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Abstract—In the era of pervasively connected and sensed
Internet of Things, many of our interactions with machines have
been shifted from conventional computer keyboards and mouses
to hand gestures and writing in the air. While gesture recognition
and handwriting recognition have been well studied, many new
methods are being investigated to enable pervasive handwriting
tracking. Most of the existing handwriting tracking systems
either require cameras, handheld sensors or involve dedicated
hardware restricting user-convenience and the scale of usage. In
this paper, we present mmWrite, the first high-precision passive
handwriting tracking system using a single commodity millimeter
wave (mmWave) radio. Leveraging the short wavelength and
large bandwidth of 60 GHz signals and the radar-like capabilities
enabled by the large phased array, mmWrite transforms any
flat region into an interactive writing surface that supports
handwriting tracking at millimeter accuracy. MmWrite employs
an end-to-end pipeline of signal processing to enhance the range
and spatial resolution limited by the hardware, boost the cover-
age, and suppress interference from backgrounds and irrelevant
objects. We implement and evaluate mmWrite on a commodity
60 GHz device. Experimental results show that mmWrite can
track a finger/pen with a median error of 2.8 mm and thus can
reproduce handwritten characters as small as 1 cm × 1 cm, with
a coverage of up to 8 <2 supported. With minimal infrastructure
needed, mmWrite promises ubiquitous handwriting tracking for
new applications in the field of human-computer interactions.

Index Terms—Handwriting tracking, mmWave, 60 GHz,
Radar, Passive tracking, HCI, WiFi sensing

I. INTRODUCTION

Rapid increase in automation has stimulated the quest
for more efficient and convenient approaches for Human-
Computer Interaction (HCI). Touch screens and smart surfaces
(e.g., electronic whiteboards) have emerged as a more user-
friendly alternative to the traditional input devices such as
the keyboard and the computer mouse. However, the smart
surfaces are usually in small form factors limiting the space
for HCI and hindering our vision of ubiquitous smart envi-
ronments. Instead, we see an increasing trend of ubiquitous
interactions with machines via in-the-air gestures, handwriting,
and voice-controllable systems, evidenced by recent industrial
efforts, including Google Soli [1], Apple UWB radar, Apple
Siri, Amazon Alexa, Google Home, and so on. Handwriting
is a convenient mode of interaction for people and can be
considered as a more general form of a gesture, which is a
promising approach for HCI. Aided by the advanced handwrit-
ing recognition systems [2]–[4], enabling robust and accurate
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Fig. 1: Illustration of handwriting tracking using the proposed
mmWrite system. (a) Picture of the handwritten trajectory and
(b) Reconstructed trajectory of the word “mmWrite”.

handwriting tracking can realize countless applications in the
field of HCI.

Handwriting tracking involves tracking and recovering the
trajectory traced by a writing target (e.g., a finger, stylus pen
or a marker) and can be achieved either actively or passively.
Active systems need to instrument the moving target with
sensors like smartphone accelerometers [5], RFID tags [6],
or other radios. Differently, in passive tracking, there are
no electronic devices attached to the target. Camera-based
approaches [7], [8] dominate the passive tracking systems,
yet impose restrictions on the availability of ambient light
and raise privacy concerns. Other modalities, such as acoustic
signals, have been used to differentiate patterns of hand
movements [9], [10]. However, the performance is severely
degraded with distance, and they usually need retraining for
every new alphabet and surface [11].

Wireless signals, particularly WiFi signals, have been ex-
ploited to achieve pervasive device-free sensing for various ap-
plications [12]–[16], such as motion detection, vital sign mon-
itoring, human identification, gait recognition, indoor track-
ing, etc. [17]–[21]. The capabilities of wireless sensing are
fundamentally limited by parameters such as the bandwidth,
wavelength, and the antenna amount, etc. While the bandwidth
limits the range resolution that can be achieved, the wavelength
affects the scale of changes that can be perceived. For example,
the 802.11 ac WiFi operating on 2.4 GHz or 5 GHz band with
bandwidths up to 80 MHz offers about a range resolution
of several meters, which is much lower than that required
for handwriting tracking. Recently, two trends have arisen
that may underpin much finer-resolution wireless sensing,
including high-precision handwriting tracking. First, 60GHz
millimeter-wave WiFi, introduced for high-rate networking
with 802.11ad/ay standards, brings distinct advantages for
wireless sensing [22], [23]. Compared to 2.4 GHz/5 GHz
WiFi signals, mmWave signals offer shorter wavelengths that
create stronger reflections off small objects and enable motion
capturing at millimeter scales. Also, mmWave radios usually
have bigger phased antenna array, producing higher directivity
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and fewer multipaths that allows better spatial resolution.
60GHz WiFi has been offered in commercial routers and
is being put into smartphones [24]. Second, while wireless
sensing aims to enable radar-like features using radio signals
proposed for communication, indoor portable radars are also
becoming popular. FMCW has been widely exploited for
wireless and acoustic sensing [25]–[27], while UWB radar
and mmWave radar have been equipped into commodity
smartphones. Inspired by these two trends, the joint design of
communication and sensing systems emerges as an attractive
direction [28].

In this work, we leverage a synergy between the above two
trends by reusing a commodity 60GHz networking device as a
mmWave radar. We present mmWrite, the first passive motion
tracking system that can recover the trajectory of handwritten
traces with high precision using a single commodity 60GHz
mmWave radio. mmWrite captures the signals reflected off a
writing object (e.g., a finger or a pen) and employs a pipeline
of signal processing to reproduce the moving trajectory. And
unlike gesture recognition systems, mmWrite does not require
any calibration or supervised learning. Instead, it directly
tracks the location of the writing target and recovers the entire
trace. With one single radio and without instrumenting the
writing object, mmWrite achieves handwriting tracking with
millimeter accuracy over a large area of up to 8 <2, thus
converting a conventional surface into an interactive trackpad
with minimal supporting infrastructure. We have shown one
instance of handwriting tracking in Fig. 1.

Utilizing a mmWave radio to deliver such a handwrit-
ing tracking system, however, entails unique challenges in
practice. First, the 60GHz mmWave signals, although with
a large bandwidth of a few GHz, does not offer adequate
range resolution for mm-scale handwriting tracking. In our
test bed, the range resolution is 4.26 cm given the bandwidth
of 3.52 GHz, far worse than the desired tracking accuracy
at millimeter level. Second, given the high attenuation nature
and near-far effects of mmWave signals (i.e., the spatial
resolution of the directional signals decreases over distance),
it is non-trivial to achieve a large coverage using a single
radio. Third, reflection signals from background environments
and especially irrelevant moving objects (e.g., body and arms)
can distort the reflections from the target of interest (e.g., the
finger) and thus influence the tracking performance.

The mmWrite algorithm is designed to conquer the above
challenges and build a robust handwriting tracking system.
For this, the time series of the channel impulse response
(CIR) is captured during handwriting. The time-of-arrival
(ToA) information embedded in the CIR, along with the
spatial information extracted by digital beamforming, contains
a rough estimate of the received signals’ spatial origin. The
contribution of the irrelevant signals from the environment to
the received signal is suppressed by background subtraction.
Moreover, the Doppler spectrum is used to isolate the signals
reflected from the dynamic targets. The presence of the target
is then detected from the Doppler spectrum using the Constant
False Alarm Rate (CFAR) technique, and the corresponding
spatial location is extracted. The coarse spatial information of
the target is then refined further using the subsample peak

interpolation technique. These target localization steps are
repeated for each time instance to construct an estimated
trajectory of the target, which is then enhanced to output
the final trajectory using Discrete Cosine Transform-based
smoothing technique.

We implement mmWrite on a commodity 60GHz 802.11ad
device sponsored by Qualcomm, which is turned into a radar-
like mode by attaching an extra antenna array to the radio.
The performance of mmWrite is validated using three different
approaches. First, we visually examine the shape-preserving
capability of mmWrite by showing the recovered trajectories,
which demonstrate that mmWrite can reproduce characters
spanning a few centimeters that are recognizable by human
eyes. We also feed the recovered trajectories to a standard
handwriting recognition software, which reports an accuracy
of 80% for 3 cm × 3 cm characters written at a distance of 20
cm. Finally, we quantify the tracking error at different ranges
and azimuth angles. mmWrite achieves a median tracking error
of 2.8 mm at a range of 20 cm from the device and can track
handwriting in a region spanning about 8 <2.

The main contributions of mmWrite are as follows:
• We present mmWrite, the first handwriting tracking sys-

tem by reusing a single commodity 60GHz WiFi radio as
a mmWave radar. With minimal infrastructure support,
mmWave can transform any flat surface, be it a conven-
tional whiteboard, a table, or a wall, into an interactive
writing area.

• We present a complete pipeline to track a writing ob-
ject at millimeter accuracy and thus retrieve handwritten
characters as small as 1 cm x 1 cm over a coverage up
to about 8 <2 and a maximum range of 3 m.

• We perform numerous experiments to validate the per-
formance of mmWrite in different conditions and envi-
ronments, including varying distances, surfaces, writing
speeds, and device parameters.

This paper is organized as follows. Preliminary information
required to understand the current work is given in Section II.
Section III discusses various stages of mmWrite in detail,
followed by Section IV, which evaluates the performance
of mmWrite through different experiments. We review the
relevant literature in Section V and present the future work
in Section VI. Finally, we conclude the paper in section VII.

II. PRELIMINARIES

A. The 60GHZ radar

Our experimental testbed is provided by Qualcomm, which
reuses a commodity 60GHz 802.11ad chipset as a pulsed
mmWave radar by attaching an additional antenna array to
the radio. The co-located Tx and Rx arrays are both equipped
with 32 elements, arranged in a 6×6 grid with a separation of
3 mm between the adjacent pair of antennas. The arrangement
of the 32 antennas and the coordinate system of the radar is
shown in Fig. 2a.

The pulsed radar transmits electromagnetic waves as dis-
crete pulses reflected by various objects and received by
the receiver antenna. A burst is a group of 32 pulses and
is transmitted by one Tx. Each of the 32 received pulses
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(a) Radar coordinate system. (b) Concept of burst and pulse in radar
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Fig. 2: Basic radar concepts used in mmWrite.
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Fig. 3: Channel Impulse Response.

is detected by the receiving antenna sequentially, and the
corresponding CIR is recorded. Fig. 2b shows two bursts each
consisting of 32 pulses.The CIR is computed in the hardware
sequentially by switching the antenna elements and uploaded
to MATLAB. This CIR is used as the input to the mmWrite
pipeline.

In this work, two different notions of time will be used
to extract information about the writing object. The burst
dimension is known as the slow-time dimension while the time
dimension corresponding to the CIR taps is known as the fast-
time. The concept of slow-time and fast-time is demonstrated
in Fig. 2c. Consider one Tx, one Rx and two reflectors '1 and
'2. Assume the Tx transmits two bursts, �1 and �2, which
are reflected and received by the Rx. Here a burst consists
of only one pulse since we assume only one Rx. For each
burst, the two reflections from '1 and '2 result in different
time-of-arrival (ToA) due to different path lengths which are
captured on different CIR taps. For instance, Fig. 3 shows
one realization of CIR, h consisting of 64 taps. A bandwidth
of BW = 3.52 GHz1 on our mmWave platform allows a time
resolution of 0.28 ns (Δt), i.e., signals whose propagation delay
differ by greater than Δt are recorded on different taps. The
CIR tap index =, can therefore give an estimate of the range
of the reflector. On the other hand, the slow-time captures the
temporal difference in the position of a moving target which
will be used to differentiate the moving target from the static
objects. This will be elaborated more in §III. A time resolution
of 0.28 ns translates to a range accuracy of 2ΔC

2 = 4.261 cm,
where 2 is the speed of light. The antenna response of the
antenna array is measured and available on a grid on 2 degrees
in the azimuth and elevation dimensions and hence accuracy
of 2 degrees can be achieved in those dimensions.

1Each channel in the 60GHz band of 802.11 ad spans a bandwidth of 2.16
GHz, of which 1.76 GHz is useful. A bandwidth of 3.52 GHz is achieved by
channel bonding of two channels.

B. Target Detection

In this work, we use the CA-CFAR (Cell Averaging-
Constant False Alarm Rate) technique for target detection.
Fig. 4 demonstrates the CFAR technique for a one-dimensional
signal. Consider a noisy signal with three targets of interest
indicated by dots in Fig. 4b. The CFAR window is designed as
shown in Fig. 4a with the guard cells as zeros and train cells
as ones. This CFAR window is convolved with the signal to
estimate the average noise level. An additional fixed threshold
(equal to 2 in this example) is added to the estimated noise
level to obtain the adaptive CFAR threshold. The locations
at which the signal is greater than the CFAR threshold are
identified as target locations.
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Fig. 4: CA-CFAR for one dimensional signal.

C. Subsample Interpolation

Subsample Peak Interpolation (SPI) is used to determine the
location of peak of a signal at sub-sample accuracy in different
applications [29], [30]. To include the information from the
adjacent taps, we use the parabolic interpolation technique,
which is demonstrated in Fig. 5. The circular points correspond
to the discrete signal around a potential local maximum. By
inspection, the center point (X=0) is considered as the location
of the peak. However, using a parabolic fit through the three
points helps us to estimate the location of the peak at sub-
sample accuracy. As we will see in §III-E, SPI provides a
significant improvement in the resolution of the target location.

III. MMWRITE ALGORITHM

This section describes the handwriting tracking algorithm
of mmWrite in detail. The algorithm aims to recover the
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Fig. 5: Subsample peak interpolation.

handwriting trajectory from the CIR time series recorded by
the radar while writing. The CIR time series is processed in
different modules, which are shown in Fig. 6. To begin with,
background subtraction is performed to reduce the contribution
of the static objects in the environment to the received signal.
Next, digital beamforming is used to obtain the spatial infor-
mation followed by the transformation to the Doppler domain,
whose aim is to differentiate the moving/writing object from
other static objects in the environment. The target is detected
using the 3D-CFAR and clutter mapping techniques, which
is further finely localized within the detected spatial bins
using the subsample interpolation technique. In the final step,
the trajectory points corresponding to the target of interest
are gathered and combined to form a raw trajectory, further
smoothed using the DCT-based smoothing technique to obtain
the mmWrite handwriting trajectory.

Fig. 6: Overview of mmWrite.

A. Background subtraction

Let the CIR recorded by the A th Rx at time instance C be
denoted by ℎ[A, =, C], where = is the tap index of the CIR.
To highlight the target of interest (i.e., the writing object)
and reduce the contribution from other static objects in the
environment, the background CIR is subtracted from h. In
this work, the background CIR is estimated by taking the
average of the CIR time series along the slow-time dimension.
However, when designing a causal system or if the duration of
the handwriting is short, a calibration step can be introduced,
and the background can be recorded without the writing object.
The background subtraction can be mathematically written as:

ℎ̂[A, =, C] = ℎ[A, =, C] − ℎ[A, =, .], (1)

where h is the average CIR over time and ĥ is the CIR
after background subtraction. In the following steps, the

notation h will be used instead of ĥ to denote the CIR
after background subtraction. The tap index = corresponds
to the fast-time and contains information about the range
of the reflecting object. However, there could be multiple
signals from different directions at the same range, making the
target identification task difficult. To address this, the received
signal is spatially filtered, thereby extracting the directional
information by leveraging the antenna’s phased array structure.
Digital beamforming thus forms the next stage of the mmWrite
algorithm.

B. Digital Beamforming

As we have the raw CIR at each receiving element, we can
perform digital beamforming to separate the target-reflected
signals from other irrelevant reflection signals. In this work,
classical beamforming is used [31]. The steering vector used
for beamforming was measured by Qualcomm and is available
with the device. The Fraunhofer distance, which determines
the near-field limit, is calculated as 18 cm. Hence, in this work,
a range greater than 20 cm can be considered a far-field.

Let  reflected signals be incident on the receiving antenna
array and let g: denote the : th incoming reflected signal.
Let the azimuth and elevation angles corresponding to g:
be represented by 0I: and 4;: respectively. If the measured
antenna response of the receiver A is denoted by aA , then the
combined received signal h at the receiver antenna can be
modeled as:

ℎ[A, =, C] =
 ∑
:=1

0A (0I: , 4;: )6: [0I: , 4;: , =, C], (2)

where = is the CIR tap index and C is the time instance. The
beamformed CIR, y is a four-dimensional matrix obtained by
compensating for the array response as:

H[0I, 4;, =, C] = a� (0I, 4;)ℎ(., =, C), (3)

where a(0I, 4;) is the 32-dimensional vector of antenna re-
sponses of all the receiver antennas for a signal arriving at an
angle (0I,4;) and (.)H is the Hermitian operator. To simplify
the notation, a vector T is used to denote the triplet (0I,4;,=)
as follows:

ℎ[A, =, C]
140< 5 >A<8=6
−→ H[ 0I, 4;, =︸   ︷︷   ︸

T=[0I,4;,=]

, C] = H[T, C] . (4)

One instance of the beamformed CIR is shown in Fig. 7a.
The variation of the absolute value of y at a range tap of 8,
corresponding to a range of 34 cm, is shown with different
azimuth and elevation angles.

At this stage, the range and direction of the reflected signals
can be determined from the beamformed received signal. To
differentiate the writing object from other static objects in the
environment, mmWrite exploits its dynamic nature. Next, the
beamformed CIR is further processed to extract the velocity
information of the targets.
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Fig. 7: (a) Magnitude of the beamformed CIR, and (b) The
maximum Doppler power matrix, P, corresponding to the 8th

CIR tap at one time instance, B. The matrix P retains the
power contributed only by the dynamic targets. This resulted
in suppression of one of the two potential targets observed in
(a).

C. Doppler Velocity Extraction

The correspondence between the relative radial velocity
of the target w.r.t the source and the observed frequency
of the received signal, from the well-known Doppler effect,
motivated us to transform the beamformed signal into the fre-
quency domain. This transformation is achieved by performing
a Short-Time Fourier Transform (STFT) along the slow-time
dimension C. The Fourier transform applied in a window of
length Fl and a step size of Fs. A smaller value of Fs increases
the sampling frequency of points on the trajectory, reducing
computational complexity. As FB is halved, the complexity
doubles. As we have more points on the trajectory, it can
capture more drastic changes in the writing. More discussion
is provided in §IV-B. Increasing Fl improves the resolution in
the frequency domain; however, the instantaneous information
is smoothed out. A value of Fl = 192 and Fs = 32 is used
in this work unless mentioned otherwise. The transformation
can be written as:

. [T, B, 5 ] ��)←− H[T, C + (B− 1)Fs −Fl + 1 : C + (B− 1)Fs], (5)

where B is the window index which is also indicative of the
slow-time. As the target moves, the observed frequency of
the received signal is altered due to the Doppler effect. This
change in frequency (Δ 5 ) depends on the direction and speed
of the moving target and is given by:

Δ 5 =
2E
2
5c, (6)

where E is the relative radial velocity of the target, 5c is the
frequency of the carrier wave and 2 is the speed of light. This
correspondence between the observed frequency, 5 = 52 +Δ 5 ,
and the target radial velocity can be shown on the transformed
CIR as:

. [T, B, 5 ] ←→ . [T, B, E] . (7)

The reflected signals from the static objects in the environment
contribute to the zero frequency bin of the transformed CIR,
while those reflected from the moving targets contribute to the
non-zero frequency bins corresponding to their relative radial
velocity. Thus, to detect the moving target, i.e., the writing
object, the power in the non-zero frequency bins must be

analyzed. Among the non-zero frequency bins, the maximum
Doppler power (P) is extracted for each spatial bin (azimuth,
elevation and range) and time instance as follows:

E∗T,B = argmax
E≠0

|. [T, B, E] |, (8)

%[T, B] = |. [T, B, E∗T,B] |. (9)

Recall that the non-zero frequency bins of the Doppler
power capture the reflected signals corresponding to the target
with non-zero radial velocity. However, during handwriting,
there will be instances when the writing object has a zero
radial velocity, and P does not capture the contribution from
signals of interest. The zero radial velocity could be due to one
of the following reasons: (a) The speed of the target is zero, or
(b) the radial component of the velocity of the target is zero,
i.e., the target is moving perpendicular to the range dimension.
In such instances, the Doppler power corresponding to the zero
frequency bin (P0) is analyzed to capture the reflected signals
from the target of interest. Mathematically, this is written as,

%0 [T, B] = |. [T, B, 0] |. (10)

Fig. 7b shows an instance of the matrix P at a range tap of 8 for
different azimuth and elevation angles. The four-dimensional
matrices P and P0 indicate the Doppler power for the range
dimension with a resolution of 4.26 cm, and azimuth and
elevation dimensions with a spacing of 2 degrees for each
time instance, B. These matrices are analyzed to detect and
localize the target.

D. Target Detection

The spatial bins consisting of dynamic targets have a higher
Doppler power compared to the ones without a dynamic
target. Therefore, the goal of target detection is to identify
the bins with relatively higher Doppler power to obtain a
rough estimate of the location of the dynamic target. For
this, the Doppler power values need to be compared with a
threshold. However, the spatial and temporal variation in the
noise level prevents us from using a universal threshold for
target detection. This problem has been addressed in the radar
literature with an adaptive threshold. The most commonly used
technique is the CA-CFAR target detection [32].

In this work, a three-dimensional CFAR window is used,
corresponding to the range, azimuth, and elevation dimensions.
A CFAR threshold map is computed for %[T, B], and the
spatial bins with Doppler power above the CFAR threshold are
extracted. Let the 3D CFAR window be denoted by Cwin and
�add be the additional threshold. The overall CFAR threshold
matrix � th is given by:

Cth = Cwin ★P[., B] + �add, (11)

where ★ is the convolution operation. The Doppler power
matrix after applying the CFAR threshold, P2 is written as:

%2 [T, B] =
{
%[T, B], if %[T, B] > �th [T]
0, otherwise.

(12)

Fig. 8a shows the Doppler power for different azimuth and
elevation angles and a fixed range tap of 7. The resulted
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Fig. 8: (a) Doppler power at range tap 7 for different azimuth
and elevation angles, (b) Doppler power after applying CFAR
threshold. In this example, the target is detected at an elevation
of -8◦ and an azimuth of -4◦ with a Doppler power of 63.5
dB.

Doppler power after applying CFAR threshold is shown in
Fig. 8b. Before designing the target detection module using
the 3D-CFAR technique, let us understand the two challenges
in mmWrite: Multiple moving parts and zero radial velocity.
Multiple moving parts: During handwriting, at any given
instance of time, different parts of the hand (fingers, wrist,
arm) move in different directions and speeds, resulting in
different radial velocities due to different inclinations. As
a result, the highest Doppler power does not necessarily
correspond to the target of interest (the tip of the pen, for
example) at all times. For instance, Fig. 9 shows the range,
azimuth, and elevation corresponding to the two highest values
in the Doppler power matrix P with time. The traces )1 and )2
indicate the spatial information corresponding to the first and
second highest Doppler power bins. As shown, two distinct
target traces can be observed, and the highest Doppler power
keeps switching between the two. The Doppler power at a
particular spatial bin and time depends on many factors such
as the instantaneous radial velocity of the dynamic target if
present, the radar cross-section, material, and location of the
target. To avoid misdetection of the target of interest, # targets
are detected at each instance instead of one. These # targets
are identified iteratively in the decreasing order of Doppler
power by comparing with the CFAR threshold and by nulling
out the region around the previously detected targets to avoid
overlap of detections. The target of interest is then identified
from amongst the # targets at each time instance using the
target tracking algorithm described in §III-F.
Zero radial velocity: As mentioned before, to detect a target
with zero radial velocity, the Doppler power corresponding
to the zero frequency bin P0 needs to be analyzed. This
is because, at low/zero radial velocity, the received power
contributed by the target is shifted to the zero Doppler velocity
bin. Let us consider an example. In Fig. 10, the Doppler power
corresponding to one spatial bin, T is shown. Specifically, the
time series %0 [T, B] and %[T, B] are shown with respect to B.
It can be observed that when the target reaches a low radial
velocity at the time indices highlighted in the figure, there
is a shift in the Doppler power from P to P0. However, the
application of CFAR target detection on P0 is not effective due
to reflections from irrelevant static objects in the environment,
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Fig. 9: Estimated target locations with time using the two
highest Doppler power bins. The traces are marked as )1
and )2, corresponding to the first and second highest Doppler
power respectively.

usually referred to as clutter in the radar literature [32]. The
noise level or the clutter can be estimated from the Doppler
power of a particular spatial bin when the target is not present.
Therefore, instead of estimating the noise from the adjacent
spatial locations as in the CFAR technique, we estimate it from
the median power of a particular bin over time. Let � th

0 denote
the threshold for target detection on P0. It can be written as,
� th

0 [T] = <4380=(%0 [T, .]). The Doppler power matrix after
CFAR threshold, P20 is written as:

%20 [T, B] =
{
%0 [T, B], if %0 [T, B] > �th

0 [T]
0, otherwise.

(13)

Based on the above discussions, the target detection module
is designed as follows. For each time instance, we identify
a maximum of # non-overlapping probable locations of the
target corresponding to the decreasing Doppler power from P20
and P2 . The location coordinates corresponding to the spatial
bins of the targets are stored in T★0 and T★ respectively as
described in Algorithm 1.

Algorithm 1 Target detection algorithm for mmWrite

1: for each time instance B do,
2: for 8 = 1 : # do ⊲ # is the number of targets detected
3: Tmax = argmax

T
(%2 [T, B])

4: if %2 [Tmax, B] > 0 then
5: T★[8, B] = Tmax
6: end if
7: %2 [Tmax − Δ : Tmax + Δ, B] → #D;;

8: end for
9: Repeat Step 2 to 8 with P20 to determine T★0

10: end for

E. Target Localization

From the previous stage, the location bin of the target can be
determined from T★[., B] at every time step. Since the accuracy
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reaches a low radial velocity at time index of about 75, the
Doppler power shifts from the non-zero frequency bin to the
zero frequency bin and then switches back when the target
gains some radial velocity at a time index of about 120.

of the estimates is limited to 2 degrees in the azimuth and
elevation dimensions and 4.25 cm in the range dimension from
the design of the radar, a discontinuous/quantized trajectory
is obtained for characters spanning only a few centimeters as
shown in Fig. 12a. However, due to the smooth and continuous
nature of handwriting, it has been observed that the Doppler
power “flows” gradually from one bin to another. This fact is
leveraged to obtain finer location estimates. The observation
can be demonstrated by a simple experiment, as explained
below.

A straight line is drawn away from the device, keeping
the azimuth and elevation nearly zero, and the corresponding
Doppler power in the range taps is analyzed. As shown
in Fig. 11a, as the target moves away from the radar, the
Doppler power shifts gradually from tap 11 (46.46 cm) to
tap 13 (55.38 cm). According to our proposed approach,
the tap corresponding to the maximum Doppler power is
considered as the range of the target. Therefore, we get the
discrete range estimates as shown in black. This observation
motivated us to combine the information in adjacent taps to
obtain an improved location estimate. However, using adjacent
four values near the peak is not very useful. For example,
during the period when the power corresponding to tap 13
is the maximum (orange line), the power corresponding to
tap 11 (purple line) is already close to the noise level. This
observation motivated us to use the SPI technique discussed
in §II to improve the location estimates. In this work, SPI
is applied to the range, azimuth, and elevation dimension
independently. Fig. 11b shows the range estimates before and
after SPI. Interpolation using the combined information from
the three dimensions could improve the estimation, and such
an analysis is left for future work.

The SPI operation has a significant effect on the perfor-
mance of handwriting tracking as demonstrated in Fig. 12
since it largely boosts the spatial resolution. The trajectory of
the word “beam” in Fig. 12a is formed by many overlapping
points because of the discrete location taps (range, azimuth
and elevation) while the trajectory formed after SPI in Fig. 12b
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Fig. 11: (a) Doppler power for different range taps with time
for a straight line drawn along the range away from the device,
(b) Range estimates before and after SPI.

-5 0 5 10
x (cm)

35

40

45

y
 (

c
m

)

(a)

-5 0 5 10
x (cm)

35

40

45

y
 (

c
m

)

(b)

-5 0 5 10
x (cm)

35

40

45

y
 (

c
m

)

(c)

Fig. 12: Illustration of the target localization and trajectory
construction for the word “beam”. (a) Discrete points of the
trajectory from target detection, (b) Finer location estimates
obtained from SPI and (c) Trajectory after DCT-based smooth-
ing.

is readable by the naked eye. Let T★
0,1,2
[8, B] = [0I★[8, B] +

0, 4;★[8, B]+1, A★[8, B]+2] where 0, 1, 2 are the index offsets in
the corresponding dimensions. The final estimates of azimuth,
elevation and range coordinates are obtained from the SPI as:

0I★SI [8, B] = SPI{%[T★−1,0,0 [8, B], B],
%[T★0,0,0 [8, B], B],
%[T★1,0,0 [8, B], B]}.

(14)

4;★SI [8, B] = SPI{%[T★0,−1,0 [8, B], B],
%[T★0,0,0 [8, B], B],
%[T★0,1,0 [8, B], B]}.

(15)

A★SI [8, B] = SPI{%[T★0,0,−1 [8, B], B],
%[T★0,0,0 [8, B], B],
%[T★0,0,1 [8, B], B]}.

(16)

At time instant B, the location of the 8th moving target is given
by L[8, B] = [0I★SI [8, B], 4;

★
SI [8, B], A

★
SI [8, B]]. Let the location

estimates obtained from T★0 [8, B] be denoted by L0 [8, B]. The
ultimate trajectory is constructed using L and L0 in the next
section.

F. Trajectory Construction

In the previous module, multiple target locations (#) have
been detected at each time instance, B and stored in L and L0.
In this module, a trajectory tracking algorithm is designed to
extract the raw trajectory of the target of interest from L and
L0. Following are some observations that will be used to build
the algorithm.
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1) Assuming the handwriting is on a flat surface and
is smooth and continuous, the elevation angle of the
writing object does not change abruptly. This fact is used
to define continuity of target location at two successive
time instances.

2) At any given time instance, the elevation angle cor-
responding to the target of interest, i.e., the tip/lower
part of the writing tool, is the least among all the other
detected target locations.

3) If a particular location is being continuously detected
for many time instances in L and suddenly disappears,
there is a possibility that the target has reached a low
radial velocity and is detected in L0.

The target tracking algorithm is described in Algorithm
2. The target locations are read from L over time. The
continuous trajectories are tracked and stored in a list. If a
trajectory segment is continuous for more than a predefined
number of time instances, then it is considered as a potential
trajectory of the target of interest. If there are multiple potential
trajectories, the lowest elevation trajectory is considered as
the mmWrite trajectory. Additionally, if a trajectory suddenly
becomes discontinuous after being detected as the mmWrite
trajectory for a while, then we also check if the target location
is detected in L0 to determine continuity. Some of the terms
used are summarized below:
• �( (Continuity Score): Each detected target location is

associated with a score abbreviated as CS. It is a scalar
that indicates the length of the continuous trajectory
detected in the previous instances of which the current
location is a part.

• �(th: Threshold on the continuity score
• CTL (Continuous Target List): List of target locations

detected whose CS is greater than 0.
• Cont(0,1): Function to check if two locations 0 and
1 are continuous. Recall that two locations detected at
successive time instances are said to be continuous if the
elevation angle does not change significantly.

The trajectory tracking algorithm also removes outliers that
result from sudden changes in the point of reflection or missed
targets. The tracked target locations with time are stored in the
vector W. A raw trajectory can be formed by combining all the
estimates. Such a trajectory is noisy, and an example is shown
in Fig. 12b. To obtain a smoother trajectory, we propose a
smoothing technique based on the Discrete Cosine Transform
(DCT). The idea is to compute the DCT of the noisy data
and inverse transform to the data domain while preserving
only the significant coefficients. By doing so, we discard
the insignificant coefficients that account for the noisy and
irrelevant part of the signal [33], thereby obtaining a smooth
trajectory. Mathematically, the recovered writing trajectory, Ŵ
is given by,

Ŵ = IDCT(gDCT(W)). (17)

Here IDCT is the inverse discrete cosine transform, and g is
a diagonal matrix whose entries are given by,

g8, 9=

{
[1 + B(2 − 2 cos( (8−1) c

=
))2]−1 8 = 9 ,

0 8 ≠ 9 ,

Algorithm 2 Target tracking algorithm for mmWrite

1: for each time instance B do,
2: ,[s] ← lowest elevation target in CTL with �( >

�(th ⊲ W stores the final target locations.
3: for 9 = 1 : length(�)!) do ⊲ Update current entries

of �)!.
4: if any(cont(�)!( 9), ! [:, B]))==1 then
5: �)! ( 9).�( + +
6: else
7: if cont(�)!( 9),, (B)) then ⊲ Target missed

from L.
8: if any(cont(�)!( 9),!0 [:, B]))==1 then ⊲

Search for missed target location in L0.
9: �)! ( 9).�( + +

10: else
11: �)! ( 9) → [] ⊲ Target missed from L

and L0 =⇒ remove from CTL.
12: end if
13: end if
14: end if
15: end for
16: for k=1:N do ⊲ Add new entries to �)!.
17: if any(cont(! [:, B], �)!(:)))!=1 then ⊲ New

location discontinuous with CTL =⇒ add to CTL.
18: ;>2.! = ! [:, B]; ;>2.�( = 1;
19: �)!(4=3 + 1) = ;>2
20: end if
21: end for

where = is the number of data points and B is the smoothing
factor. The DCT coefficients of the data points are scaled by
the matrix g in the transform domain. The scaled coefficients
are converted back to the data domain using the IDCT. The
trajectory smoothing is achieved by the scaling matrix g with
the smoothing factor B and the cosine factor which imposes
decreasing weights to the DCT coefficients. An example of the
smoothed trajectory after DCT-based smoothing (Ŵ) is shown
in Fig. 12c.

IV. EXPERIMENTAL EVALUATION

The performance of the proposed mmWrite system is eval-
uated in this section. Moreover, the effect of different param-
eters and experimental settings is discussed in detail. All the
experiments are performed in a busy office environment using
a similar setup as shown in Fig. 13, in which the writing
surface and the radar lie on a flat surface. In the default setup,
the height of the writing surface is adjusted to be around the
zero elevation angle of the radar. Handwriting is performed so
that the writing tool faces the radar and is the closest moving
target to the radar. The writing tool is held at its upper portion
to facilitate differentiation of the reflections from the writing
tool and the hand/fingers. The handwriting itself is performed
with natural writing speed using a marker on a paper/board.
The CIR time series is recorded during the writing and is
processed later using mmWrite. The recovered trajectories are
subjected to different types of evaluations, which are described
in detail below.
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Fig. 13: Experimental setup for mmWrite. (Top) Writing on a
whiteboard using a marker, (Bottom left to right) Front view of
the setup showing the writing surface at nearly zero elevation,
writing using a pen and hand.

A. Overall Performance

The performance of mmWrite is evaluated using three
different approaches. Unless otherwise mentioned, the radar
is placed at the origin (0, 0).
Visual inspection and Shape matching: A valid handwriting
tracking system should be able to preserve the relative shape of
the handwriting trajectory that is legible to humans or recog-
nizable by any standard handwriting recognition software. We
assess this by visually comparing the ground-truth handwritten
trajectories and the recovered trajectories by mmWrite. In
this experiment, randomly selected English alphabets from
the EMINST dataset [34] are printed and traced within an
area about 5 cm × 5 cm on an A4 paper with a marker.
Fig. 14 shows two versions of different English alphabets
with the first, third and the fifth row showing the ground
truth character images and the second, fourth and the sixth
rows showing the recovered characters. It can be confirmed
that the relative shapes of the alphabets are well preserved
by mmWrite, which are visually similar to the ground-truth
handwriting and can be recognized by humans confidently.
Additionally, we also evaluated the shape similarity using
shape context as discussed in [35]. Classification using shape
context achieved an accuracy of 96.6% on the characters
shown in Fig. 14.
Character recognition accuracy: Given the encouraging
results as in Fig. 14, it would be interesting to see how
good the recovered characters could be recognized by standard
handwriting recognition tools. To evaluate that, we wrote
English alphabets in different sized grids and at different
distances from the device. For each scenario, we randomly
picked 50 alphabets from the EMINST dataset and traced their
trajectories on a paper. The trajectories obtained by mmWrite
are then exported from MATLAB to control the mouse pointer
and are then fed to a standard handwriting recognition software

(myScript). The character recognition accuracy reported by the
software is recorded and shown in Fig. 15. It can be observed
from the figure that the accuracy decreases with distance
from the device and increases with the scale of handwriting,
as expected. This is because of the decreasing cross-range
accuracy. For instance, the character recognition accuracy for
characters written within 3 cm x 3 cm is 80% and 72% at
distances 20 cm and 30 cm respectively. The accuracy for the
same distance of 20 cm is 80% and 82% for scales of 3 cm
x 3cm and 5 cm x 5 cm respectively. As will be shown later
in Fig. 21, the tracked characters, even written in really small
scales (1 cm × 1 cm), can still be easily read by human eyes,
although they might not be accurately recognized by standard
software.
Tracking accuracy: Now we quantitatively evaluate the track-
ing accuracy of mmWrite. To do so, we trace a circle and a tri-
angle (both predefined with known size and shape which serve
as the ground truth trajectory) multiple times, and reconstruct
the trajectories. Due to lack of time synchronization between
the handwritten trajectories and the mmWrite estimates, we
report the median of the minimum projection errors between
the two versions of trajectories as the tracking error. Two
instances of the ground truth and the projected trajectories
are shown in Fig. 16a and Fig. 16b.

It is known that the distance from the device affects the
tracking performance due to the reduced cross-range accuracy.
This can be observed from the CDF of the tracking errors
shown in Fig. 16c where the tracking error increases with
distance from the radar (R). To further gauge the influence
of range and azimuth angles on the tracking error, we repeat
the above experiment for different ranges and azimuth angles.
Fig. 17 shows the resultant error map. The median tracking
error increases from about 3 mm at a range of 20 cm to 40 mm
at a range of 3 m. The tracking error also slightly increases
with the azimuth angle at any given range. The reflected power
from the tiny writing object is too weak to be detected by
the radar, beyond a range of 3 m. Also, the target cannot be
detected beyond an azimuth angle of 50-55 degrees due to the
hardware limitations. Nevertheless, Fig. 17 has demonstrated
that the mmWrite system can already cover an area of about
8 <2, about 10× larger than the state-of-the-art system using
mmWave radio [36].

B. Micro-benchmarks

Handwriting tracking on different surfaces: mmWrite can
be used to track handwriting on flat surfaces of different
materials. This is because only the signals reflected off the
writing object are analyzed by mmWrite, and the material
of the writing surface is irrelevant. mmWrite can, therefore,
transform any flat surface to a potential writing surface. Fig. 18
shows some instances of handwriting tracked on different
materials such as paper, glass, and cardboard.
Handwriting tracking with different writing objects: In-
tuitively, we expect the writing object’s properties to have
a more direct effect on the tracking performance than the
writing surface. To analyze this, we have performed tracking
with different writing objects: a marker, a pen, a pencil, and a
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Fig. 14: Visual comparison of ground truth characters and recovered characters. The characters in bold are picked from EMINST
dataset and serve as the ground truth (row 1, 3, and 5). The corresponding recovered characters are shown in row 2, 4, and 6.
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Fig. 15: Character recognition accuracy at different distances
from the device with characters written in different scales.

human finger. We have traced a circle with these objects, and
the raw trajectory points, W are shown in Fig. 20. It can be
observed that a smooth and continuous trajectory is obtained in
the case of a marker, while the trajectory points obtained in the
case of a hand/finger gave noisy estimates. This behavior can
be associated with different incidence points on the target and
the non-rigid nature of the hand. The great performance with a
marker will be particularly useful by transforming traditional
whiteboards into interactive ones using mmWrite.
Handwriting recognition with different users: To study the
user dependency on the performance of mmWrite, we have
requested 5 different users to draw 50 characters at a range
of about 30 cm and in an area spanning about 7 cm x 7
cm. The corresponding recognition accuracy is reported as
shown in Fig. 19. It can be observed that the average character
recognition is about 91% over different users.
Scale of handwriting: Apparently, the performance of
mmWrite depends on the scale of handwriting. The higher

the scale, the easier it is to identify the relative shape of
the trajectory. In Fig. 15, the character recognition accuracy
for characters written in different scales is shown. To explore
the limit of the scale of handwriting that can be retrieved
by mmWrite, experiments were performed with characters
spanning a few millimeters at a distance of 20 cm from the
radar. Fig. 21a shows the ground truth trajectory of the word
“scale” with the grid size of 1 cm x 1 cm and Fig. 21b shows
the obtained trajectory using mmWrite. It has been observed
that characters written in a grid of size as small as 1 cm x
1 cm can be recovered and the resultant trajectories can be
easily recognized by humans.
Repeatability of the trajectories: The absolute localization
of the target enables mmWrite to generate precise estimates
of the handwriting trajectories. To demonstrate the repeata-
bility of mmWrite trajectories, the word “repeat” is traced
several times on a paper and the trajectories are reconstructed.
Fig. 22a shows the picture of the traced word on a paper
and Fig. 22b shows the corresponding mmWrite trajectories.
It can be observed that the trajectories overlap on each
other, demonstrating the consistent precision of the estimated
trajectories.
Number of points on the trajectory: mmWrite reconstructs
the handwriting trajectory by estimating the location of the
moving/writing target at different time instances and by
connecting all the location estimates. For a given length
of the trajectory, if the target localization is performed at
shorter intervals, a greater number of points are obtained,
capturing more abrupt changes in the trajectory. However, this
performance enhancement is achieved at the cost of higher
computational complexity.

The number of points on the recovered trajectory is depen-
dent on two factors:

• The speed of handwriting: With a fixed sampling fre-
quency of the CIR time series, faster handwriting results
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Fig. 16: Ground truth and the reconstructed trajectories of a (a) circle and (b) triangle.(c) CDF of tracking error.

Fig. 17: Tracking error at different range and azimuth angles
from the radar.

Fig. 18: Handwriting tracking on different materials

in fewer points on the trajectory compared to slower
handwriting. Fig. 23 shows the recovered trajectories for
letter ‘m’ written with two extreme speeds. Fig. 23a
shows handwriting with very slow speed while Fig. 23b
shows the trajectory corresponding to fast handwriting.
Observe that for the faster speed, the number of points on
the trajectory is less and the trajectory becomes smoother.
However, faster speed may not capture the minute details
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Fig. 19: Character recognition accuracy for different users.

of the trajectories.
• Step size in the windowed Fourier transform (Fs):

From the beamformed CIR time series, mmWrite com-
putes the STFT along the slow-time dimension. As the
step size of the moving window (Fs) decreases, target
localization is performed more frequently, resulting in a
larger number of points on the trajectory. For a step size of
Fs, the sampling frequency of the points on the trajectory
is 1/(Fs x )1), where )1 is the duration of the burst as
discussed in §II-A. For instance, if the step size, Fs = 20
and )1 = 400 `B, the sampling frequency is 125 Hz. For a
fixed )1 = 400 `B the trajectories of writing letter ‘n’ with
different Fs are shown in Fig. 24. As Fs increases, the
sampling frequency decreases and lesser number of points
are obtained on the trajectory. This causes smoothening
of minute details in the trajectory.

Degree of smoothness: The degree of smoothness achieved by
the DCT-based smoothing depends on the smoothing parame-
ter B. For a given number of points on the trajectory, the higher
the value of B, the smoother the trajectory. However, if the
value of B is too large, necessary details in the relative shape
of the trajectory can be smoothed out, which is undesired. For
instance, in Fig. 25, the smoothed trajectories with different
values of the smoothing parameter B are shown. In this
example, for B = 1500, the letter “h” is barely recognizable.
mmWrite defaults with B = 2 in this work.
Complexity and Latency: Let # be the total number of points
on a trajectory. The complexity for each of the modules in
mmWrite is shown in Table. I. Most modules include multiple
linear-complexity operations and have an overall complexity of
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Fig. 20: Illustration of the trajectory points detected for different writing objects. (a) Marker, (b) Pen, (c) Pencil and (d) Finger.
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Fig. 21: Demonstration of handwriting tracking for characters
within 1 cm. (a) Actual trajectory in a grid of 1 cm x 1 cm,
(b) mmWrite trajectory.
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Fig. 22: Demonstration of mmWrite precision. (a) Ground truth
of word “repeat”, (b) mmWrite result.

$ (#). Although the Doppler velocity extraction module uses
the FFT operation, which has a complexity of $ (#;>6#), the
transformation is performed along the slow-time dimension
with a duration of F; resulting in $ (1) operations for each
point. The trajectory construction module uses the DCT opera-
tion, which has a complexity of $ (#;>6#). Overall, mmWrite
has a complexity of $ (#;>6#). This can be further optimized
by smoothening discontinuous strokes separately, which is part
of future work.

TABLE I: Complexity for different modules in mmWrite.

Module Complexity
Background Subtraction $ (# )

Digital Beamforming $ (# )
Doppler Velocity Extraction $ (# )

Target Detection $ (# )
Target Localization $ (# )

Trajectory Construction $ (#;>6# )

The current version of mmWrite uses offline processing and
records the complete CIR time series before producing the
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Fig. 23: Recovered handwriting trajectories with extreme
speeds of handwriting. (a) Very slow and (b) Very fast hand-
writing.
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Fig. 24: Recovered handwriting trajectories with different FB .
(a) FB = 20 (b) FB = 30 (c) FB = 50.

handwriting trajectory. If the static background is recorded
beforehand, the estimated time in MATLAB to generate one
raw trajectory point is about 0.4 seconds on a Windows
machine with an Intel Core i7 processor. We can obtain a
substantial reduction in the computation time by using parallel
processing and GPUs.

V. RELATED WORKS

Handwriting tracking Handwriting tracking can be achieved
in a device-based [5], [6] or device-free manner [7], [36],
[37]. Considering user-convenience, device-free or passive
approaches have gained more attention over the years. Passive
handwriting tracking has been attempted by researches in
the past using different approaches such as acoustic, visual,
WiFi, RFID, and millimeter waves. A summary of the past
works using different modalities is presented in Table. II.
Acoustic signal-based approaches use the inbuilt speaker and
microphone of the smartphones to derive the sound signal
reflected by the moving object. Although these approaches
could track handwriting at millimeter-scale accuracy, the per-
formance deteriorates severely with distance, and the oper-
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(a) s=0.5 (b) s=5 (c) s=50 (d) s=500 (e) s=1500

Fig. 25: Smoothed trajectories for different values of the
smoothing parameter B.

ational range is usually within 50 cm from the device [9],
[38], [39]. Vision-based methods use a camera to identify
and track the fingertip/arm to reconstruct the handwriting
trajectory [7], [40]. Intuitively, the tracking accuracy of the
vision-based approaches depends on the pixel resolution and
the distance from the camera. These approaches are limited by
privacy interests and the requirement for ambient light. On the
other hand, WiFi-based approaches estimate the displacement
using Fresnel zone model [41] or by tracking the phase of
the CSI [37]. The transceiver geometry is then exploited to
obtain the 2D location of the target. WiDraw [42] uses the
Angle of arrival (AoA) of the line-of-sight signals from the
densely deployed transceivers to track the motion of the hand
in the air. Although WiFi based approaches appear attractive
in terms of coverage, the tracking accuracy is of the order
of centimeters or decimeters, which is not adequate for fine-
grained handwriting tracking [37], [42]. Compared to the
above modalities, millimeter wave-based methods seem to be
an attractive option both in terms of coverage and tracking
accuracy [36] [43].

Among the millimeter wave based approaches, mmWrite is
the first work to reuse a commodity millimeter wave radio as
a radar for handwriting tracking. The most relevant past work
is mTrack, which uses a custom-built 60 GHz software-radio
platform (consisting three transceivers) and tracks the writing
object by using the phase of the received signal. While mTrack
relies on phase changes and triangulation, we leverage more
radar capabilities in target localization and Doppler speed
estimation, as compared in Table. III. It can be observed that
mmWrite can achieve lesser tracking error and larger coverage
than mTrack, while requiring minimal infrastructure support.
Handwriting recognition The field of handwriting tracking
is closely linked to that of handwriting recognition. While the
end goal of handwriting tracking is to reconstruct the trajec-
tory, handwriting recognition further intends to predict/identify
the character. Handwriting recognition can be achieved in two
different approaches. The first set of approaches recover the
handwriting trajectory as an intermediate step and identify the
characters using handwriting recognition modules/classifiers
[42], [45]. The second set of approaches extract features rep-
resentative of the characters and use learning-based techniques
to classify them. These approaches suffer from the pattern
inconsistency problem, i.e., the extracted features are location
and environment-dependent, limiting the practical usage and
the allowed set of characters [10], [46]. The current research,
therefore, is focused on recovering the handwriting trajectory
itself allowing unrestricted device placement and the set of

trajectories.
Gesture recognition and passive motion tracking Wireless
signals like WiFi and mmWave have also been widely explored
for gesture recognition and passive motion tracking. These
works either set up multiple transceivers with a specific
geometric arrangement for precise gesture tracking [37], [41],
or do not need special setup but only allow gesture recognition
from a predefined set of gestures [47]–[49]. The latest research
resorts to deep learning to improve cross-domain recognition
accuracy, but does not fundamentally improve motion tracking
resolution [50], [51]. These works, however, could not achieve
the required millimeter accuracy for handwriting tracking due
to the intense multipath that corrupts the signal reflected from
the hand.

Indoor passive motion tracking is also achieved with 5
GHz WiFi. For this, parameters such as Angle-of-Arrival,
Doppler velocity and Time-of-flight [52]–[54] are estimated
from the CSI measurements. Millimeter wave has been used
to track one or more people/robots by exploiting the target
tracking capabilities of the radar and the phased antenna array
structure [55], [56]. However, these works aim at tracking the
human/robot body as a whole and the tracking accuracy is not
sufficient for the handwriting application.

VI. DISCUSSIONS AND FUTURE WORK

In this work, we built a prototype of a handwriting tracking
system. At this stage, mmWrite can be further improved in the
following ways.
• We assumed a single moving target in this work. The

algorithm can be extended to multiple moving targets by
repeating the target detection, localization, and tracking
steps at each time instance for the desired number of
targets. Spatial resolution plays a crucial role in the
performance of multiple target tracking. The tracking
error could be further reduced using multiple radios, for
instance, by using a triangulation method.

• We do not deal with multiple/discontinuous strokes in this
work. With the current version of mmWrite, the recovered
trajectories are projected onto a 2D plane. Therefore,
discontinuous writing strokes would still appear contin-
uous. One way to handle multiple strokes is to exploit
the elevation information of the target, i.e., by discarding
the trajectory points above a pre-defined threshold. Such
a module is beyond the scope of this manuscript and is
left for future work.

VII. CONCLUSION

In this work, we proposed mmWrite, a handwriting tracking
system using a single commercial 60 GHz radar. A complete
pipeline of the handwriting tracking system from detecting
the writing object to the post-processing steps is presented.
It has been proved that the relative shape of the handwrit-
ten characters/words is preserved, which can be read by a
human or fed to a handwriting recognition software. The
performance of mmWrite is evaluated and discussed under
different experimental conditions. With mmWrite, we envision
smart environments in which any flat region can be a writing
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TABLE II: Summary of passive handwriting tracking systems

Modality Reference Method Hardware Coverage Tracking
Accuracy

Acoustic
Strata [38] Phase tracking Smart phone 40 cm 3 mm
LLAP [9] Phase tracking of sound signals Smart phone 30 cm 4.6 mm
FingerIO [39] Echo profile and OFDM Smart phone 0.25 <2 8 mm

Vision [7] HMM and multi camera 3D tracking Camera/Kinect N/A N/A
[40] Fingertip detection and tracking USB PC Camera 50 cm★ N/A

WiFi
FingerDraw [41] Fresnel zone, triangulation 3 transceivers 100 cm 1.27 cm
AirDraw [37] Phase tracking and triangulation 3 transceivers 1.5 m 2.2 cm
WiDraw [42] Analysis of RSSI with direction 30 transceivers 2 feet 5 cm

RFID RF-Finger [44] Reflection features from tag array RFID tags & readers 1 m★ ∼2 cm

mmWave mTrack [36] Phase tracking and triangulation 3 transceivers 1 <2 7 mm
mmWrite Target detection & localization One 60 GHz radar 8 <2 2.8 mm

★ Approximate values based on the experimental setup.

TABLE III: Comparison between mTrack and mmWrite

Reference Hardware Method Absorbers Calibration Coverage Error at 20 cm

mTrack [36] 1 Tx, 2 Directional
horn antenna

Phase tracking
& triangulation Required Required 1 <2 7 mm

mmWrite Phased antenna
array

Target
localization

Not
required

Not
required ∼8 <2 2.8 mm

surface, and the space for HCI can be extended beyond the
touch screens.
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