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Abstract— We consider the problem of average throughput
maximization per total consumed energy in packetized point-
to-point wireless sensor communications. Our study results
in an optimal transmission strategy that chooses the optimal
modulation level and transmit power while adapting to the
incoming traffic rate, buffer condition, and channel condition.
We formulate the optimization problem as a Markov Decision
Processes (MDP). When the state transition probability of MDP
is available, the optimal policy of MDP can be obtained using
dynamic programming (DP). Since in practical situation, the
state transition probability may not be available when the
optimization is done, we propose to learn the near-optimal
policy through the reinforcement learning (RL) algorithm. We
show that RL algorithm learns policy that achieves almost the
same throughput as the optimal one, and the learned policy
obtains more than twice average throughput compared to the
simple constant signal to noise ratio (CSNR) policy, particularly
in high packet arrival rate. Moreover, the learning algorithm
is robust in tracking the variation of the governing probability.

I. INTRODUCTION

Recent advances in wireless sensor communications de-
mand a highly energy efficient protocol. In these applications,
the traditional low power design, focusing mainly on circuits
and systems has been shown inadequate [1]. The stringent
energy requirement calls for extremely efficient resource
allocation algorithms that maximize the energy efficiency
using parameters across different communication layers [2].
The concept of energy awareness requires the communica-
tion system to reconfigure the transmission parameters from
different communication layers according to its environment
[2]. Such a cross-layer optimization can be realized in several
ways, one feasible solution is to employ an optimal control
agent that interacts with different communication layers and
dynamically reconfigures each layer’s parameters.

There exist several literatures that focus on the wireless re-
source management. In [3], power control scheme for packet
wireless networks is formulated using dynamic programming
(DP). The extension of this work to multi-modal power
control is also investigated in [4]. In these two schemes, the
power control follows a threshold policy that balances the
buffer content and the channel interference. In [5], the DP
formulation for power control with imperfect channel estima-
tion is addressed. They show that the dynamic programming

solution is better than the standard constant signal to noise
ratio (CSNR) approach. Joint optimized bit-rate and delay
control for packet wireless networks has also been studied
within DP framework [6]. Most of the literatures assume
the knowledge of the exact probability model and obtain the
optimal solution using DP. In practice, the probability model
may not be available when the optimization is being done.
This motivates us to develop and investigate a stochastic
optimization scheme that learns the optimal policy without
knowing the governing probabilistic model. Moreover, the
algorithm should be able to track the possible variation in
the probability model.

In this paper, we focus on the average throughput maxi-
mization per total consumed energy in packetized wireless
sensor communications from an optimal control point of
view. In particular, we formulate the optimization problem
as a Markov Decision Process (MDP) [7]. In point-to-
point wireless scenario, the communications take place from
one transmitter to one receiver without any interference
from other transmitters and the channel is assumed to vary
according to some random process. The objective of the
optimal control agent is to obtain the best modulation and
transmit power to maximize the average throughput per total
consumed energy adapting to the packet arrival rate, buffer
condition and the channel variation. When the governing
probability model is available, the posed problem can be
solved using DP. Since in practice, the model may not be
available during the optimization, we propose to devise a
RL algorithm called Actor-Critic (AC) algorithm to find the
optimal policy. We show that the obtained policy is very close
to the optimal one. We also compare the learned policy with
the simple CSNR policy, and we find that the learned policy
achieves more than twice throughput compared to the CSNR
policy. Moreover, we demonstrate that the learned policy is
robust to the slow variation in the probability model, that
is the learned policy is able to track the variation in packet
arrival rate.

The rest of this paper is organized as follows. In the
next section, we review the MDP and its optimal policy.
In section III, we explain the RL algorithm. The throughput
maximization per total consumed energy in point-to-point
communication is presented in section IV. The performance
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Fig. 1. Interaction between agent and environment in MDP

of RL algorithm is assessed by means of simulations in
section V. Finally, conclusions are drawn in Section VI.

II. MARKOV DECISION PROCESS AND DYNAMIC

PROGRAMMING

An MDP [7] is defined as a (S,A,P,R) tuple where S is
the state space that contains all possible states of the system,
A is the set of all possible control actions at each state, P
is the transition function S × A × S → [0, 1], and R is the
reward function S×A → R. The transition function defines
a probability distribution over the next state as a function of
the current state and the agent’s action, i.e. [P]sk,sk+1(ak) =
Psk,sk+1(ak) specifies the probability of transition from state
sk ∈ S to sk+1 ∈ S under control action ak ∈ A. Here, the
notation [A]i,j denotes the element on the ith row and the
jth column of matrix A. The transition probability function
P describes the dynamics of the environment as a response to
the agent current decision. The reward function specifies the
reward incurred at state sk ∈ S under control action ak ∈ A.
The interaction between the agent and environment in an
MDP is illustrated in Figure 1. At time k, the control agent
detects sk ∈ S and decides an action ak ∈ A. The decision
ak causes the state to evolve from sk to sk+1 with probability
Psk,sk+1(ak), and reward R(sk, ak) corresponding to the
agent’s action will be obtained.

The solution of the MDP consists of finding the decision
policy π : S → A so as to maximize the objective function.
In this paper, we focus on the average reward per stage that
can be represented as

ρπ(s0) = lim
n→∞

1
n

Eπ

[ n−1∑
k=0

R
(
sk, π(sk)

)]
,

sk ∈ S, π(sk) ∈ A, (1)

where ρπ(s0) is the average reward obtained using decision
policy π when the initial state is s0. Since we are interested
in maximizing the average throughput per total consumed
energy, this criterion exactly describes our objective function.
We note that the expectation operation in (1) is a conditional
expectation given a particular policy. The optimal policy is
the decision rule that maximizes the average reward per stage
over all possible policy π.

By assuming that the Markov chains induced by every
policies are irreducible/ergodic, it is shown in [8] that the
optimal average reward per stage is independent of the
initial state. And for any stationary policy, the corresponding

average reward ρπ and relative state value hπ(s) satisfy the
following relation [8]

ρπ + hπ(s) =
[
R(s, π(s)) +

|S|∑
s′=1

Ps,s′(π(s))hπ(s′)
]
,

∀s ∈ S. (2)

Moreover, the optimal policy is characterized by the Bell-
man’s equation [8]

ρ∗ + h∗(s) = max
a∈A(s)

[
R(s, a) +

|S|∑
s′=1

Ps,s′(a)h∗(s′)
]
,

∀s ∈ S, (3)

where ρ∗ is the optimal average reward per stage and
h∗(s) is known as differential reward or relative state value
function for each state s. The Bellman’s equation can be
solved numerically using dynamic programming (DP) com-
putational methods [8]. We note that solving the Bellman’s
equation requires the knowledge of state transition probabil-
ity describing the system. In many practical situation, the
state transition probability may not be available during the
optimization. In the following sections, we propose to devise
the RL algorithm to learn the optimal policy by experiencing
the sample path of the process.

III. REINFORCEMENT LEARNING ALGORITHM

The main idea in RL algorithm is to update/learn the
average reward per stage ρ∗ and the differential reward h∗(s)
by means of iterated averaging. We focus on a RL algorithm
called Actor-Critic (AC) Algorithm [9] as follow. Let’s define
the operator B(hπ) = R(s, π(s))+

∑|S|
s′=1 Ps,s′(π(s))hπ(s′),

the relation (2) can be expressed as

hπ
k+1(sk) = B(hπ(sk)) − ρπ

k

ρπ
k+1 = B(hπ(sk)) − hπ

k (sk). (4)

The RL algorithm eliminates the need of state transi-
tion probability by replacing B(·) operator by B′(hπ) =
R(s, π(s)) + hπ(s′), where s′ is the next state occurring
in the sample path. Obviously, the next state s′ will occur
according to the probability Ps,s′(π(s)). The RL algorithm
learns the state-value function as

hπ
k+1(sk) = (1 − αk)hπ

k (sk) + αkhπ
k+1(sk)

= (1 − αk)hπ
k (sk) + αk(B′(hπ

k (sk)) − ρπ
k )

= hπ
k (sk) + αk(R(s, π(s)) + hπ

k (sk+1)
−hπ

k (sk) − ρπ
k ) (5)

Similarly, the average reward ρ is updated as

ρπ
k+1 = ρπ

k + βk[R(sk, π(sk)) + hπ
k (sk+1) − hπ

k (sk) − ρπ
k ],
(6)

The decision/action at each iteration is chosen according
to Gibbs softmax method [9], i.e.: action ak is chosen in
state sk according to probability Pr(ak = a|sk = s) =
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Fig. 2. Interaction of nodes with distributed optimal control agent

ep(s,a)/
∑

b ep(s,b). Whenever the action ak is chosen at state
sk the preference metric p(sk, ak) is updated as

p(sk, ak) = p(sk, ak)+εk[R(sk, ak)+hπ
k (sk+1)−hπ

k (sk)−ρπ
k ],

(7)
The temporal difference, R(s, π(s))+hπ

k (sk+1)−hπ
k (sk)−ρπ

k

in (5-6) is known as critic, since it criticizes the performance
of previous action. Equation (7) is known as actor, since this
preference determines the next action. In (5-7), αk, βk and
εk determine the learning rate for the average reward, relative
value function and decision preference, respectively. Notice
that the optimal policy should satisfy the Bellman’s equation,
the equation (7) effectively maximizes the RHS of (3) that
is, the action that results in increasing relative state value
function hk+1(sk) should be prioritized by increasing the
preference of choosing that particular action (7). In contrast,
the preference of action that results in smaller relative state
value function (the temporal difference is negative) will be
decreased. The Actor-Critic (AC) algorithm is initialized
with p(s, a) = 0 ∀s ∈ S, a ∈ A, this implies that initially
every actions have the same probability to be selected. In this
initial stage, the algorithm explores all possible actions and
decides the best action that leads to the optimal policy. At
every time instant, the algorithm will update equation (5)-(7)
accordingly.

It is worth to notice that the AC iteration is based on the
stochastic approximation algorithm, and typical convergence
criteria include that all of the states are visited infinitely
often. The convergence behavior of the actor-critic type of
learning algorithms can be found in great detail in [10].
Another important aspect is the computational complexity,
the complexity of the AC iteration is very low, since only
the average reward, relative state value and the decision
preference of the visited state and action are updated in every
iteration. In the following sections, we formulate the average
throughput maximization per total consumed energy in point-
to-point wireless sensor networks as an MDP illustrated in
Figure 2.

IV. THROUGHPUT MAXIMIZATION IN POINT-TO-POINT

COMMUNICATION

We study the average throughput maximization per total
consumed energy by choosing the optimal modulation and

transmit power adapting to the incoming traffic, transmitter
buffer and the channel condition. In point-to-point commu-
nication, it is possible to model each of the subsystem using
some random processes and the state transition probability
for the MDP can be constructed. Having this probability
model, we numerically solve the optimal policy using DP
algorithm and compare the solution with the near-optimal
policy learned by AC algorithm. It is crucial to mention that
the AC algorithm does not require any probability model,
and the construction of the MDP state transition probability
is solely for comparison purpose.

To construct the MDP state transition probability, we
model the channel dynamics as a Finite State Markov Chan-
nel (FSMC). The basic idea of the FSMC is to partition
the channel gain into a finite number of intervals [11]. Each
interval represents the channel gain state. In this channel
model, the channel transition occurs only at the time slot
boundary and the channel is constant during the whole packet
transmission. Moreover, the transition only happens between
two adjacent states. The channel state transition probability
and stationary probability are calculated as in [11].

In the application of wireless sensor networks, the
throughput and energy consumption are two critical param-
eters. We employ the number of packets that successfully
transmitted per total energy consumption as our objective
function. The total energy consists of energy consumption
for the transmission and buffer processing. Including the
buffer processing is solely for the Quality of Service (QoS)
consideration, that is including the buffer processing energy
minimizes the possibility of buffer overflow. Similar to [12],
we employ the following reward function

R((nb,γ),(m,pt))=

{
Lb

L
Rs·m·S(Γ(γ,pt),m)

L·(pt+f(nb))
×10−3 nb �=0,pt �=0

0 otherwise.

(8)
The expression (8) has unit packets/mJoule. nb and γ denote
the number of packet queued in the buffer and the channel
gain, m and pt denote the modulation level and transmit
power. Lb indicates the number of bits in one packet, L
is the number of bits after adding error detecting code.
Rs bits/s is the system transmission rate. f(·) models the
buffer processing power. S(Γ(γ, pt),m) denotes the packet
correct reception probability, Γ(γ, pt) is the effective link
SNR, which can be represented as

Γ(γ, pt) = γ × W

Rs

pt × At

σ2
, (9)

where γ is the channel gain variation between the transmitter
and receiver and is modelled as FSMC, W denotes the total
bandwidth of the transmission, Rs is the system transmission
rate, At ∝ 1/d4 is the attenuation coefficient resulting from
path loss, d is the distance between the transmitter and
receiver, and σ2 is the thermal noise power. In this paper,
we assume the buffer processing cost is linear function of
packets queued in the buffer [3]. Four modulation levels
used are BPSK, QPSK, 8PSK and 16PSK. The buffer cost,
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packet error probability expression and other parameters are
summarized in Table I.

Our optimization objective is to maximize average reward
per stage (1), where the reward function is described as
in (8). Comparing (1) and (8), we see that the system
state is described as the aggregate of buffer content and
channel gain, i.e.: s ≡ (nb, γ). The control space consists
of modulation level and transmit power, a ≡ (m, pt). Let’s
denote the number of packet arrival as na = 0, 1, . . .
with probability pa(na). The packet arrival is modelled as
Poisson process with mean packet arrival µ. Let’s denote the
channel transition probability as pc(γk, γk+1), using FSMC
the state transition probability can be determined as in [6]
[11]. Suppose the current state is sk = (nb,k, γk) and the
action taken is ak = (mk, pt,k). Assuming that the event of
packet arrival, correct reception and channel transition are all
mutually independent, the MDP state transition probability
is determined as follows
1. Transmission failure: sk+1 = (nb,k + na, γk+1)

Psk,sk+1(ak) = pa(na)(1 − S(Γ,mk))pc(γk, γk+1) (10)

2. Successful transmission: sk+1 = (nb,k + na − mk, γk+1)

Psk,sk+1(ak) = pa(na)S(Γ,mk)pc(γk, γk+1) (11)

The overall formulation of MDP has the following in-
terpretation, before a packet transmission, the transmitter is
in some state sk = (nb,k, γk), this state is obtained from
previous transmission’s history. The transmitter uses this
information to determine the best modulation and power to
maximize the average throughput per total consumed energy.
At the end of a packet transmission, the transmitter obtains
feedback from receiver containing the estimated current
channel gain γk+1 and ACK/NACK. If ACK is received
then the transmitter will send the following packet at the
next transmission. Otherwise, it has to retransmit the packet.
This feedback information is used to update transmitter state.
The number of successful transmitted packets per the energy
consumed in one transmission time (8) serves as the reward.

V. NUMERICAL RESULTS

Based on the above formulation, we construct the simu-
lation using parameters shown in Table I. Given the MDP
state transition probability, the optimal solution of the posed
MDP problem is solved numerically using policy iteration
method in DP [8]. We compare the optimal solution to
the policy learned by Actor Critic (AC) algorithm, the AC
algorithm parameters are α = 0.01, β = 0.0001 and
ε = 0.01. For comparison purpose, we also simulate the
simple CSNR scheme. In this scheme, the transmitter tries
to transmit at the highest throughput possible maintaining
predefined link SNRs. The transmitter always chooses the
highest modulation possible given the buffer condition, that
is it chooses (BPSK, QPSK, 8PSK and 16PSK) when the
buffer contains one packet, 2, 3 and ≥ 4 packets, respectively.
For each modulation, the transmitter selects power level to

achieve predefined link SNRs of (6, 10, 15, 20) for BPSK
to 16PSK, respectively. These link SNRs achieve more than
80% of packet correct reception probability.

TABLE I

SIMULATION PARAMETERS

Packet size Lb = 64, L = 80
System Parameters W = 10Mhz, R = 100kbits/s,

Tp = 0.8ms, σ2 = 5 × 10−15W
Channel Gain fD = 50Hz, γ ∈= [−8,−6, ..., 8] dB,

At = 1.916 × 10−14

Buffer Cost f(nb) = 0.05(nb + 4) if nb �= max(nb),
max(nb) = 7, f(max(nb)) = 3

modulation level m=1,2,3,4 (BPSK,QPSK,8PSK,16PSK),
Packet success S(Γ(γ, pt), m)=(1 − P (Γ(γ, pt), m))L

probability P (Γ, m)=erfc(
√

Γ ∗ sin( π
2m ))

Transmit power pt = [0, 0.2, ..., 2] Watt
SNR range Γ = [0, 1, ..., 24] dB

Figure 3 shows the average throughput learned by the
AC algorithm and the optimal throughput when µ = 2.0.
It is obvious that the learned throughput is very close to the
optimal one. The corresponding optimal and learned policy
for µ = 2.0 are shown in Figure 4. In these figures, the
channel is better when the channel gain is larger and the
buffer content indicates number of packets queued in the
buffer. For the same buffer content, the optimal policy tends
to use higher modulation level when the channel is good and
lower modulation level when the channel is bad. The agent
also tends to select higher power level when the channel is
bad to guarantee acceptable throughput. At the same channel
gain, as more packets queued in the buffer, the agent becomes
more aggressive and attempts higher modulation and power
level. This effect is due to including the buffer processing
cost in the reward function and the agent tries to balance
the transmission energy and buffer processing energy to
obtain the maximum average throughput per total expended
energy. Moreover, both the optimal DP and the near-optimal
AC solution jointly decide the best modulation and transmit
power to maximize the average throughput per expended
energy.

Figure 5 shows the throughput that can be achieved for
the optimal policy, AC learned policy and the simple CSNR
policy for various packet arrival rate. It is obvious that the
policy learned by the AC algorithm is very close to the
optimal policy. Compared to the simple CSNR policy, the AC
algorithm obtains twice to three times throughput per total
expended energy, hence a higher energy efficiency scheme.
It is important to point out that the optimal solution may not
be feasible in practical application, since the optimal solution
requires the knowledge of channel transition probability and
packet arrival probability. The AC algorithm and the simple
CSNR algorithm do not require any knowledge of governing
probability, but the AC algorithm still obtains a near optimal
average throughput. Moreover, the AC algorithm has the
ability to track the variation in the governing probability as
demonstrated in Figure 6. In this figure, the mean packet
arrival rate varies as µ =(0.5, 1.0, 1.5, 2.0, 1.0). Based on

Globecom 2004 766 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



0 0.5 1 1.5 2 2.5

x 10
6

0

0.5

1

1.5

2

2.5

pa
ck

et
s/

m
ili

Jo
ul

e

Optimal versus Learned throughput in peer−to−peer scenario, Average Arrival Load=2.0

Number of packet transmission

Learned Throughput
Learned Average Throughput
Optimal Average Throughput

Fig. 3. Learned and optimal average throughput, packet arrival load µ =
2.0

−10
0

10 0

5

10

0

1

2

buffer content

Optimal Transmit Power selection, Load=2.0

Channel Gain (dB)

T
ra

ns
m

it 
po

w
er

 (
W

at
t)

−10
0

10

0

5

10
1

2

3

4

Channel Gain (dB)

Optimal Modulation level selection, Load=2.0

buffer content

M
od

ul
at

io
n 

le
ve

l

−10 −5 0 5 10 0

5

10

0

1

2

buffer content

Channel Gain (dB)

Near−Optimal Transmit Power selection, Load=2.0

T
ra

ns
m

it 
po

w
er

 (
W

at
t)

−10
0

10

0

5

10
1

2

3

4

Channel Gain (dB)

Near−Optimal Transmit Power selection, Load=2.0

buffer content

M
od

ul
at

io
n 

le
ve

l

Fig. 4. Learned and optimal policies, packet arrival load µ = 2.0

the sample realization, the AC algorithm adjusts the learned
policy adapting to different packet arrival rate. The capability
of the AC algorithm to obtain the near-optimal policy and
track the variation in the governing probability is due to the
ability of algorithm to explore all the possible decisions and
select the policy that results in maximum throughput per
energy. This exploration is achieved by the Gibbs softmax
method used in the actor part of the algorithm.

VI. CONCLUSION

We formulate the average throughput maximization per
total expended energy in point-to-point wireless sensor com-
munications within the MDP framework. We propose to
learn the near-optimal policy using the Actor-Critic (AC)
algorithm. The learned policy is very close to the optimal
one, but without the knowledge of governing probability.
Compared to the simple constant link SNR policy, the
learned policy can achieve more than two times throughput,
especially in high packet arrival rate. Moreover, the AC
algorithm is robust in tracking the variation of the governing
probability. These advantages come from the fact that the
learning algorithm explores all the decisions in the action
space and select the policy that maximizes the throughput
per unit energy.
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