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Abstract—Heart Rate Variability (HRV), which measures the
fluctuation of heartbeat intervals, has been considered as an
important indicator for general health evaluation. To alleviate the
user burden and explore the usability for long-term health mon-
itoring, non-contact methods for HRV monitoring have drawn
tremendous attention. In this paper, we present mmHRV, the first
contact-free multi-user HRV monitoring system using commer-
cial millimeter-Wave (mmWave) radio. The design of mmHRV
consists of two key components. First, we develop a calibration-
free target detector to identify each user’s location. Second, a
heartbeat signal extractor is devised, which can optimize the
decomposition of the phase of the channel information modulated
by the chest movement, and thus estimate the heartbeat signal.
The exact time of heartbeats is estimated by finding the peak
location of the heartbeat signal while the Inter-Beat Intervals
(IBIs) can be further derived for evaluating the HRV metrics
of each target. We evaluate the system performance and the
impact of different settings including the distance between human
and the device, user orientation, incidental angle and blockage.
Experimental results show that mmHRV can measure the HRV
accurately with a median IBI estimation error of 28ms (w.r.t.
96.16% accuracy). In addition, the Root-Mean-Square-Error
(RMSE) measured in the Non-Line-of-Sight (NLOS) scenarios
is 31.71ms based on the experiments with 11 participants. The
performance of the multi-user scenario is slightly degraded
compared with the single-user case, however, the median error
of the 3-user case is within 52ms for all 3 tested locations.

Index Terms—Heart Rate Variability (HRV), heart beat esti-
mation, wireless sensing, millimeter-wave radio.

I. INTRODUCTION

Heart Rate Variability (HRV), defined as the variation of
the periods between consecutive heartbeats, i.e., Inter-Beat
Intervals (IBI), is an important indicator of the overall health
status of an individual [1]. Analysis of the HRV has been
proved to be a powerful tool to assess cardiac health and
evaluate the state of the Autonomic Nervous System (ANS)
[2]. High-accuracy HRV monitoring is required in numerous
applications such as early diagnose of cardiovascular disease,
stress evaluation, emotions recognition and anxiety treatment,
etc. [3]–[7].

Traditional measurements of the HRV are obtained by
continuously measuring the IBIs using the electrocardiogram
(ECG) or photoplethysmogram (PPG) sensors, both of which
are dedicated medical devices and have to be physically
contacted with the human skin. However, using ECG or
PPG is uncomfortable for users and sometimes may cause
skin allergies. To avoid the direct contact with users’ skin,

other wearable devices such as Inertial Measurement Units
(IMUs) have been explored to measure the movements of
the chest surfaces to determine the IBIs and then measure
the HRV [8]. Although some of the aforementioned methods
are less invasive than ECG and PPG-based approaches, all
of them require users to wear dedicated devices, which is
cumbersome and usually expensive for daily usage. Therefore,
how to monitor the HRV in a non-contact way has become an
important topic for both academia and industry.

To this end, Radio Frequency (RF) based sensing has
become one of the most promising candidates, because the
presence of a human subject will affect the RF signal prop-
agation [9]–[11], e.g., RF signals reflected from the human
body will be modulated by the body movement such as the
chest movement caused by respiration and heartbeat, vital
information of the human subject can be unveiled by analyzing
the channel propagation characteristics [11]–[14]. While many
existing works have validated the feasibility of vital sign
monitoring using RF signal, most of them can only estimate
the Respiration Rate (RR) [15]–[17] and the Heart Rate (HR)
[18]–[22], from which one cannot obtain the HRV without
the precise timing of each heartbeat. As a result, accurate RF-
based HRV monitoring needs to be further investigated.

Technically, accurate HRV estimation is much more difficult
than HR estimation. The existing HR estimating systems usu-
ally take multiple samples in the time domain to achieve higher
HR estimation accuracy [17]–[21], which equals to averaging
the heartbeats over a certain time window. However, they
are not applicable for HRV estimation which needs the exact
time of each heartbeat and entails the following challenges.
First, RF signals reflected by human chests are modulated by
both respiration and heartbeats in which the distance change
caused by respiration is a magnitude greater than that caused
by heartbeats. In signal process terminology, the Signal-to-
Interference-plus-Noise Ratio (SINR) is very low to recover
and separate the heartbeat wave from the compound signal.
Second, the heart pumping motion has to reach the chest wall
through bones and tissues first and then be detected by the RF
signal. As a result, the bones and tissues of a human body act
as a filter and thus dampen the signal. Therefore, the heartbeat
wave captured by RF signals lacks sharp peaks as those in
ECG signals, making it harder to identify IBIs. Furthermore,
to provide a robust system for HRV estimation, it is necessary
to determine the number of targets and their locations before
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estimating HRV for each human subject, which is non-trivial
as well.

To address the above challenges, we present mmHRV, the
first multi-person HRV estimation system using Commod-
ity Off-The-Shelf (COTS) millimeter-Wave (mmWave) radio.
First, a target detector is devised to identify the number of
users and their locations without any prior calibration. Note
that due to the fast attenuation of the mmWave RF signal
[23], the strength of the signal decreases as it traverses a
longer distance. To detect human subjects at various distances,
we employ a two-dimension constant false alarm detector
in the range-azimuth plane to estimate the noise level, and
thus provide an adaptive threshold for target detection. The
phase information is further used to filter out the static objects
(e.g., walls, furniture). Note that there are usually more than
one reflecting point for a single human subject. As a result,
to determine the number of targets, we further employ a
non-parametric clustering to identify the range-azimuth bins
corresponding to each human subject.

After target detection, to estimate the HRV, the heartbeat
wave needs to be extracted from the composite received signal
whose phase consists of the whole chest motion including
both the respiration and heartbeat movements. Note that the
respiration movement ranges from 4−12mm with a frequency
of 6− 30 Breaths Per Minute (BPM) [24] while the heartbeat
movement ranges from 0.2 − 0.5mm with a frequency of
50 − 120 BPM, both of which are quasi-periodic signals.
Leveraging this property, we develop a heartbeat wave ex-
tractor, which optimizes the decomposition of the composite
signal to several band-limited signal components. Among the
decomposed signal components, the heartbeat wave will be the
one whose amplitude and frequency satisfies the requirement
of a typical heartbeat signal. Compared with most of the
works [25]–[27], where the composite signal is decomposed
successively, mmHRV can avoid the error propagation problem
by concurrently decomposing the signal components. The
peaks of the estimated heartbeat wave are then recognized
to identify the exact time of each heartbeat. Consequently,
the IBIs can be further derived and used for calculating the
commonly used HRV metrics such as the Root Mean Square
of Successive Differences (RMSSD), the standard deviation of
all the IBIs (SDRR) and the percentage of successive IBIs that
differ by more than 50ms (pNN50).

To evaluate the performance of mmHRV, 11 participants
aging from 20 to 60 are asked to perform extensive ex-
periments under different settings, including different dis-
tances, orientation and incidental angles. The Non-Light-of-
Sight (NLOS) scenario and multi-person scenario are also
investigated. Experimental results show that mmHRV achieves
accurate estimations with a medium error of about 28ms for
IBI estimations (w.r.t. 96.16% accuracy). The performance
slightly degrades for the NLOS and the multi-user scenarios,
however, the Root-Mean-Square-Error (RMSE) of the NLOS
and the multi-user case are still within 32ms and 69ms
respectively. The HRV metrics are also evaluated, which show
a better performance compared with the state-of-art works. It
is shown that mmHRV can achieve 3.89ms average error of
mean IBI, 6.43ms average error of RMSSD, 6.44ms average

error of SDRR and 2.52% average error of the pNN50 when
users sit 1m away from the device.

The rest of the paper is organized as follows. We review
the related works in Section II. The system overview and
theoretical model are presented in Section III, followed by the
target detection in Section IV and the heartbeat extraction and
HRV estimation in Section V. The performance is evaluated
in Section VI. We discuss the future work in Section VII and
conclude the paper in Section VIII.

II. RELATED WORK

Continuous monitoring of HRV is critical for early detection
and prevention of potentially fatal disease. Compared with
the conventional methods relying on wearable devices, the
contactless method can alleviate users’ burden and reduce
the device cost. Existing approaches for contactless HRV
estimation can be classified into two categories: video-based
method and RF-based method.

Video-based: In the past decade, researches have been
conducted using the video signal to estimate HRV [28]–[30].
These systems focus on the measurement of the small changes
in skin color caused by blood perfusion, so that the exact time
of each heartbeat can be derived for HRV analysis. However,
one of the main drawbacks of these systems is the sensitivity
to the lighting conditions. The system cannot work in the
NLOS scenario, and the privacy invasion also hinders the wide
deployment of these systems.

RF-based: Compared with the video-based method, RF sig-
nals can penetrate nonmetallic obstacles, and is more tolerable
to environmental conditions such as light and temperature,
making it a great candidate for non-contact HRV estimation.
Dedicated radars [31]–[39] and Ultra-Wideband (UWB) [40]–
[42] have been used to measure the distance change between
the chest and the device to estimate heart rate (HR). However,
those systems mainly rely on the frequency-domain spectral
analysis to estimate the HR which may take a couple of
seconds, making it impossible to estimate the precise timing
of each heartbeat for calculating the HRV.

To achieve robust HRV estimation, a preliminary work [43]
tries to eliminate the respiration effect by asking users to
hold their breaths. However, holding breath will impact the
estimation of the HRV and thus the HRV metrics estimated
in this condition cannot indicate the users’ health condition
accurately. To extract the heartbeat wave, the 2nd-derivative of
the distance change (i.e., acceleration) has been considered in
[7], which is equivalent to a High-Pass Filter (HPF). However,
the residual signal is too noisy for heartbeat extraction. To
identify the exact time of each heartbeat, it is assumed that the
heartbeat signal is the successive multiple copies of a heartbeat
template with different time scales. However, as shown in
[25], using a single template is insufficient. To get a high
detection accuracy, multiple templates are needed, and training
is required before estimation. A simple approach based on
two Band-Pass Filters (BPFs) is employed for separating the
respiration and the heartbeat signal in [26] [27], however, since
undesired peaks caused by the interference (e.g., harmonics
of respiration) may overlap with the dominant frequency band
of the heartbeat, dedicated systems need to be employed to
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Fig. 1: Processing flow of mmHRV.

remove the false peaks. Ensemble Empirical Mode Decom-
position (EEMD) is applied in [26] to remove the noise and
interference, however, the mode mixing problem as well as
selecting the optimal decomposed Intrinsic Mode Functions
(IMFs) is not easy to solve in real applications. IBIs are
assumed to not change much in [27], and the auto-correlation
is used to remove the false peaks. However, the system can
only perform well when the passing band does not overlap
with the strong interference. To reduce the interference, the
Band-Pass Filter Bank (BPFB) is applied in [44], where the
HR is first estimated and the heartbeat signal is then filtered
by using the BPF with a center frequency at HR. However, a
large error will occur once the HR is not estimated correctly.

The above methods try to decompose the composite signal
successively [25]–[27], which causes error propagation once
the interference is not removed correctly. In our system, to
avoid the problem, we try to decompose the composite signal
concurrently leveraging the fact that the chest movement is
composed of several band-limited signals. The experiment
results show the superiority of our method compared with the
state-of-art works. Besides, all the related works only work
for the single-user case, and the target detection procedure is
omitted. In mmHRV, by properly using the channel informa-
tion, the estimation of HRV for multi-users can be obtained.

III. SYSTEM DESIGN AND THEORETICAL MODEL

A. System Overview

mmHRV is a wireless system that can accurately detect the
heartbeat signal of human subjects and estimate their HRV
by purely using the RF signals reflected off the users’ bodies.
The processing flow of mmHRV is shown in Fig. 1. First, a
Frequency-Modulated Continuous Wave (FMCW) radar trans-
mits the RF signal and captures the reflections of human
subjects and static objects. In order to detect human subjects
at different locations, the Bartlett beamformer is applied to
get the channel information at different azimuth-range bins.
Then, we devise a target detector that adaptively estimates
the noise level at various distances and azimuth angles and
thus detects the presence of reflecting objects. The variance
of phase is further utilized to distinguish human subjects
and static objects. To identify the number of target and their
locations, a non-parametric clustering algorithm is employed.
To extract the heartbeat signal from the phase information that
is modulated by both respiration and heartbeat, we devise a
heartbeat signal extractor, which can decompose the phase
signal into several narrow-band signals concurrently and give
an estimate of heartbeat wave. HRV can be further analyzed
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Fig. 2: FMCW radar system.

based on the Inter-Beat Intervals (IBIs) derived from the
estimated heartbeat signals.

B. Signal Model

A chirp signal is transmitted by the FMCW radar, where
the instantaneous transmitting frequency is a periodic linearly-
increasing signal as shown in Fig. 2, and it can be expressed
as [20]

ft = fc +
B

Tc
t, (1)

where fc is the chirp starting frequency, Tc is the chirp
duration and B is the bandwidth. According to Frequency
Modulation (FM), the transmitted signal xT (t) can be ex-
pressed as

xT (t) = AT exp{−j[2π
∫ t

0

ft(τ)dτ ]}

= AT exp{−j[2πfct+ π
B

Tc
t2]},

(2)

where AT is the transmitting power. When the electromagnetic
(EM) wave is reflected by human chest at distance d(t), the
reflected signal xR(t) can be expressed as

xR(t) = AR exp{−j[2πfc(t− td) + π
B

Tc
(t− td)2]}, (3)

where AR is the amplitude of the receiving signal. td stands
for the round-trip delay and can be denoted as td = 2d(t)

c ,
where c is the speed of light.

Mixing the received signal with a replica of the transmitted
signal and following a low-pass filter, the channel information
h(t) can be expressed as

h(t) = A exp {−j(2πBtd
Tc

t+ 2πfctd − π
B

Tc
t2d)}. (4)

Note that the term π B
Tc
t2d is negligible, especially in short-

range scenarios. Therefore, the h(t) can be written as

h(t) = A exp {−j(2πBtd
Tc

t+ 2πfctd)}, (5)

which is a sinusoidal signal whose frequency fb , Btd
Tc

=
2Bd(t)
cTc

depends on the target’s distance. For each chirp, the
baseband signal h(t) is digitized by Analog-to-Digital Con-
verter (ADC)1, producing N samples per chip, referred to as

1IWR1843 chipset employs a 10-bit high-speed successive approximation
(SAR) ADC, where the throughput rate is 625 Kilosamples per second (Ksps)
[45].
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fast time. The time corresponding to the transmission of chirps
is referred to as slow time, as shown in Fig. 2. Therefore, the
digitized channel information for the nth ADC sample and
mth chirp can be expressed as

h(n,m) = A exp {−j(2πfbnTf +
4πd(nTf +mTs)

λc
)}, (6)

where Tf and Ts are the time interval in fast time and slow
time respectively2. λc denotes the wavelength of the chirp.
In our system, we take advantage of the multiple antennas
of the chipset, and use 2 Tx antennas and 4 Rx antennas, as
shown in Fig. 3. To increase the azimuth resolution, the chirps
are transmitted in the time-division multiplexing (TDM) mode
[47] by transmitting sequentially through two Tx antennas.
This is equivalent to the 8-element virtual array as shown in
Fig. 3. Therefore, for channel l, the channel information can
be rewritten as

h(l, n,m) = A exp {−j(2πfbnTf

+
4πd(nTf +mTs)

λc
+ 2π

dl sin θ

λc
)},

(7)

where dl is the relative distance introduced by virtual antenna
l. θ is the azimuth angle of the target as shown in Fig. 3.

It is apparent that the phase of the channel information
changes periodically in slow time due to the periodic motions
of respiration and heartbeat. Fig. 5 (a) shows a typical phase
signal containing vital signs collected by our system.

IV. TARGET DETECTION

For practical application, target detection needs to be per-
formed before vital sign detection, which has been omitted in
many works. The target detection is hard to achieve, especially
in the indoor scenario, where there are various objects (e.g.,
wall, desk, metal objects, etc.) with strong reflections of EM
waves.

A. Range-FFT and Digital Beamforming

The channel information for the case when there is a static
object is

h(l, n,m) = A exp {−j(2πfbnTf +
4πd0

λc
+ 2π

dl sin θ

λc
)},

(8)

2Note that the chirp duration is very small, and the distance change caused
by vital signs is small (< 12 mm) [24] [46] with low frequency (< 3 Hz),
therefore, there is no appreciable change in center frequency and phase during
chirp time.

where d0 is the distance between the object and the device,
which stays constant in slow time.

Note that the channel information corresponding to the
reflecting object is a periodic signal in fast time, and the
periodicity is related to the distance as shown in Equ. (6)
and Equ. (8). To determine the range information of reflecting
objects, the Fast Fourier Transform (FFT) is performed over
the fast time for each chirp, i.e., range-FFT, and the channel
information can be written as hr(l,m), where r is the range tap
index. The range taps corresponding to the reflecting objects
would observe larger energy compared with that without
reflecting objects.

To further determine the azimuth angles of the reflecting
objects, digital beamforming is performed over all antenna
elements for each range tap, and the channel information
corresponding to range r and azimuth angle θ can be expressed
as

hr,θ(m) = sH(θ)hr,l(m) + ε(m), (9)

where sH(θ) is the steering vector towards angle θ. In
mmHRV, Bartlett beamformer [48] is adopted, where the
coefficient of the l−th antenna is

sl(θ) = exp (−j2πdl sin θ
λc

). (10)

ε(m) is the additive white Gaussian noise assumed to be inde-
pendent and identically distributed (I.I.D) for different range-
azimuth bins. hr,l(m) = [hr,1(m), hr,2(m), . . . , hr,L(m)] is
the channel information vector at range tap r overall all
antenna elements. Therefore, for each sample m in slow time,
we will have a channel information matrix h(r, θ), which
contains channel information at different location bins with
range r and azimuth angle θ. Fig. 4 (b) shows the amplitude
of the channel information at the range-azimuth plane.

B. Reflecting Object Detector

To locate human subjects, we first need to identify the
range-angle bins with reflecting objects. Note that the channel
information for the bins without any reflecting object only
contains noise, and thus, the energy of channel information
for the bins with reflecting objects is larger than those without
any reflecting objects, as shown in Equ. (6) and Equ. (8)
respectively. However, it is impossible to find a universal
predefined threshold for target detection. According to the
propagation laws of EM wave, for the same reflecting objects,
a shorter distance corresponding to a larger reflecting energy.
In mmHRV, we utilize the Constant False Alarm Rate (CFAR)
[49] detector, which can estimate the noise level by convolving
the CFAR window (shown in Fig. 4 (a)) with the channel
information at the range-azimuth plane (shown in Fig. 4 (b)),
and the location bins with reflecting objects are those whose
energy is above the noise level, as shown in Fig. 4 (c).
Fig. 4 (d) shows the example of CFAR detection in the range
domain, where the threshold is shown in the dashed line.

C. Human Subjects Detector

Although Reflecting object detector can filter out the empty
taps, it cannot distinguish human subjects from static reflecting
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Fig. 4: Example of the reflecting object detector. The ground truth is that there is a human subject sit at 0.5m away from the
device, with azimuth angle 0◦. (a) is the 2D-CFAR window, (b) is the amplitude of channel information in the range-azimuth
plane, (c) is the reflecting result of reflecting object detector, where the black spot corresponding to the reflecting object, and
(d) shows the CFAR threshold and the amplitude of channel information in range domain.
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Fig. 5: Example of the human subject detector. The ground truth is that there are 3 human subjects, one of which sits at 1.5m
away from the device, with azimuth angle 0◦, and the other two sit at 1m away from the device with azimuth angle 30◦ and
−30◦ respectively. (a) is phase information corresponding to a human subject, (b) is phase information corresponding to a
static reflecting object, (c) is the result of the human subject detector, where the black spots corresponding to human subjects,
and (d) shows the clustering result for each target.

objects. Note that different from static objects, the distance
between human subjects and the device will change over slow
time due to motions (e.g., respiration and heartbeat), and thus
result in a phase change as shown in Fig. 5 (a). Therefore,
to further filter out the static reflecting objects, we leverage
the phase information of the candidate bins selected by the
Reflecting object detector.

In specific, when the EM wave is reflected by a human
subject, the phase will change over slow time due to the
modulation of human motions. Therefore, there is a large
phase variance for the bins corresponding to human subjects.
However, for bins corresponding to the static objects (e.g.
desk, wall, etc.), the phase variance will be much smaller,
as shown in Fig. 5 (a) and Fig. 5 (b). So in mmHRV, to
filter out the static objects, we check the variance of the phase
information over slow time, and the bins corresponding to a
human subject are those whose phase variance above a certain
threshold.

Note that there will be more than one bin corresponding to
a human subject considering the volume of a human subject,
as shown in Fig. 5 (c). To identity the target number, mmHRV
utilizes a non-parametric clustering method, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) al-
gorithm, to cluster the candidate bins without prior knowledge
of cluster number. The clustering result is shown in Fig. 5 (d).
The representative of each cluster is the bin with the best
periodicity. In specific, the bin with the highest peak for the
first peak of the auto-correlation is selected, which corresponds
to the bin with the highest SNR of the vital signs [18].

V. HEARTBEAT EXTRACTION AND HRV ESTIMATION

Estimating HRV requires accurate estimation of Inter-Beat
Intervals (IBIs), therefore, we need to extract the displacement
change caused by heartbeats (a.k.a., heartbeat wave) from
the compound displacement change of chest wall and detect
moments in which heartbeats occur.

A. Heartbeat Extraction Algorithm

1) Problem formulation: Recall that the phase information
reflects the distance change caused by vital signs. For sim-
plicity, we directly use the analog form of signals, and the
distance change of the human chest can be written as

y(t) = sm(t) + sr(t) + sh(t) + n(t), (11)

where sm(t) denotes the distance change caused by body
motion. sr(t) and sh(t) denote the distance change caused
by respiration and heartbeat, respectively. n(t) is the random
phase offset introduced by noise, which is independent with
the phase change caused by vital signs.

Note that both sr(t) and sh(t) are quasi-periodic signals,
where the period can slightly change over time. Besides, we
assume the body motion introduces few oscillations, i.e., a
base-band signal. Thus, the signals related with the human
subject are sparse in the spectral domain and we can recon-
struct these signals with a few band-limited signals. In specific,
each component uk(t) is assumed to be compact around a
center pulsation ωk, which is to be determined along with the
decomposition. Moreover, the decomposition should achieve
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Fig. 6: Example of heartbeat extractor. (a) is the decomposition result in the time domain, (b) is the corresponding spectrum
of each component. In this example, the 1st component corresponds to the body motion, the 2nd component corresponds to
the respiration and the 3rd component corresponds to the heartbeat. The noise falls into the 4th component and the residual.

the spectrum sparsity and data fidelity at the same time, which
is modeled as

min
uk∈U,ωk∈Ω

α

K∑
k=1

∥∥∥∥∂t [(δ(t) +
j

πt
) ∗ uk(t)] exp(−jωkt)

∥∥∥∥2

2

+

∥∥∥∥∥y(t)−
K∑
k=1

uk(t)

∥∥∥∥∥
2

2

,

(12)

where the first term evaluates the bandwidth of the analytic
signal associated with each component, and the second term
evaluates the data fidelity. K is the total number of decom-
position components, where U = {u1(t), . . . , uK(t)} and
Ω = {ω1, . . . , ωK} are the set for all components and their
center frequencies, respectively. α is a parameter for balancing
the bandwidth constraint and data fidelity.

Once the hyper-parameters are known, the optimization
problem in Equ.(12) can be solved by alternatively updating
uk(t) and ωk until convergence [50]. To update uk, the
subproblem can be written as

uk(t) = arg min
uk(t)

∥∥∥∥∂t [(δ(t) +
j

πt
) ∗ uk(t)] exp(−jωkt)

∥∥∥∥2

2

+

∥∥∥∥∥y(t)−
K∑
i=1

ui(t)

∥∥∥∥∥
2

2

.

(13)

By using the Parseval theorem, the problem can be rewritten
as

uk(ω) = arg min
uk(ω)

α ‖jω[(1 + sgn(ω + ωk))uk(ω)]‖22

+

∥∥∥∥∥†(ω)−
K∑
i=1

ui(ω)

∥∥∥∥∥
2

2

,
(14)

where uk(ω) and †(ω) are the Fourier transfer of uk(t) and
y(t) respectively. After taking integrals over frequency and

performing a change of variable, we can get the updating
formula, where

uk(ω) =
†(ω)−

∑
i,i6=k ui(ω)

1 + 2α(ω − ωk)2
. (15)

Note that the center frequencies ωk only appears in the
bandwidth constraint and thus the subproblem can be written
as

ωk = arg min
ωk

∥∥∥∥∂t [(δ(t) +
j

πt
) ∗ uk(t)] exp(−jωkt)

∥∥∥∥2

2

.

(16)
As before, we find the optimum in Fourier domain, and we
have

ωk = arg min
ωk

∫ ∞
0

(ω − ωk)2|uk(ω)|2dω. (17)

The minimizer of the above quadratic problem is

ωk =

∫∞
0
ω|uk(ω)|2dω∫∞

0
|uk(ω)|2dω

. (18)

Fig. 6 illustrates the decomposition of a typical one-minute
phase signal from the experiment, where the original phase
information has been decomposed into 4 components. The first
component reflects the body motion of the human subject,
the second component is the respiration motion, and the third
component is the heartbeat wave. Since the noise has different
vibration characteristics as vital signals, it falls into a different
mode as well as in the residual of the decomposition of the
signal, as shown in Fig. 6.

2) Algorithm design: It has been proven that the decom-
position problem can be solved once the hyper-parameters are
properly defined. However, it is hard to predefine these hyper-
parameters in real applications for heartbeat wave extraction.
First, the human motion does not always exist and the human
respiration sometimes will have a strong second harmonic
component, making it even harder to determine the component
number. Furthermore, the hyper-parameter α also influences
the decomposition performance. Before discussing how to
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Fig. 7: Example of IBI estimation. (a) shows the normalization of the estimated heartbeat wave to increase accuracy in locating
peaks caused by heartbeat, (b) shows the normalized heartbeat signal compared with the ECG sensor, where the ground-truth
from ECG are marked as dashed lines, (c) shows the estimated IBI compared with the ground-truth from ECG sensor.

choose the hyper-parameter, we first discuss their influence
on the decomposition result.

In specific, for the case that α is too small, i.e., the
bandwidth constraint is too loose, when K is too small, the
mixing problem will happen so that two signals may merge
to a single decomposed component. However, when K is too
large, some of the decomposed components may consist of
noise. For the case that α is too large, i.e., the bandwidth
constraint is too tight, when K is too small, some target signals
may be discarded in noise. However, when K is too large,
some important parts of the signal may be separated into two
or more decomposed components.

In mmHRV, to accurately decompose the signal and get
the component we are interested, i.e., the heartbeat wave, we
are trying to adaptively change the component number K
and α for different datasets. Here, we introduce a heuristic
method to change K and α as the iteration proceeds to
get proper decomposition result. Since the distance change
caused by heartbeat is much smaller than the distance change
caused by respiration and human motion3, once the component
corresponding to the heartbeat is decomposed, the component
corresponding to respiration and motion should be decom-
posed as well, considering the data fidelity constraint in the

3The chest movement caused by heartbeat is 0.2-0.5 mm [51] with
frequency of 50-120 BPM [21]. Whereas, the chest movement caused by
respiration is 4–12 mm [24] with frequency 6-30 BPM [21].

objective function. Therefore, the algorithm will terminate
once we get the component corresponding to the heartbeat.
The details about the algorithm are shown in Algorithm 1.

B. HRV Estimation

Once the heartbeat wave is extracted, the exact time corre-
sponding to each heartbeat can be identified by the peaks of the
heartbeat wave. To further increase the accuracy, normalization
is performed before peak extraction.

In specific, the envelope of the heartbeat wave is estimated
by taking moving average to the absolute value of the heartbeat
component, shown as the dashed line in Fig. 7 (a). We further
perform a moving average filter to the original heartbeat wave
to reduce the noise. The normalized wave is the ratio between
the filtered heartbeat wave and the estimated envelope. IBIs
can thus be derived by calculating the time duration between
two adjacent heartbeats. Fig. 7 (b) shows a segment of heart-
beat wave and its ECG ground-truth, where the dashed lines
show the exact time of each heartbeat from a commercial ECG
sensor [52]. The peaks of normalized heartbeat wave match
with the ground-truth, and Fig. 7 (c) shows the estimated IBIs
and the ECG ground-truth.

The HRV features can be further obtained from the IBI
sequence. In mmHRV, we use the three most widely used
metrics to evaluate the HRV [2]. One is the Root Mean
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Algorithm 1 Heartbeat wave extraction algorithm

1: Input y(t)
2: Set α← αmin, K ← Kmin

3: repeat
4: repeat
5: Initialize U and Ω, flag ← 0, n← 0
6: repeat
7: n← n+ 1
8: for k = 1 : K do
9: update uk(ω) using equ.(15)

10: update ωk using equ.(18)
11: end for
12: until convergence:

∑K
k=1

∥∥un+1
k − unk

∥∥2

2
/ ‖unk‖ < ε

or n > nmax

13: if exist ωk ∈ [hmin, hmax] and
Range(IFFT(uk(ω))) < rmax then

14: flag ← 1, break;
15: else
16: K ← K + 1
17: end if
18: until K > Kmax

19: if flag == 1 then
20: break;
21: else
22: α = 2α
23: end if
24: until α > αmax

Square of Successive Differences (RMSSD), which measures
the successive IBI changes, and can be calculated by

RMSSD =

√√√√ 1

NIBI − 1

NIBI∑
i=2

(IBI(i)− IBI(i− 1))2, (19)

where NIBI is the total number of IBIs of the measurement.
The standard deviation of all the IBIs (SDRR) measures the
variation of the IBIs, which can be calculated as

SDRR =

√√√√ 1

NIBI

NIBIIBI∑
i=1

(IBI(i)− IBI)2, (20)

where IBI is the empirical mean of the IBIs of each mea-
surement. The metric pNN50 measures the percentage of
successive IBI that differ by more than 50 milliseconds (ms),
which can be calculated by

pNN50 =

∑NIBI

i=2 1{(IBI(i)− IBI(i− 1)) > 50ms}
NIBI

, (21)

where 1{·} is the indicator function.

VI. EXPERIMENT EVALUATION

This section introduces the evaluation details of the pro-
posed mmHRV, including practical system implementation,
experiment setup, performance analysis and also the compar-
ison with the state-of-art work.

ECG sensorTI IWR1843

(a) Hardware

DeviceECG 

Sensor

(b) LOS setting

Device

ECG 
Sensor

(c) NLOS setting

Fig. 8: Experiment setup.

A. Methodology
We prototype the mmHRV system by leveraging a commod-

ity mmWave FMCW radar [45] in a typical office of size 3.5 m
× 3.2 m as shown in Fig. 8. By configuring the 2 Tx antennas
and 4 Rx antennas into TDM-MIMO mode as introduced in
Section III-B, the system can achieve a theoretical azimuth
resolution of 15◦. The Field of View (FoV) is 100◦ in the
horizontal plane with a radius of about 4m [21], which is
sufficient to cover typical rooms. To get the true heartbeat
signal, an ECG sensor [52] (shown in Fig. 8 (a)) is used
to collect the ground-truth simultaneously with the mmHRV
during the experiment.

In total, 11 participants (6 males and 5 females) aging from
20 to 60 are invited to conduct experiments in both LOS and
NLOS scenario as shown in Fig. 8 (b) and Fig. 8 (c). We
conduct the experiments with a variety of settings including
different distances, incidental angles, orientations and block-
ages between the human subject and the radar.

To further evaluate the performance of the proposed system,
we compare mmHRV with the state-of-the-art HRV estimation
technique using Band-Pass-Filter-Bank (BPFB) [44], where
the BPF is used to eliminate respiration interference before
heartbeat wave estimation. The HR is then estimated and the
heartbeat signal is estimated by using the narrow BPF whose
passing band contains HR. Finally, the zero-crossing technique
is applied to extract the IBI estimations from the heart rate
signal.

B. Overall Performance

Fig. 9 shows the overall IBI estimation accuracy of the pro-
posed mmHRV and BPFB methods. The experiment consists
of 11 participants while 15 different experiment settings (e.g.,
different distances, incidental angle, orientation and blockages)
are conducted for each participant. As shown in Fig. 9, BPFB
yields about 44ms medium error while the 90-percentile error
is about 200ms. The proposed mmHRV achieves a medium
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TABLE I: HRV estimation results in terms of mean IBI, RMSSD, SDRR and pNN50 for 11 subjects.

Metrics Methods
User ID

1 2 3 4 5 6 7 8 9 10 11

Mean
IBI

Value
(ms)

ECG 899.4 789.9 723.2 854.6 654.5 822.9 645.2 890.1 564.9 728.1 763.8

mmHRV 906.3 790.4 725.6 848.6 652.4 828.3 644.2 888.1 574.2 722.7 762.6

BPFB 881.5 784.2 781.5 842.1 676.6 821.7 651.5 878.4 579.1 719 773.5

mmHRV 6.95 0.45 2.47 5.92 2.17 5.4 0.99 1.97 9.33 5.38 1.2Error
(ms) BPFB 17.87 5.7 58.36 12.44 22.01 1.25 6.31 11.66 14.21 9.16 9.66

RMSSD

Value
(ms)

ECG 38.59 10.85 37.56 31.49 34.05 35.1 16.88 27.52 5.26 23.28 31.16

mmHRV 33.52 16.53 39.08 35.26 20.29 39.72 18.14 26.06 27.8 30.52 34.92

BPFB 59.34 54.26 53.83 52.94 78.57 65.63 95.09 45.56 140.36 59.61 47.92

mmHRV 5.08 5.68 1.52 3.77 13.76 4.62 1.26 1.46 22.53 7.25 3.76Error
(ms) BPFB 20.75 43.41 16.27 21.45 44.53 30.52 78.21 18.04 135.1 36.34 16.76

SDRR

Value
(ms)

ECG 56.28 22.91 50.54 35.35 33.61 48.55 23.24 32.66 12.25 35.83 50.87

mmHRV 43.22 27.25 53.3 45.88 33.54 48.53 25.49 37.43 38.66 37.15 45.51

BPFB 71.01 47.28 110.29 58.92 69.68 55.11 67.61 50.44 118.41 47.92 63.94

mmHRV 13.07 4.34 2.76 10.53 0.07 0.02 2.24 4.78 26.42 1.31 5.36Error
(ms) BPFB 14.72 24.37 59.74 23.57 36.07 6.55 44.37 17.78 106.16 12.09 13.07

pnn50

Value
(%)

ECG 11.54 0 9.15 4.32 1.14 6.29 0.55 3.76 0 0.61 4.49

mmHRV 8.46 1.33 7.93 5.76 2.2 6.99 2.17 2.26 4.83 6.71 6.41

BPFB 19.4 18.54 14.57 20 14.2 22.92 18.13 12.59 10.24 12.8 12.42

mmHRV 3.08 1.33 1.22 1.44 1.05 0.7 1.62 1.5 4.83 6.09 1.92Error
(ms) BPFB 7.86 18.54 5.42 15.68 13.06 16.62 17.58 8.83 10.24 12.19 7.93
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Fig. 9: Over all performance of the IBI estimation error.

error of about 28ms, with the 80ms of the 90-percentile
error, which outperforms the BPFB about 60%. To thoroughly
evaluate the HRV estimation accuracy, Table. I shows the
estimated HRV features in terms of mean IBI, RMSSD, SDRR
and pNN50 of 11 participants, where the distance between user
and device is about 1m. It is shown that mmHRV can achieve
3.89ms average error of mean IBI, 6.43ms average error of
RMSSD, 6.44ms average error of SDRR and 2.52% average
error of the pNN50. Correspondingly, the average estimation
error of BPFB is 15.33ms of mean IBI, 41.94ms of RMSSD,
32.59ms of SDRR and 12.17% of the pNN50 estimations.

C. Impact of Distance

In this section, we explore the impact of the distance
between the human subject and the device. As shown in

Fig. 10 (a), the participants are asked to face towards the
device and sit in four different locations ranging from 50cm
to 200cm. The empirical Cumulative Distribution Function
(CDF) of the absolute IBI estimation error is shown in
Fig. 10 (b), while Fig. 10 (c) lists the Root Mean Square Error
(RMSE) of the absolute IBI estimation error versus distance.

Fig. 10 (b) shows that the medium errors of mmHRV are
22ms, 22ms, 30ms and 33ms corresponding to the distance of
50cm, 100cm, 150cm and 200cm. Similarly, when the human
subject moves away from the device gradually, the RMSE of
the IBI estimation error increases from 26.06ms to 68.974ms
as shown in Fig. 10 (c). It is clear that the IBI estimation
accuracy degrades with the increment of distance, which is
due to the attenuation property of the mmWave signals, as a
longer propagation distance results in a lower Signal-to-Noise-
Ratio (SNR).

The medium error of BPFB increase from 40ms to 60ms
with the distance increasing from 50cm to 200cm. In all the
four settings, mmHRV shows better performance than the
benchmark BPFB in both CDF and RMSE. This is because
that mmHRV directly extracts the heartbeat signal from the
composite signal by optimizing the decomposition, so that
the error propagation from breathing as well as random body
motion elimination can be avoided. Besides, the accurate
heart rate estimation is necessary for BPFB method, which
however is vulnerable to noise and interference from other
signal components.
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Fig. 11: Experiment setup and the absolute IBI estimation results versus orientation.

D. Impact of Orientation

Considering the real case that the user may not strictly
face towards the device, this section studies the impact of
users’ orientation on IBI estimation accuracy. As shown in
Fig. 11 (a), four normal orientations including front, back, left
and right are investigated. For all the orientations, the human
subject sits 1m away from the device and Fig. 11 (b) and
Fig. 11 (c) show the IBI estimation accuracy in terms of CDF
and RMSE, respectively.

As shown in Fig. 11 (b) and Fig. 11 (c), the median absolute
IBI estimating error of mmHRV are 21ms, 22ms, 25ms and
28ms corresponding to the front, right, left and back settings.
BPFB shows larger IBI errors with 40ms, 42ms, 43ms, 55ms
correspondingly. Averagely, mmHRV outperforms BPFB of
about 18.883ms in terms of RMSE as shown in Fig. 11 (c).
However, for both methods, the “front” setting shows the
best performance while the “back” one yields the largest IBI
estimation error. This is due to the physiological structure of
a human body, where the vibration caused by the heartbeat is
larger in the front chest than in the back.

E. Impact of Incident Angle

In this section, we investigate the impact of incident angle
denoted by θ in Fig. 12 (a). Specifically, the incident angle
θ is set as θ ∈ {0◦, 15◦, 30◦} while the distance between the
user and device is fixed at 1m. The IBI estimation errors are
shown by the CDF and RMSE in Fig. 12 (b) and Fig. 12 (c),
respectively. As expected, for both methods, the performance

degrades with the increment of θ in both CDF and RMSE.
This is because the effective reflection area decreases when
the human subject deviates from the device from 0◦ to 30◦.
Moreover, according to the array signal processing theorem,
the beam width will also increase with the increment of
the incident angle, which reduces the directionality of the
receiving signal. As a result, the SNR of the received signal
decreases when the incident angle rises from 0◦ to 30◦, thus re-
sulting in larger IBI estimation errors. However, mmHRV still
outperforms BPFB of an average about 14.544ms in RMSE,
which benefits from its optimization in signal decomposition
for heartbeat signal extraction as introduced in Section. VI-C.

F. LOS vs NLOS
This section evaluates the estimating performance when the

user and the device are blocked by a wood panel as shown in
Fig. 13 (a). The distance between the participant and the device
is set as 1m while the user is asked to face towards the device.
As shown in Fig. 13 (b), the medium estimating error of IBI
of mmHRV increases from 22ms to 24ms if the blockage
happens. Correspondingly, the medium error of IBI of BPFB
increases from 40ms to 48ms when the blockage occurs (see
Fig. 13 (b)). The performance degradation in the blockage
setting is because that the EM signal further attenuates when
it penetrates the wood panel, thus rendering the decrements of
SNR in the received signal. However, the HRV estimation still
can work in NLOS scenario, and Fig. 13 (c) shows that the
RMSE of the IBI estimation error degrades only about 2.1ms
and 5ms for mmHRV and BPFB respectively.
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Fig. 14: Impact of user heterogeneity.

G. Impact of User Heterogeneity

To validate the robustness of mmHRV over different users,
Fig. 14 summaries the absolute IBI estimation error distribu-
tion for all the 11 users of different settings (including different
distance, incident angles, orientations and blockage scenario).
Fig. 14 shows the error distribution of each user, where the
first 6 users are males denoted by the blue box and the last 5
users are females denoted by the red box. Evidently, mmHRV
demonstrates different IBI estimation errors for different users
in which the medium error varies from 13.5ms to 37ms. This
can be caused by several reasons such as different body shapes
and heartbeat strengths over different users. It is shown that
the 75-percentile error of all the uses are smaller than 75ms,

which indicates great robustness of mmHRV over different
subjects.

H. Multiple-User Case

In this section, we investigate the accuracy of mmHRV in a
multiple-user scenario. As shown in Fig. 15 (a) and Fig. 15 (b),
the participant in the middle is 1.5 meters away from the
device with incident angle 0◦, while the other 2 users in the
left and right are 1m away from the device at incidental angle
±30◦. Fig. 15 (c) and Fig. 15 (d) depicts the mean and RMSE
of the absolute IBI estimation error for mmHRV. The target
detection result is shown in Fig. 5 (d). Overall, mmHRV can
work robustly for the 3-user setup, where the mean of the IBI
error is less than 51.83ms for all the 3 locations, as shown in
Fig. 15 (c). The RMSE of the absolute IBI estimation error
is within 70ms for all the locations. We can see that mmHRV
achieve higher accuracy in the middle location than that of
either the left or the right location. This is because that the
participant at the middle location enjoys the larger reflection
area and thus achieves higher SNR in the received signal
correspondingly. This result coincides with the experiment
result as shown in Section. VI-C and Section. VI-E. However,
the accuracy decreases compared with the single-user scenario
for all the 3 locations. The main reason is that mmHRV utilizes
the digital beamforming, and thus the reflections from other
people, although suppressed by digital beamforming, act as
extra interference compared with the single-user case.
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Fig. 15: Mean and RMSE of the absolute IBI estimation error of multiple users.

VII. DISCUSSION AND FUTURE WORK

mmHRV takes an important step towards contactless vital
sign monitoring. With the miniaturization of antennas and
chips, mmWave is expected to be widely available on home
routers, smartphones, vehicles, e.t.c., and mmHRV enables
ubiquitous and pervasive vital sign monitoring by reusing a
mmWave device wherever it is already available. Note that
mmHRV is designed for the common clinical setting with
people stay stationary. For more general use case, handling
the large body motion and enabling the vital sign monitoring
when the human body is in motion is an immediate next
step. Besides, given the HRV results already achieved, it is of
interest to study “wireless health evaluation” problems such
as stress evaluation, emotion recognition, and sleep quality
evaluation.

VIII. CONCLUSION

In this paper, we devise mmHRV, a contact-free multi-user
HRV estimating system built upon a commercial mmWave
radio. To identify the number of users and their locations, a
target detector is first designed to locate each user without
any prior calibration. The heartbeat wave of each user is then
estimated by optimizing the decomposition of the composite
phase information consisting respiration, heartbeats and ran-
dom body motion. The exact time of heartbeats is extracted
from the estimated heartbeat wave to further evaluate the
IBIs and HRV metrics. Extensive experiments are conducted,
where 11 participants aging from 20 to 60 are asked to sit
at different locations (distance, incidental angle, orientation,
and NLOS scenario) for HRV evaluation. Experimental results
show that mmHRV achieves a median error of 28 ms for the
IBI estimation, outperforming the state-of-art work.
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