

(19)

Similar to the case of the join tree activation, we can prove
that, when the exit tree capacity is chosen as in (15), the in-
equality (19) is satisfied for any . Thus, we have
found a threshold group size . When the group
size is larger than this threshold, activating the exit tree can re-
duce the average leave time.

IV. GROUP KEY AGREEMENT BASED ON JET

In this section we present a protocol suite of the JET group
key agreement, which consists of a key establishment protocol,
a user join protocol, and a user leave protocol. These protocols
are based on the algorithms we discussed in the previous section.

A. Group Key Establishment

Many prior works [21], [25] assume that all group members
are available before starting the group communications, thus

1134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

parallel computation can take place to establish a group key. We
refer to this situation as concurrent user join. In reality, there are
situations when members join the group sequentially, and we
refer to them as sequential user join. The proposed JET scheme
treats the key establishment in these two types of situations dif-
ferently. For concurrent user join, subgroup keys in the key tree
are computed in a bottom-up fashion in parallel to obtain the
final group key, as in [21]. For sequential user join, we use the
join protocol (as discussed below) to handle the sequential key
updates. The join tree is activated when the group size exceeds
the activation threshold , but the exit tree will not be
activated during the key establishment stage.

B. Join Protocol

The key update for a user join event follows the next few
steps.

1) Choose an insertion node in the key tree.
a) Before the join tree is activated, Algorithm 1 is used

in the simple key tree to choose the insertion node.
b) After the join tree is activated, when inserting the new

user according to Algorithm 1 will not make the join
tree height more than , the insertion strategy
in Algorithm 1 is followed. Otherwise, the insertion
node will be chosen as the leaf node with the min-
imum depth in the join tree. (When there are user de-
partures from the join tree, this helps keep the join tree
balanced.)

2) The insertion node and the new member perform a two-
party DH key exchange. Then all the keys on the path from
the insertion node to the root are updated subsequently.

3) Adjust the key tree topology and parameters according to
the rules specified as follows.

a) When the group size is larger than , the
join tree is activated. When the group size is larger
than , the exit tree is activated.

b) When the join tree becomes full after a join event,
users in the join tree are relocated into the main tree
using the relocation strategy in Section III. Addition-
ally, the departure information of those users who can
report their staying time is stored in the leaving queue.

c) Update the join and exit tree capacities according to
(8) and (15), respectively.

C. Leave Protocol

The exit tree residual rate is set to . The key update
for a user leave event follows the next few steps.

1) Delete the leaving user node and its parent node. Promote
the leaving user’s sibling node to their parent node’s po-
sition. Mark the keys on the path from the leaving user’s
grandparent node to the tree root as to be updated later.

2) When the user is leaving from the main tree and there are
also users in the join tree, perform a join tree relocation.
Mark the keys to be updated for relocation.

3) Update all the keys marked in step 1 and 2 from the bottom
to the top of the key tree.

4) When the user is leaving from the exit tree and the batch
movement condition is satisfied, perform a batch move-
ment as specified in Section III.

Fig. 6. Average time cost for sequential user join.

5) Perform the updates for key tree management as follows.
a) Remove the leaving user’s departure information if it

is in the leaving queue.
b) Compute the new join and exit tree capacities ac-

cording to (8) and (15), respectively. If the newly-
computed join/exit tree capacity becomes larger than
the current number of users in the join/exit tree, the
join/exit tree capacity is updated immediately. Other-
wise, no update is done.

c) When the main tree user number falls below the
threshold for join/exit tree activation and the join/exit
tree is empty, the join/exit tree is deactivated.

V. EXPERIMENTS AND PERFORMANCE ANALYSIS

Here, we present three simulations. The first simulation
focuses on group key establishment, in which we consider
sequential user join. The second and third simulations have
both join and departure activities. In each simulation, the per-
formance of our proposed scheme is compared with that of the
TGDH scheme [12], which is a typical tree-based contributory
key agreement.

A. Key Establishment for Sequential User Join

For sequential user join, the proposed JET protocol uses a
simple key tree for small group size, and activates the join tree
when the group size is larger than 8. The exit tree will not be acti-
vated. We compare the average join time for sequential user join
using the proposed JET and TGDH [12] in Fig. 6. It can be seen
that JET achieves the same performance as TGDH when the
group size is small and outperforms TGDH when the group size
becomes large. Regarding the asymptotic performance, TGDH
achieves an average time cost of , while the proposed
JET scheme achieves . The dashed line in Fig. 6
shows the theoretical upper bound for the average time cost
from (9).

MAO et al.: JET: DYNAMIC JOIN-EXIT-TREE AMORTIZATION AND SCHEDULING FOR CONTRIBUTORY KEY MANAGEMENT 1135

Fig. 7. Average join and leave time for simulations using MBone data.

B. Experiment Using Mbone User Activity Data

In this simulation, we choose three user activity log files from
three Multicast Backbone (MBone) multicast sessions [32] as
user activity for our simulation. Two of these three sessions are
NASA space shuttle coverage and the other one is a CBC News
World online test.2

Fig. 7 shows the experimental results using the JET and
TGDH schemes, where we can see that JET has about 50%
improvement over TGDH in user join and about 20% improve-
ment in user departure. It is worth noting that the improvement
in user departure does not result from the use of the exit tree,
since all three sessions have a maximum group size below 100
and the exit tree is not activated. From the study of the MBone
multicast sessions, Ammeroth et al. observed that the MBone
multicast group size is usually small (typically 100-200), and
users either stay in the group for a short period of time or a very
long time [33], [34]. Using the proposed JET scheme, the exit
tree will not be activated for a small group size. However, when
a user stays in the group for only a short period of time, it is
highly likely that this user joins and leaves the group in the join
tree without getting to the main tree. Thus, the use of the join
tree reduces both the user join time and the user leave time.

C. Experiments Using Simulated User Activity Data

In this experiment, we generate user activities according to
the probabilistic model suggested in [33]. The duration of sim-
ulation is 5000 time units and is divided into four nonoverlap-
ping segments, – . In each time segment , users’ arrival
time is modeled as a Poisson process with mean arrival rate ,
and users’ staying time follows an exponential distribution with
mean value . The values of and are listed in Table II.
The initial group size is 0. The simulated user activities consist
of about 12 000 join and 10 900 leave events. The maximum
group size is approximately 2800, and the group size at the end
of simulation is about 1100.

2The sources of these MBone sessions are: 1) NASA-space shuttle STS-80
coverage, video, starting time 11/14/1996, 16:14:09; 2) NASA-space shuttle
STS-80 coverage, audio, starting time 12/4/1996, 10:54:49; and 3) CBC News-
world on-line test, audio, starting time 10/29/1996, 12:35:15.

TABLE II
STATISTICAL PARAMETERS FOR USER BEHAVIOR

In practice, users’ accurate staying time will not always be
available. To model the inaccuracy in users’ estimated staying
time (EST), we consider three classes of users. The first class of
users do not report EST, the second class of users reports accu-
rate EST, and the third class of users reports inaccurate EST. In
the third class, the EST for user is modeled as a random vari-
able with Gaussian distribution , and the mean value

is the actual staying time.3 We also assume that, in the third
class, the ratio of the standard deviation to the mean of the
EST is constant across the users and is denoted by .
The probability that a user is in the first, second, and third classes
is denoted by , , and , respectively.

In the first experiment, we consider that a user either does not
report EST or reports an accurate EST, i.e., . By
varying the value of , the average join and leave time costs are
shown in Fig. 8, where the average leave time increases with
almost linearly. The only exception is the data point at ,
i.e., when no user reports EST. When , the average join,
leave, and overall time costs are: , ,
and . This is the situation when the exit tree is not
activated during the group lifetime. From these data, we can
see that, when the exit tree is not used, the average overall time
cost is equal to or lower than the costs when . This
is because activating the exit tree increases the depth of the key
tree by one. When is large, a large portion of users without
departure information cannot take advantage of the exit tree, and
the overhead of the exit tree structure outweighs its benefit. The
benefit of the exit tree is substantial as long as more than 30%
(corresponding to) or more users report accurate EST.
We have also compared the performance of JET with that of
TGDH in Fig. 8, where the performances of TGDH are shown
as horizontal lines because they do not vary with probability

. We can see that JET always outperform TGDH in terms of
the overall time cost and the join time cost. For user leave time
cost, JET will outperform TGDH as long as more than 35% of
the users report accurate EST.

The average leave time presented in Fig. 8 consists of three
parts, namely, the cost of users leaving from the exit tree, from the
main tree, and from the join tree, respectively. We illustrate these
three parts in Fig. 9. In particular, to obtain the first part, we obtain
the average leave time for users leaving from the exit tree; then,
we multiply it with the percentage of user departures from the
exit tree with respect to the total number of user departure events.
The other two parts can be computed similarly and the average
leave cost is the summation of these three parts. We can see that,
when is small, the user leave time is dominated by the time
cost of the users leaving from the exit tree. As increases, the
user leave time is gradually dominated by the time cost of users
leaving from the main tree. In this experiment, most users will

3Because of the Gaussian distribution, a user could report a negative staying
time. Such a case is treated as EST unavailable.

1136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

Fig. 8. Average join, leave, and overall time costs for the first experiment using
simulated data. A user either does not report EST with probability P or reports
accurate EST with probability P = 1 � P .

Fig. 9. Breakdown of the contributions to the user leave time in Fig. 8. Shown
in the figure is the contribution to the user leave time by users leaving from the
exit tree, the main tree, and the join tree. These contributions (in rounds) are
plotted against P , with P = 1 � P .

stay in the group for a nontrivial period of time, therefore the
percentage of users leaving from the join tree is very small.

In the second experiment, we consider that all users will report
EST (). The degree of deviation is at ,
and varies in the range of [0,1]. The average join and leave
times under different values are plotted in Fig. 10. We can see
that, when the proportion of inaccurate estimates is
small, the proposed JET scheme can achieve good time efficiency
in both join and leave events. However, the average leave time
is sensitive to the change in value, especially in the range
where is small, where the gain obtained by using the
exit tree diminishes quickly with the increase of .

In the third experiment, all users report inaccurate EST, which
corresponds to . The average join and leave time
costs are simulated when the value of is in the range of [0,1].
Fig. 11 shows that, when the standard deviation is two orders

Fig. 10. Average join, leave, and overall time costs for the second experiment
using simulated data. A user either reports accurate EST with probability P

or reports inaccurate EST with probability 1 � P . For inaccurate EST, the
deviation parameter is R 2 f0:1; 0:2; 0:3g.

Fig. 11. Average join, leave, and overall time costs for the third experiment
using simulated data. All users report inaccurate EST. The deviation parameter
is R 2 [10 ; 1].

TABLE III
SIMULATED DATA EXPERIMENT: P = 0, P = 0:1, AND R = 0:1

of magnitude smaller than the true staying time (),
the proposed JET scheme can efficiently manage both user join
and leave events. We also note from Figs. 10 and 11 that, when
a large portion of users do not report accurate estimation, the
advantage of the exit tree diminishes.

Table III lists the average and the worst case time costs for
JET with both join and exit trees (when , ,

MAO et al.: JET: DYNAMIC JOIN-EXIT-TREE AMORTIZATION AND SCHEDULING FOR CONTRIBUTORY KEY MANAGEMENT 1137

and), JET using only the join tree, and TGDH. All of
the worst case time costs do not change with the simulation pa-
rameters (, , and). Comparing the performance of JET
using only the join tree, which does not depend on users’ re-
ported EST, with that of JET using both join and exit trees, we
can see that the exit tree indeed provides a reduction in terms of
the average overall time cost, even when around 10% of users
report inaccurate EST. Comparing these time costs with those
of TGDH, we can see that the proposed JET scheme can im-
prove time efficiency in terms of the average time costs, while
tolerating a small amount of inaccuracy in EST. However, for a
group of size , the worst case operation time of JET using only
the join tree is and that of JET using both join and
exit trees is . These worst case time costs are one and
two more rounds than that of TGDH, respectively. This is due
to the increased depth by the join and exit tree structure, which
we refer to as the structural overhead of the JET scheme.

Two observations can be made from the above experiments.
First, regardless of the accuracy in EST, the join tree scheme
can improve the time efficiency for join events. Second, al-
though the inaccuracy in EST comes in different forms (no
EST or inaccurate EST), the overall operation time is not very
sensitive to the change of experiment parameters , , and

. This is because inaccurate EST leads to user departures
from the main tree. When users leave from the main tree,
we simultaneously relocate the users from the join tree to the
main tree (refer to Section IV-C). As such, part of the join tree
relocation cost can be amortized by the leave cost. Such an
amortized cost can be counted either toward the join time or
toward the leave time. In this paper, we have counted it toward
the leave time. Therefore, when we see a cost increase in user
leave events, we will often see a cost reduction in user join
events, which will partially offset the overall cost increase in
the overall efficiency.

VI. DISCUSSIONS

A. Extension to Multilevel Join Tree

The idea of caching the joining and leaving users, as in the
design of memory hierarchy, can be extended to multiple levels.
Here we illustrate an extension of the one-level join tree to a
two-level join tree. We consider a new join tree topology, where
a smaller join tree is attached directly to the tree root, a larger
join tree is attached one level lower from the tree root with the
main tree as its sibling sub-tree. We refer to the smaller join
tree as Level-1 join tree and the larger one as Level-2 join tree,
respectively. Such a topology can be visualized as in Fig. 2(a),
where the exit tree is replaced by the Level-2 join tree. We note
that the exit tree does not exist in this topology.

We compare the average join time using a two-level join tree
with that using a one-level join tree and try to find the condi-
tion under which the two-level join tree has advantage over the
one-level join tree. From our analysis, the smallest group size
that can benefit from a two-level join tree is around or greater
than 180. Compared to the activation group size of eight for
the one-level join tree, the result shows that the two-level join
tree would improve the rekeying time efficiency when the group
grows larger.

B. Implementation of Key Agreement

Here, we discuss two implementation methods for the pro-
posed JET protocol with and without a group coordinator. We
show that these two implementations will give the same time
cost.

In the first case, we consider using a group controller in
the implementation of JET. In [11], a group controller was
suggested to be one of the group members who knows all group
membership information and facilitates adding and excluding
members. However, the group controller does not have the
knowledge of the secret keys of other members and therefore
would not violate the security requirements of the contributory
key management. The joining/leaving user will send a request
to the group controller. Then the group controller sends a
broadcast message specifying the change in the logical key
tree, including the insertion node ID and adjustment of the key
tree structure. For each join tree relocation or batch movement
to the exit tree, the group controller will also send a broadcast
message to specify to where each user will be relocated. The
group controller would have a storage overhead proportional
to the group size as it needs to store the topology of the key
tree. In addition, the group controller has a communication
overhead of one broadcast message per join or leave event and
one broadcast message for each batch relocation, which takes
place infrequently. When the current group controller leaves
the group, another member in the group is chosen as the new
group controller and the related information is passed from the
leaving group controller to the new one. The group controller
can also be a nonmember entity.

The second implementation does not require a group con-
troller. Instead, each group member stores the topology of
the key tree and follows the JET protocol. Thus, all users can
achieve consistent action for key update. During a join event,
the joining user will broadcast a request to the whole group.
All members will find the same insertion node according to the
insertion strategy, and then a sponsor is chosen as the rightmost
leaf node in the subtree rooted at the insertion node [12]. Since
the sponsor knows all of the subgroup keys along the path
from the insertion node to the root, the sponsor will perform
a two-party DH key exchange with the new user, compute the
keys on the path from the insertion node to the tree root, and
then broadcast the blinded keys on this path. The blinded keys
are the results of exponentiation base raised to the power of
the secret keys, which can be publicly known. Such a procedure
is detailed in [12]. When a leave event occurs, the sponsor is
chosen as the rightmost leaf node of the subtree rooted at the
leaving user’s sibling node, and a key update procedure similar
to that of a join event takes place. Since all users have the
same view of the key tree structure, they can also cooperate
in the update operations of the key tree, such as the batch
relocation/movement.

An important factor in the rekeying cost is the depth of the
joining/leaving node . In the first implementation, rounds
of DH key exchange will be performed in key update, which
has exponentiations and message transmissions in total.
in the second implementation, the sponsor needs to compute

1138 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

TABLE IV
COMPARISON OF REKEYING PROTOCOL COMPLEXITY (GROUP SIZE n)

unblinded keys and blinded keys and send messages. There-
fore, the two implementations have the same total computation
and communication cost, as well as the same time complexity.
However, in the second implementation, half of the computa-
tion load and almost all communication load are on the sponsor.
As for the storage overhead, in the first implementation, only
the group controller needs to store the structure of the key tree,
whose size is proportional to the group size. In the second im-
plementation, each user needs to store a copy of the key tree
structure and the total storage overhead grows proportional to
the square of the group size.

C. Protocol Complexity

Here, we provide a more comprehensive comparison of the
protocol complexity between JET and TGDH. The complexity
aspects we consider are the rekeying time cost during a group
lifetime, the messaging overhead, and the computation over-
head. These results are summarized in Table IV.

1) Time Complexity From Other Perspectives: Our previous
discussions have been focused on the time cost from individual
user’s perspective and on a per-event basis. Two additional as-
pects can help evaluate the overall efficiency of key manage-
ment from a system perspective. One is the amount of time a
user spends on key update during his/her lifetime in the group,
and the other is the amount of time the whole group spends on
key update during the lifetime of the group.

Consider a sequence of join events followed by leave
events. We assume that the first user joining the group is also
the last one to leave the group. In JET, such a user will spend
most of the life time in the main tree for key management pur-
pose. On average, this user will spend two-round time for key
update with each user join event and three-round time with each
user leave event, assuming that all users report their staying
time accurately. Therefore, this user has spent rounds in
total on key update during the life time. Since this user has the
longest life time among all users, is the upper bound for
any user’s total key update time. For tree-based key agreement
using a simple key tree, this first-come-last-leave user will spend

rounds in total on key update.
If we consider a group of users as a whole, for the same

sequence of events described above, the group will spend
rounds in key update using JET. If a key

agreement using a simple key tree is employed, the time cost
will be . Compared with TGDH, we note that the
improvement from a system perspective is not as significant as
that from a user’s perspective.

2) Communication Complexity: During member join and
leave, a joining/leaving member should send a join/leave

request. Afterwards, in the rekeying process, at least two mes-
sages will be sent for each DH key exchange. This messaging
overhead is the communication cost of the rekeying protocol.

We now discuss the average number of messages for user join
and leave events in JET protocol. In the first scenario, we con-
sider that multicast is available. In particular, if a message needs
to be sent to users, sending one multicast message would suf-
fice. In this case, the average number of messages is
for both join and leave events. In the second scenario, we con-
sider that multicast is not available. If a message needs to be
sent to users, duplicate copies of the same message must
be sent. In this case, the average number of messages is for
both user join and leave event. From Table IV, we can see that
the rekeying message overhead in JET is comparable to those in
TGDH.

3) Computation Complexity: In the proposed JET protocol,
the total number of exponentiations performed by all users is

during the key update for a join or leave event. Such a
measurement captures the overall computation load of the entire
group.

During each join or leave event, the number of exponen-
tiations performed by any individual member is less than or
equal to two times the number of DH rounds. Therefore, for
any single user, the average number of exponentiations is also

per join/departure event.

VII. CONCLUSION

In this paper, we have presented a new contributory key agree-
ment, known as the JET group key agreement, for secure group
communications. Built upon tree-based group key management,
the proposed scheme employs a main tree as well as join and exit
subtrees that serve as temporary buffers for joining and leaving
users. To achieve time efficiency, we have shown that the op-
timal subtree capacity is at the log scale of the group size and
have designed an adaptive algorithm to activate and update join
and exit subtrees. As a result, the proposed JET scheme can
achieve an average time cost of for user join and
leave events in a group of users and reduces the total time
cost of key update over a system’s life time from
by prior works to . In the meantime, the pro-
posed scheme also achieves low communication and computa-
tion overhead. Our experimental results on both simulated user
activities and the real MBone data have shown that the proposed
scheme outperforms the existing tree-based schemes by a large
margin in the events of group key establishment, user join, and
user departure for large and dynamic groups, without sacrificing
the time efficiency for small groups.

MAO et al.: JET: DYNAMIC JOIN-EXIT-TREE AMORTIZATION AND SCHEDULING FOR CONTRIBUTORY KEY MANAGEMENT 1139

APPENDIX I

Here, we prove the inequality (5) in Section III

(20)

where , , is a nonnegative integer,
and is a positive integer. The equality holds when
is a power of two.

We first use induction to show that, when ,
, the equality holds.

When , .
Next, we assume the equality holds for , namely

(21)

Consider the case of

(22)

where (22) is obtained using the induction assumption (21).
We now prove the inequality for any positive integer . It is

obvious to see that inequality is true for , 2. By induction,
suppose that the inequality is true for all , and
we consider , where

(23)

(24)

where (23) is obtained using the induction assumption.
To prove that (24) is equivalent to prove

(25)

Applying the identity and ,
(25) can be written as an integration form

(26)

We denote and fix (hence is fixed). Thus,
. It is straightforward to see that (26) holds when

or .
When , (26) is equivalent to

(27)

Since is the only variable in (27), let be the LHS of (27),
and consider as a continuous function of as

where . Taking the derivative of , we obtain

(28)

In a previous proof, we showed that the equality of (20) holds
when is power of 2, i.e., . We also showed that

for . Since , ,
is continuous on and , we must have

on . Thus, (26) also holds for .
This completes the proof.

APPENDIX II

Here, we prove the following inequality in Section III-A4: for
any , we have

(29)

Let . We consider the case when the group size is larger
than 1, so , and . Under such a con-
dition, (29) becomes

(30)

Let . Function has two
zeros at and . In addition, for
any . Therefore, (29) holds for any .
In our proposed protocol, we choose a larger threshold value of
eight as eight users lead to a balanced main tree.

REFERENCES

[1] M. J. Moyer, J. R. Rao, and P. Rohatgi, “A survey of security issues in
multicast communications,” IEEE Network, vol. 13, no. 6, pp. 12–23,
Nov./Dec. 1999.

[2] S. Paul, Multicast on the Internet and its Applications. Boston, MA:
Kluwer, 1998.

[3] L. Eschenauer and V. D. Gligor, “A key-management scheme for dis-
tributed sensor networks,” in Proc. 9th ACM Conf. Computer and Com-
munications Security, 2002, pp. 41–47.

[4] P. Judge and M. Ammar, “Gothic: A group access control architecture
for secure multicast and anycast,” in Proc. IEEE INFOCOM, 2002, pp.
1547–1556.

[5] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and some efficient constructions,” in
Proc. IEEE INFOCOM, 1999, pp. 708–716.

[6] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” IEEE/ACM Trans. Netw., vol. 8, no. 1, pp. 16–30,
Feb. 2000.

[7] A. Perrig, D. Song, and J. D. Tygar, “ELK, a new protocol for efficient
large-group key distribution,” in Proc. IEEE Symp. Security Privacy,
2001, pp. 247–262.

1140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

[8] H. Harney and C. Muckenhirn, “Group Key Management Protocol
(GKMP) Specification,” RFC 2093, 1997.

[9] D. Wallner, E. Harder, and R. Agee, “Key management for multicast:
Issues and architecture,” Internet Draft, 1997 [Online]. Available: draft-
wallner-key-arch-00.txt

[10] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key
management for secure Internet multicast using Boolean function min-
imization techniques,” in Proc. IEEE INFOCOM, 1999, vol. 2, pp.
689–698.

[11] M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: A new approach to
group key agreement,” in Proc. 18th Int. Conf. Distributed Computing
Systems, 1998, pp. 380–387.

[12] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key agree-
ment for dynamic collaborative groups,” in Proc. 7th ACM Conf. Com-
puter and Communications Security, 2000, pp. 235–244.

[13] L. R. Dondeti and S. Mukherjee, “DISEC: A distributed framework
for scalable secure many-to-many communication,” in Proc. 5th
IEEE Symp. Computer and Communications Security, 2000, pp.
693–698.

[14] S. E. Eldridge and C. D. Walter, “Hardware implementation of Mont-
gomery’s modular multiplication algorithm,” IEEE Trans. Comput.,
vol. 42, pp. 693–699, Jun. 1993.

[15] H. Harney and C. Muckenhirn, “Group Key Management Protocol
(GKMP) Architecture,” RFC 2094, 1997.

[16] Y. Sun, W. Trappe, and K. J. R. Liu, “A scalable multicast key manage-
ment scheme for heterogeneous wireless networks,” IEEE/ACM Trans.
Netw., vol. 12, no. 4, pp. 653–666, Aug. 2004.

[17] R. Molva and A. Pannetrat, “Scalable multicast security in dynamic
groups,” in Proc. 6th ACM Conf. Computer and Communications Se-
curity, 1999, pp. 101–112.

[18] S. Mittra, “Iolus: A framework for scalable secure multicasting,” in
Proc. ACM SIGCOMM, 1997, pp. 277–288.

[19] S. Banerjee and B. Bhattacharjee, “Scalable secure group communica-
tion over IP multicast,” IEEE J. Sel. Areas Commun., vol. 20, no. 10,
pp. 1511–1527, Oct. 2002.

[20] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The
VersayKey framework: Versatile group key management,” IEEE J. Sel.
Areas Commun., vol. 17, no. 9, pp. 1614–1631, Sep. 1999.

[21] W. Trappe, Y. Wang, and K. J. R. Liu, “Resource-aware conference key
establishment for heterogeneous networks,” IEEE/ACM Trans. Netw.,
vol. 13, no. 2, pp. 134–146, Feb. 2005.

[22] B. Sun, W. Trappe, Y. Sun, and K. J. R. Liu, “A time-efficient con-
tributory key agreeement scheme for secure group communications,”
in Proc. IEEE Int. Conf. Communications, 2002, pp. 1159–1163.

[23] S. Zhu, S. Setia, and S. Jajodia, “Performance optimizations for group
key management schemes,” in Proc. 23rd Int. Conf. Distributed Com-
puting Systems, 2003, pp. 163–171.

[24] Y. Mao, Y. Sun, M. Wu, and K. J. R. Liu, “Dynamic join-exit amorti-
zation and scheduling for time-efficient group key agreement,” in Proc.
IEEE INFOCOM, 2004, vol. 4, pp. 2617–2627.

[25] I. Ingemarsson, D. T. Tang, and C. K. Wong, “A conference key distri-
bution system,” IEEE Trans. Inf. Theory, vol. IT-28, no. 5, pp. 714–720,
Sep. 1982.

[26] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribu-
tion extended to group communication,” in Proc. 3rd ACM Conf. Com-
puter and Communications Security, 1996, pp. 31–37.

[27] K. Becker and U. Wille, “Communication complexity of group key
distribution,” in Proc. 5th ACM Conf. Computer and Communications
Security, 1998, pp. 1–6.

[28] M. Burmester and Y. Desmedt, “A secure and efficient conference key
distribution system,” in Proc. EUROCRYPT, 1994, vol. 950, LCNS, pp.
275–286.

[29] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

[30] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 2nd ed. San Mateo, CA: Morgan Kaufmann, 1996.

[31] T. H. Corman, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms, 2nd ed. Cambridge, MA: MIT Press/McGraw-Hill,
2001.

[32] MBone User Activity Data Mar. 2003 [Online]. Available: ftp://ftp.cc.
gatech.edu/people/kevin/release-data

[33] K. C. Almeroth and M. H. Ammar, “Multicast group behavior in the
Internet’s multicast backbone (MBone),” IEEE Commun. Mag., vol.
35, no. 6, pp. 124–129, Jun. 1997.

[34] K. C. Almeroth, “A long-term analysis of growth and usage patterns
in the multicast backbone (MBone),” in Proc. IEEE INFOCOM, Mar.
2000, vol. 2, pp. 824–833.

Yinian Mao (S’04) received the B.E. degree in elec-
trical engineering from Tsinghua University, Beijing,
China, in 2001, and the Ph.D. degree in electrical and
computer engineering from the University of Mary-
land, College Park, in 2006.

He is currently a Senior Engineer with Qualcomm
Inc., San Diego, CA. He was a Research Intern with
Microsoft Research, Redmond, WA, in 2004. His
research interests include information security and
multimedia signal processing.

Mr. Mao is a coauthor of a paper on media security
that has won the Student Paper Contest in the 2005 International Conference on
Acoustic, Speech, and Signal Processing (ICASSP’05).

Yan (Lindsay) Sun (M’05) received the B.S. degree
(with highest honors) from Beijing University, Bei-
jing, China, in 1998, and the Ph.D. degree in elec-
trical and computer engineering from the University
of Maryland, College Park, in 2004.

She is currently a National Science Foundation
Assistant Professor with the Electrical and Computer
Engineering Department, University of Rhode Island,
Kingston. Her research interests include network se-
curity and wireless communications and networking.

Dr. Sun was the recipient of the Graduate School
Fellowship at the University of Maryland from 1998 to 1999 and the Excellent
Graduate Award of Beijing University in 1998. She is a member of the IEEE
Signal Processing, Communication, and Computer Societies.

Min Wu (S’95–M’01) received the B.E. degree in
electrical engineering and the B.A. degree in eco-
nomics (both with highest honors) from Tsinghua
University, Beijing, China, in 1996, and the Ph.D.
degree in electrical engineering from Princeton
University, Princeton, NJ, in 2001.

Since 2001, she has been on the faculty of the De-
partment of Electrical and Computer Engineering and
the Institute of Advanced Computer Studies at the
University of Maryland, College Park, where she is
currently an Associate Professor. Previously, she was

with NEC Research Institute and Panasonic Laboratories. She has coauthored
two books and holds five U.S. patents. Her research interests include infor-
mation security and forensics, multimedia signal processing, and multimedia
communications.

Dr. Wu was the recipient of a National Science Foundation CAREER Award
in 2002, a George Corcoran Education Award from the University of Maryland
in 2003, an MIT Technology Review’s TR100 Young Innovator Award in 2004,
and an Office of Naval Research Young Investigator Award in 2005. She was a
corecipient of the 2004 EURASIP Best Paper Award and the 2005 IEEE Signal
Processing Society Best Paper Award. She is an Associate Editor of the IEEE
SIGNAL PROCESSING LETTERS and a member of the IEEE Technical Committee
on Multimedia Systems and Applications.

K. J. Ray Liu (F’03) is Professor and Associate
Chair, Graduate Studies and Research, of Electrical
and Computer Engineering Department, University
of Maryland, College Park. His research contributions
encompass broad aspects of wireless communications
and networking, information forensics and security,
multimedia communications and signal processing,
bioinformatics and biomedical imaging, and signal
processing algorithms and architectures.

Dr. Liu is the recipient of numerous honors and
awards including best paper awards from the IEEE

Signal Processing Society (twice), IEEE Vehicular Technology Society, and
EURASIP; IEEE Signal Processing Society Distinguished Lecturer, EURASIP
Meritorious Service Award, and National Science Foundation Young Investi-
gator Award. He also received various teaching and research awards from the
University of Maryland including the Poole and Kent Company Senior Faculty
Teaching Award and Invention of the Year Award. He is Vice President—
Publications and on the Board of Governor of IEEE Signal Processing Society.
He was the Editor-in-Chief of IEEE Signal Processing Magazine and the
founding Editor-in-Chief of EURASIP Journal on Applied Signal Processing.

