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Abstract—Multiple-input multiple-output (MIMO) orthog-
onal-frequency-division-multiplexing (OFDM) systems employing
coherent receivers crucially require channel state information
(CSI). Since the multipath delay profile of channels is arbitrary
in the MIMO-OFDM systems, an effective channel estimator
is needed. In this paper, we first develop a pilot-embedded
data-bearing (PEDB) approach for joint channel estimation and
data detection, in which PEDB least-square (LS) channel estimator
and maximum-likelihood (ML) data detection are employed. Then,
we propose an LS fast Fourier transform (FFT)-based channel
estimator by employing the concept of FFT-based channel estima-
tion to improve the PEDB-LS one via choosing a certain number
of significant taps for constructing a channel frequency response.
The effects of model mismatch error inherent in the proposed
LS FFT-based estimator when considering noninteger multipath
delay profiles and its performance analysis are investigated. The
relationship between the mean-squared error (MSE) and the
number of chosen significant taps is revealed, and hence, the
optimal criterion for obtaining the optimum number of significant
taps is explored. Under the framework of pilot embedding, we
further propose an adaptive LS FFT-based channel estimator em-
ploying the optimum number of significant taps to compensate the
model mismatch error as well as minimize the corresponding noise
effect. Simulation results reveal that the adaptive LS FFT-based
estimator is superior to the LS FFT-based and PEDB-LS estima-
tors under quasi-static channels or low Doppler’s shift regimes.

Index Terms—Adaptive channel estimation, least-square fast
Fourier transform (LS FFT) based, multiple-input multiple-output
orthogonal-frequency-division mulitplexing (MIMO-OFDM),
pilot embedding, space-frequency.

I. INTRODUCTION

HIGH-SPEED data transmission services have been highly
demanded in future wireless communications [1]. One

promising transmission scheme to satisfy this growing demand
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is the orthogonal-frequency-division-multiplexing (OFDM)
technique [2]. Nowadays, the OFDM communication scheme
has been employed in various high-speed wireless transmission
standards such as broadband wireless LAN (IEEE 802.11a) [3],
digital audio broadcasting (DAB) [4], and digital video broad-
casting (DVB-T) [5]. Recently, multiple-input multiple-output
(MIMO)-OFDM systems have been proposed for increasing
communication capacity as well as reliability of the wireless
communication systems by exploiting both the spatial and
frequency diversities [2], [6]. Further, the space-frequency (SF)
coding for MIMO-OFDM systems have been developed for
achieving such diversities in order to enhance the reception
performance for high data-rate wireless communications. How-
ever, those aforementioned schemes normally need to assume
accurate channel state information (CSI) for coherently de-
coding the transmitted data, e.g., a maximum-likelihood (ML)
decoder. Therefore, channel estimation is of critical importance
for MIMO-OFDM systems.

Typically a pilot or training signal, a known signal transmitted
from the transmitter to the receiver, is highly desirable to obtain
an accurate channel estimate. In [7], the optimal criteria of de-
signing the training sequence in MIMO-OFDM systems were
proposed. There are two main types of pilot-aided channel es-
timation techniques for MIMO systems: the pilot symbol as-
sisted modulation (PSAM) technique [8], and the pilot-embed-
ding technique [9]. Recently, we proposed a pilot-embedded
data-bearing (PEDB) approach for joint channel estimation and
data detection by exploiting the null-space property and the or-
thogonality property of the data bearer and pilot matrices [10],
[11].

Various channel estimation schemes have been recently pro-
posed for MIMO-OFDM systems [7], [12]–[19]. In [12], a linear
minimum mean-squared error (LMMSE) channel estimator was
proposed, in which a singular-value decomposition (SVD) is
used to simplify the ordinary LMMSE channel estimator. De-
spite the highly accurate channel estimate of this scheme, it re-
quires intensive computational complexity and the knowledge
of the underlying channel correlation. In [13], the FFT-based
channel estimation using a certain number of significant taps for
estimating the channel impulse response in a temporal domain
was proposed. Despite the efficient computational complexity
of this scheme, it could suffer from an error floor caused by a
noninteger multipath delay spread, relative to the system sam-
pling period, in the wireless channels, known as a model mis-
match error. The enhancement and simplification of [13] were
proposed in [14] and [15], respectively. In [16], an iterative algo-
rithm for least-square (LS) channel estimation was proposed for
improving the performance of the LS channel estimation. De-
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spite its efficient computation and good performance for chan-
nels with the integer multipath delay profiles, it could suffer
from the model mismatch error for the channels with the nonin-
teger multipath delay profiles. In [17], an alternative channel es-
timation approach using time-of-arrivals (TOA) estimation was
proposed. Despite its good performance in resisting the model
mismatch error, it imposes high computation complexity.

The model mismatch error or, in the other words, the leakage
effect was first mentioned in single-input single-output (SISO)-
OFDM systems employing the FFT-based channel estimation
[20]–[22]. Without the knowledge of channel correlation infor-
mation and the delay of multipath signals, there are two ways to
reduce the leakage effect: 1) by changing the exponential basis
functions to the polynomial basis functions in the FFT-based
channel estimation [23]–[25] for SISO systems and [26] for
MIMO systems and 2) by employing a proper number of sig-
nificant taps to construct a channel frequency response in the
FFT-based channel estimation [13]. In the former approach,
the thorough investigation of the polynomial-based channel es-
timation for the MIMO systems has been conducted in [26].
Although this approach provides better performance than the
FFT-based approach [22] under the noninteger multipath delay
profiles, its performance is worse under the integer multipath
delay profiles. Furthermore, this approach imposes higher com-
putational complexity than that of the FFT-based approach, and
a general rule of designing the optimum window length as well
as the optimum order of the polynomial is not fully discovered.
Given the efficient implementation and reliability constraints,
the FFT-based approach is still attractive. However, the optimal
guideline about how to choose the number of significant taps re-
mains unsolved. Our challenge now is to find the optimal criteria
for obtaining the optimum number of significant taps given that
the knowledge of channel correlation information, the delay of
the multipath signals, and Doppler’s shift are unavailable.

The goal of this paper is to develop an efficient channel
estimation scheme when employing pilot-embedding idea in
MIMO-OFDM systems. The main contributions of this paper
are as follows.

• Generalizing the concepts in [10] and [11], we present
a PEDB approach for joint channel estimation and data
detection for MIMO-OFDM systems, in which PEDB LS
channel estimation and ML data detection are employed,
respectively. We further propose the LS FFT-based
channel estimator via choosing a certain number of signif-
icant taps for constructing a channel frequency response.

• We analyze the performance of the LS FFT-based channel
estimation. Then, we reveal the relationship between the
mean-squared error (MSE) and the number of chosen taps,
which in turn, the optimal criterion for obtaining the op-
timum number of significant taps is explored.

• We study the model mismatch error of the LS FFT-based
channel estimator and solve this problem by proposing an
adaptive LS FFT-based channel estimation approach that
employs the optimum number of taps such that the av-
erage total energy of the channels dissipating in each tap
is completely captured in order to compensate the model
mismatch error and minimize the noise effect.

The organization of this paper is as follows. In Section II,
we briefly introduce the wireless channel and system models
used in this paper. In Section III, we present the PEDB ap-
proach for joint channel estimation and data detection, including
the PEDB-LS channel estimation and PEDB-ML data detection.
Under this pilot-embedding framework, in Section IV, we pro-
pose the LS FFT-based channel estimator and study the perfor-
mance analysis for the PEDB-LS and LS FFT-based channel es-
timation approaches. In Section V, we propose the adaptive LS
FFT-based channel estimation for improving the performance
of the LS FFT-based channel estimation. In Section VI, the per-
formance of the proposed schemes are examined via simula-
tions, and the conclusion is given in Section VII. For ease of
later use, let stands for the transpose of a matrix, stands
for the complex-conjugate transpose of a matrix, stands for an
identity matrix, and stands for an all-zero-element matrix.

II. WIRELESS CHANNEL AND SYSTEM MODELS

In this section, we describe the wireless channel and system
models used in this paper. A –tone SF-coded OFDM system
with receive and transmit antennas is considered.

The complex baseband impulse response of the wireless
channel between the th ( ) receive antenna and
the th ( ) transmit antenna can be described by
[13]

(1)

where is the delay of the th path and represents the
corresponding complex amplitude. ’s are modelled as
wide-sense stationary (WSS), narrowband complex Gaussian
processes, which are independent for different paths, and

with being the average power of the
path. Throughout this paper, we assume that all the signals

transmitted from different transmit antennas and received at
different receive antennas undergo independent fading, and the
channel average power is normalized to have .
Since we particularly consider the case where all channels have
the same multipath delay profiles, we drop the superscript
in the above parameters throughout this paper. For OFDM
systems with tolerable leakage, the normalized frequency
response of the OFDM systems at the ( )
subcarrier between the receiver and the transmitter can
be described by [13]

(2)

where ;
; , with being the tone

spacing, is the sample interval of the system; is the OFDM
block length; and denotes the index of a group of -OFDM
blocks described next. is the number of nonzero paths, which
represents the order of frequency diversity of the channel, and

( ) is the path’s delay sampled at rate ,
e.g., . Furthermore, the average power of
and the value of depend on the delay profile and the
dispersion of the wireless channels. For simplicity, we omit
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the time index in all notations in the next text. For OFDM
systems with tolerable leakage, the delays ’s can be assumed
as integers and is the number of significant taps in [13]. In
this paper, we consider the general case of noninteger ’s and
deal with the corresponding leakage problem.

At the transmitter side, the data stream is split into
substreams, and, in each substream, a group of data is chosen
to match the corresponding baseband -phase-shift-keyed
(MPSK) constellation symbol. These MPSK-data symbols are
then coded by the SF block code, e.g., [6], and grouped to
construct the SF-coded data matrix , where

denotes the number of OFDM blocks (each OFDM block
has tones) to be regarded as one SF-coded data block, and

denotes the -OFDM-block index. Before modulating this
SF-coded data block by the OFDM modulator, the SF-coded
data matrix is embedded by the pilot signal using the
PEDB approach proposed later, so we have the SF-coded
symbol matrix with size , where denotes the
number of OFDM blocks included in one SF-coded symbol
block. Notice that since redundancy is introduced
after embedding the pilot signal for acquiring the CSI. Each
pilot-embedded OFDM block is then modulated and simul-
taneously transmitted across transmit antennas. In order
to eliminate the intersymbol interference (ISI), we employ a
cyclic prefix in which the length of cyclic extension must be
no smaller than . In this paper, we consider two types of
fading channels: quasi-static and non-quasi-static frequency-se-
lective Rayleigh-fading channels. The former is the scenario
that the channel remains constant over the SF-coded symbol
block but changes in a block-by-block basis, whereas in the
latter the channel changes within the SF-coded symbol block.
At the receiver side, the received signal is sampled at rate
and demodulated by the OFDM demodulator. By assuming
tolerable power leakage and perfect time/frequency synchro-
nization, the received signal of the SF-coded symbol block
can be described by

(3)

where is a matrix; is
the channel matrix in which the
row of is , where

; is the
additive white Gaussian noise (AWGN) matrix

with zero-mean and variance per real
dimension; and is the -equivalent SF-coded
symbol matrix. Throughout this paper, we assume that the
channels and noise, and channels from different paths are
mutually uncorrelated.

III. PILOT-EMBEDDED DATA-BEARING APPROACH

In this section, we first present the main ideas of the PEDB
approach for joint channel estimation and data detection. We
then briefly introduce the basic LS channel estimation and the
ML data detection.

A. Pilot-Embedded Data-Bearing Approach

In the PEDB approach for joint channel estimation and data
detection, the equivalent SF-coded symbol matrix can be
described as follows:

(4)

where denotes the equivalent SF-coded
data matrix constructed from the matrix using the

matrix-diagonalized operator , where the
row to the row of are

with
denotes the column/row index interval ranging from

to ; is the data bearer matrix; and is
the pilot matrix. Notice that the diagonal
elements of a submatrix, , represented
in by the row to the row and
the column to the column are the

transmitted SF-coded OFDM block at the transmitter
in the SF-coded symbol block group. In addition, the
energy constraint is maintained for the
equivalent SF-coded data matrix. Substituting (4) into (3), we
have the received signal matrix as

(5)

Now, by the PEDB approach, we require that the data bearer
matrix and the pilot matrix satisfy the following properties:

(6)

and (7)

where is the real-valued data-power factor and is the real-
valued pilot-power factor. The similar property in
(6) is also suggested in [7] that it is the optimal criterion for the
optimal training design for MIMO-OFDM systems. There are at
least two possible structures of data-bearing and pilot matrices,
in which the elements of these matrices are real numbers, that
satisfy the properties (6) and (7) as follows.

1) Time-Multiplexing-Based Matrices: The structures of
time-multiplexing (TM)-based matrices are given as

(8)

where stands for matrix combining. This structure has been
widely used in many literatures [7] and [12]–[17].

2) Code-Multiplexing (CM)-Based Matrices: The structures
of code-multiplexing (CM)-based matrices are given as

(9)

where denotes a submatrix created by splitting the
normalized Walsh–Hadamard matrix [27] starting

from the row to the row, and denotes the Kronecker
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product. This structure provides an instructive example of the
proposed general idea in (4) for pilot embedding.

Notice that, in (8) and (9), the proposed scheme is a block-
training scheme in which OFDM blocks are used for esti-
mating the CSI. As suggested in [12] and [13], when using only
one OFDM block for training in the MIMO-OFDM systems, the
LS channel estimator for exists only if . In
general, in the case that and , the use of
OFDM blocks for training can guarantee the existence of the LS
channel estimator and other better channel estimators, such as
the LMMSE channel estimator [12].

B. PEDB LS Channel Estimation

We first extract the pilot part from the received signal matrix
. By using the null-space and orthogonality properties in

(6), respectively, we are able to extract the pilot part by simply
postmultiplying in (5) by and then dividing by to
arrive at

(10)

Let and , we
have . The PEDB-LS channel esti-
mator can be obtained by applying the LS channel estimation
approach for to arrive at

(11)

The PEDB-LS channel estimate in (11) completely captures
the whole channel frequency response contaminated by AWGN.
Note that it is not benefitted by using all the PEDB-LS channel
estimate taps in decoding the SF-coded transmitted signal since
some taps are dominated by noise, where the noise power is sig-
nificantly larger than the channel energy contained. We improve
the performance of PEDB-LS channel estimation by taking into
consideration such fact in the Section IV.

C. PEDB ML Data Detection

We now explore the procedure of PEDB-ML data detection.
First, we extract the data part from the received signal matrix

. Using the null-space and orthogonality properties in (7),
respectively, we are able to extract the data part by simply post-
multiplying in (5) by , and then dividing by

(12)

Letting and ,
we have . From the orthog-
onality of in (7), we note that .
Therefore, the data-bearer-projected noise is AWGN
with zero-mean and variance per
real dimension. Due to the i.i.d white Gaussian distribution of

, the PEDB-ML receiver jointly decides the codewords

for the OFDM block in the SF-coded data block by
solving the following minimization problem:

and (13)

where is the estimated channel matrix, e.g.,
. The codeword transmitted from the transmitter is

represented by , with .

IV. LS FFT-BASED CHANNEL ESTIMATION AND PERFORMANCE

ANALYSIS

As mentioned earlier, the PEDB-LS channel estimate con-
tains the channel frequency response that is contaminated
by AWGN. By properly choosing the significant taps and
discarding the rest less significant taps, we can reconstruct
the whole channel frequency response in which the excessive
noise contained in the less significant taps are completely
cancelled. In this section, we improve the performance of the
PEDB-LS estimator in (11) by employing the basic concepts of
the FFT-based approach in [13]. First, following the description
in Section III, we propose the LS FFT-based channel estimator
and point out an inherent problem. Then, we analyze their
channel estimation performances.

A. LS FFT-Based Channel Estimation Approach

As suggested in [13], the FFT-based channel estimation
approach first calculates the temporal LS channel estimate by
using significant taps. The resulting temporal LS channel
estimate is then FFT transformed to obtain the -subcarrier
channel frequency response. The simplified approach was also
suggested in [13] by choosing significant taps (i.e., ’s
largest are selected) instead of using
significant taps.

Now let us describe the LS FFT-based channel estimator
under the proposed framework in details. From (11), we have

. From the channel
model in (2), can be expressed as

(14)

where is the matrix whose element is defined by
, , ;

; and
. Notice that the LS estimate in (14)

indeed represents the -tap LS FFT-based estimate for re-
ceive and transmit antennas.

Transforming the PEDB-LS estimator in (14) to the temporal
one by using the IFFT matrix , whose element is
defined by , ,
we have

(15)
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From the fact that
, , , where

is the leakage function and
, substituting this fact into (15) results in

(16)

Note that if is equal to an integer number, then ; if
is equal to zero, then . Let ,

then substituting and (16) into (15), we have

(17)

where

with being the element of .
Obviously, from , if is an integer, then the element

of the largest elements of is equal to
, and the remaining elements are equal to ,

, with being the set of
the largest elements. As a result, choosing largest taps
and replacing the remaining taps by zero is suffi-
cient and optimal, resulting in the LS FFT-based estimate of
the temporal channel impulse response , since we
completely capture the channel impulse response , and
remove the excessive noise in the remaining taps. How-
ever, in reality, the multipath delay is often noninteger;
hence, the -multipath channel impulse response dissipates to
all taps of and thus results in the model mismatch
error, which increases the channel estimation error, primarily
caused by the AWGN . This model mismatch error
causes the severe error floor in the MSE and the detection error
probability. Once the or largest taps are chosen and the rest
taps are replaced by zero, the LS FFT-based estimated channel
frequency response is given as

(18)

It is worth mentioning that, for our problem, we do not
assume any knowledge of channel correlation information,
Doppler’s shift, or the delay of the multipath signals, so we
simply use for constructing the whole channel
frequency response in (18). In addition, if the additional in-
formation about channel correlation or Doppler’s shift are
available, the robust channel estimator proposed in [22] can
be adopted to enhance the performance of the LS FFT-based
channel estimation.

B. Channel Estimation Error Performance Analysis

We now analyze the performance of the PEDB-LS and LS
FFT-based channel estimators by using the MSE of channel es-
timation as the performance measure.

1) PEDB-LS Channel Estimator: For arbitrary multipath
delay profiles, the temporal channel impulse response between
the receiver and transmitter can be described by, as in
(16), .

The channel estimation error can be readily described by

(19)

by referring to in (15), and . Using (19), the
MSE of the channel estimation is expressed as

MSE (20)

by using , , as refer-
ring to Section III-B. It is worth noticing that (20) is also the
MSE of the -tap FFT-based channel estimation.

For -receiver -transmitter MIMO systems, the overall
MSE in (20) can be expressed as follows:

MSE MSE (21)

2) LS FFT-Based Channel Estimator: As we mentioned ear-
lier, the LS FFT-based channel estimator first simply chooses
the largest taps and then replaces the remaining taps
by zero. This operation can be equivalently described by using
the tap-selection matrix given by

(22)

where ’s and ’s represent nonselected and selected taps, re-
spectively. There are ’s and ’s elements in the
diagonal elements of . By using the tap-selection matrix ,
the temporal LS FFT-based estimate of the channel impulse re-
sponse between the receiver and transmitter can be de-
scribed by

(23)

by plugging in in (14).
Similarly to (19), the channel estimation error can be de-

scribed by using and in (23)

(24)

Now let us define to be a set of
the nonselected less significant taps, and and
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are row indexes indicating the 0’s and 1’s elements
of , respectively. It can be shown that

(25)

by using . Therefore, by substituting (25) into (24), we
have

and

(26)

From (26), it is readily shown that the channel esti-
mation error of the LS FFT-based channel estimator are
due to two error sources: the model mismatch error, i.e.,

, and the corresponding noise
effect, i.e., . By substituting (26) into (24),
we have the following MSE :

MSE (27)

where
, and the second equality is obtained by using the assump-

tion that the channel and noise, and channels from different
paths are mutually uncorrelated. For -receiver -transmitter
MIMO systems, the overall MSE in (27) can be expressed
as follows:

MSE (28)

where

(29)
It can be shown that

(30)

where
and

From the fact that
, where

and , and that

,
we have

(31)

First, we consider the case of the multipath delay profiles with
integer delays. In this case, the model mismatch error is equal
to zero, as explained in Section IV-A. Hence, the minimum MSE
of the LS FFT-based channel estimation is given by

MSE (32)

It is worth noticing that, since , (32) is always less than or
equal to (21), meaning that the channel estimation performance
of the LS FFT-based channel estimator is superior to that of the
PEDB-LS channel estimator when the multipath delay profiles
are with integer delays.

Using for the case of the multipath delay profiles with
integer delays, we have

(33)

Therefore, (33) can be used as the optimal criterion in
choosing the set which indicates the indexes of the
significant taps, in order to achieve the minimum MSE. This
observation in (33) indicates that in order to achieve the min-
imum MSE of the LS FFT-based channel estimator, the
largest chosen taps must be capable of capturing the average
total energy of channels in the presence of AWGN. This al-
ternative optimal criterion, based on the average total energy
criterion, is useful, especially in the implementation point of
view because it indeed links directly to the minimum MSE cri-
terion, in which the knowledge about the exact CSI is required
in its unrealistic computation.

Further, we consider the case of the noninteger multipath
delay profiles. In this case, the model mismatch error is
nonzero due to the leakage, as shown in (30). It is important to
study the joint effects of the tap length and the noise level

on the MSE measure. From the definition of the model mis-
match error , it is straightforward to see that, as the number
of selected taps increases, the error decreases, so does the
first term in (28); however, the resulting noise effect contained
in these selected taps is inevitably increased, as shown by
the second term in (28). On the other hand, as decreasing ,
the error is increased, whereas the resulting noise effect is
decreased. This tradeoff between the model mismatch error
and noise effect is very crucial to the MIMO system perfor-
mances. In what follows, we propose an improvement of the
LS FFT-based channel estimator to overcome such problems.
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V. PROPOSED ADAPTIVE LS FFT-BASED

CHANNEL ESTIMATOR

In this section, we propose an adaptive LS FFT-based channel
estimator in which the number of taps used in channel estima-
tion can be adjustable in order to minimize the model mismatch
error and the corresponding noise effect. The model mismatch
error in the LS FFT-based estimator described in Section IV
stems from the fact that a fixed number of (or ) largest taps
is used in the estimation process for all signal-to-noise ratio
(SNR) values. It has been suggested in [13] that, in low-SNR
regimes, the channel estimation error is mainly caused by the
AWGN; hence, a small number of taps is recommended to re-
duce the noise effect; as a result, a smaller overall channel esti-
mation error is possible. In high-SNR regimes, the channel es-
timation error is mainly caused by the model mismatch error;
hence, a large number of taps is suggested to compensate such
mismatch error. Based on this basic idea, we propose the adap-
tive LS FFT-based approach, in which the number of taps is
chosen to achieve the intuitive goal that the average total energy
of the channels dissipating in each tap is completely captured
in order to compensate the model mismatch error. Specifically,
we propose that the number of taps used to capture the
CSI in in (17) is obtained by solving the optimiza-
tion problem in (34).

(34)

It is clear that, for a given , the solution of achieving
is to choose as

the indexes of the largest taps.
Now let us intuitively explain why (34) in details. If we as-

sume a perfect situation, then the most desired criteria used to
determine the number of significant taps is the MSE in (28)
such that the optimization solution is given as

MSE (35)

First, instead of minimizing MSE directly, we want to
take advantage of specific observations revealed in the two terms
of (28). In (31), we can see that choosing yields a
zero model mismatch error . To illustrate the effects of (i.e.,

in (28) and (31)) and on the overall MSE mea-
sure, considering a specific scenario as in Section VI, in Fig. 1,
we plot the corresponding term and the noise error term

as a function of under several SNR levels.
From this figure, we note that converges to zero as in-
creases, meaning that more taps can be used to compensate the
model mismatch error. In addition, it is seen that the resulting

increases as SNR increases. In addition, it is noted that
can be approximately determined by locating the intersection
point of the curve of the model mismatch error and the curve of

Fig. 1. Theoretical examples of the model mismatch error, the noise effect,
and the overall MSE of the LS FFT-based channel estimator as a function of the
number of significant taps P . Here, the perfect situation is assumed.

the noise error. Therefore, based on the above observation, the
problem described in (35) can be formulated as

(36)

By substituting (31), the problem in (36) can be equivalently
described as (37).

(37)

However, in practice, since is an unknown set, it is not
feasible to compute the term

directly. Instead, for each transmission, depending on the real
observations, for different , we instantaneously compute
the term . Then,
empirical expectation is calculated. Overall, we compute the
following term:

Since

(38)
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Fig. 2. Relationship between LHS and RHS of (37) and (38) based on numer-
ical calculations.

where is a set of the largest taps. In low-SNR regimes,
the left-hand side (LHS) of (38) is much larger than that of
right-hand side (RHS) because of the large noise variance. In
high-SNR regimes, the LHS of (38) is much closer to that of the
RHS because of the small noise variance. Intuitively, we can see
that the LHS consists of both the RHS and the noise effect. We
note that the left hand is based on order statistics. In our case,
since the components in follow nonidentical distri-
butions, due to the complex nature of order statistics, it is infea-
sible to find the theoretical close-form expression of the LHS
of (38) in term of the RHS of (38). Due to the inequality in
(38), one question we are interested in is how close the differ-
ence between the LHS and the RHS of (38) to the noise error

is. Numerical examples are plotted in Fig. 2 to
demonstrate the relationship between the LHS of (37) and the
LHS of (38). From Fig. 2, we can see that the curves of the LHS
of (37) and (38) are close together when the number of taps are
small until the intersection point between these two curves and
the RHS of (37) for both SNR 2 and 20 dB. This phenom-
enon indicates that by replacing the LHS of (37) by the LHS
of (38) for determining the minimum number of taps that yield
the equality to the constraint of (37), the resulting number of
taps are mostly the same as solving (37) directly. It is worth
noticing that in the regimes beyond the intersection point, these
two curves are different; however, this phenomenon does not af-
fect the minimum number of taps since we never exploit their
relationship in these regimes.

Based on the above observations, we propose to replace the
LHS of (37) by the LHS of (38), and thus replace the inequality
constraint in (37) by the inequality constraint in (34). Therefore,
we have the proposed scheme in determining as described
in (34). In this sense, we could regard the proposed scheme in
(34) as a suboptimal approach in determining . However,
as illustrated in Fig. 3, in most cases, the determined by
solving the problem in (34) is almost identical to the optimum
solution obtained by using an exhaustive search for the min-
imum MSE in (28). While the latter case is not practical,
it serves as a theoretical ideal solution. Further, studying the
problem described in (34), we can see that in low-SNR regimes,
due to the large noise variance, a small number of taps is enough

Fig. 3. Illustration of the number of taps of the proposed scheme in (34) com-
pared with the optimum number of taps obtained from an exhaustive search for
the minimum MSE in (28) in two different power delay profiles: typical
urban and two-ray power delay profiles with delay spread of 5 �s.

to make the constraint of (34) exist. In high-SNR regimes, a
large number of taps is needed, as we expected, in order to make
the constraint of (34) exist. These results are consistent with our
intuitions. The equality will be held for (38) if and only if
or . In addition, the setting parameters of the experiment
in Fig. 3 are described is Section VI.

We want to emphasize that the solution of (34) is the optimum
number of taps for the LS FFT-based channel estimator in the
sense that the average total energy of the channels dissipating
in each tap is completely captured by using the significant
taps; as a result, the minimum model mismatch error as well as
the minimum corresponding noise effect are achieved.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed scheme, sim-
ulations are conducted under two scenarios: quasi-static and
nonquasi-static frequency-selective Rayleigh-fading channels.
The simulated SF block code uses Alamouti’s structure, as pro-
posed in [6], whose elements are taken from a binary phase-shift
keying (BPSK) constellation for two transmit and two receive
antennas. The COST207 typical urban (TU) six-ray normal-
ized power delay profile [13] with a delay spread of 5 s is
studied. The entire channel bandwidth, 1 MHz, is divided into

128 subcarriers in which four subcarriers on each end
are served as guard tones, and the rest (120 tones) are used to
transmit data. To make the tone orthogonal to each other, the
symbol duration is 128 s, and an additional 20- s guard in-
terval is used as the cyclic prefix length to eliminate the ISI.
This results in a total block length 148 s and a sub-
channel symbol rate 6.756 KBd.

In addition, the equal block-power allocation, i.e.,
0.5 W, is employed, the normalized SF-coded symbol block-
power is 1 W, the number of transmit antennas is 2, ,
and . To illustrate the performance of the
proposed adaptive LS FFT-based channel estimation versus the
PEDB-LS and LS FFT-based channel estimations, both TM-
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Fig. 4. The graph of MSEs of the channel estimation in quasi-static fading
channels.

and CM-based structures in (8) and (9), respectively, are exam-
ined.

A. Quasi-Static Channel Scenario

In this scenario, the channel impulse response ’s
in (2) are from the normalized time-varying channel, which is
modeled as Jake’s model [28], when (fast fading)
with being the Doppler’s shift. In addition, since the perfor-
mances of both TM- and CM-based structures are the same in
this scenario, we only show the performances of the CM-based
structure.

In Fig. 4, the MSEs of the PEDB-LS, 10-tap LS FFT-based,
adaptive LS FFT-based, and LMMSE channel estimators [12]
are shown. Notice that the PEDB-LS estimator has a highest
MSE in low-SNR regimes among all other channel estimators.
This is due to the severe noise effect corrupting in all channel
estimate taps, whereas the other schemes employ small number
of taps resulting in the lower noise effect. In high-SNR regimes,
the PEDB-LS and adaptive LS FFT-based channel estimators
performs better than the 10-tap LS FFT-based channel estimator
in which the error floor caused by the model mismatch error
occurs, whereas the former two do not suffer from this severe
error floor since they employ more taps and thus result in a lower
model mismatch error. It is worth noticing that the LMMSE
channel estimator serves as the channel estimation performance
bound at the price of the intensive computational complexity
and the additional information about channel correlation.

In Fig. 5, the BERs of the SF-coded MIMO-OFDM system
employing different channel estimators are shown. Notice that
the 10-tap LS FFT-based, and adaptive LS FFT-based channel
estimator performances are quite close in low-SNR regimes,
whereas the PEDB-LS channel estimator performs worse, in
which the 2-dB SNR difference compared to the former two
channel estimators, at BER of , is observed. In high-SNR
regimes, the 10-tap LS FFT-based channel estimator suffers
from the error floor, say at BER of 2 , whereas the adap-
tive LS FFT-based and the PEDB-LS channel estimators do not.
At BER of , the SNR differences between the ideal-channel
scheme, where the true channel impulse response is employed,

Fig. 5. Graph of BERs of the pilot-embedded SF-coded MIMO-OFDM system
in quasi-static fading channels.

Fig. 6. Graph of BERs of the pilot-embedded SF-coded MIMO-OFDM system
in non-quasi-static fading channels with f � T = 0:04.

and the adaptive LS FFT-based and PEDB-LS channel estima-
tors are 2.2 dB and 3.6 dB, respectively, whereas the LMMSE
channel estimator provides the error probability that coincides
with the ideal-channel scheme.

B. Nonquasi-Static Channel Scenario

For the sake of exposition, we study a four-block fading
model in which the channel impulse response sym-
metrically changes four times within one SF-coded symbol
block, i.e., there exists to in the -block
SF-coded symbol matrix.

In Figs. 6 and 7, the BERs of the SF-coded MIMO-OFDM
system employing the PEDB-LS, 10-tap LS FFT-based, adap-
tive LS FFT-based, and LMMSE channel estimators, when

are 0.04 and 0.064, are shown, respectively. Notice that, in
Fig. 6, when the Doppler’s shift is small ( )
in high-SNR regimes, the PEDB-LS, adaptive LS FFT-based,
and LMMSE channel estimators are superior to the 10-tap LS
FFT-based estimator. In low-SNR regimes, the PEDB-LS es-
timator performs the worst resulting from the severe noise ef-
fect. In Fig. 7, when Doppler’s shift is high ( )
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Fig. 7. Graph of BERs of the pilot-embedded SF-coded MIMO-OFDM system
in non-quasi-static fading channels with f � T = 0:064.

in high-SNR regimes, all channel estimators yields quite close
results. This phenomenon stems from the fact that the channel
mismatch error dominates all factors causing the detection error.
It is worth noticing the CM structure outperforms the TM struc-
ture, where the latter suffers from the highest error floor, as re-
ported in [10] and [11].

VII. CONCLUSION

In this paper, we have presented a PEDB framework for joint
channel estimation and data detection and proposed an adaptive
LS FFT-based channel estimator to improve the performances
of the LS FFT-based and PEDB-LS channel estimators. The
optimal criterion for obtaining the optimum number of signif-
icant taps for the adaptive LS FFT-based estimator was also
discovered. Simulations were conducted to examine the per-
formance of the proposed schemes. For quasi-static TU-profile
fading channels, the adaptive LS FFT-based estimator shows
superior performance to that of the 10-tap LS FFT-based and
PEDB-LS estimators. For instance, at BER of , the SNR
differences are as 2.2 dB and 3.6 dB, respectively, for the adap-
tive LS FFT-based and the PEDB-LS estimators compared with
the ideal-channel scheme, whereas the 10-tap LS FFT-based
channel estimator suffers from the severe error floor caused by
the model mismatch error. For the nonquasi-static TU-profile
fading channels, under low Doppler’s shift regimes, the adap-
tive estimator is the best in high-SNR regimes; however, in the
low-SNR regimes, the performance of the PEDB-LS approach
is the worst and the other three estimators are comparable. Fur-
thermore, under high Doppler’s shift regimes, the channel mis-
match error dominates all factors causing the detection error,
and thus results in comparable error floors for all channel esti-
mators. In addition, the LMMSE channel estimator serves as a
performance bound.
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