
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 14 2005, pages 3114–3121
doi:10.1093/bioinformatics/bti483

Gene expression

Ensemble dependence model for classification and prediction
of cancer and normal gene expression data
Peng Qiu1,∗, Z. Jane Wang2 and K. J. Ray Liu1

1Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA and
2Department of Electrical and Computer Engineering, University of British Columbia, Canada

Received on October 29, 2004; revised on April 5, 2005; accepted on May 1, 2005

Advance Access publication May 6, 2005

ABSTRACT
Motivation: DNA microarray technologies make it possible to sim-
ultaneously monitor thousands of genes’ expression levels. A topic
of great interest is to study the different expression profiles between
microarray samples from cancer patients and normal subjects, by clas-
sifying them at gene expression levels. Currently, various clustering
methods have been proposed in the literature to classify cancer and
normal samples based on microarray data, and they are predomin-
antly data-driven approaches. In this paper, we propose an alternative
approach, a model-driven approach, which can reveal the relationship
between the global gene expression profile and the subject’s health
status, and thus is promising in predicting the early development of
cancer.
Results: In this work, we propose an ensemble dependence model,
aimed at exploring the group dependence relationship of gene
clusters. Under the framework of hypothesis-testing, we employ
genes’ dependence relationship as a feature to model and classify
cancer and normal samples. The proposed classification scheme is
applied to several real cancer datasets, including cDNA, Affymetrix
microarray and proteomic data. It is noted that the proposed method
yields very promising performance. We further investigate the eigen-
value pattern of the proposed method, and we discover different
patterns between cancer and normal samples. Moreover, the trans-
ition between cancer and normal patterns suggests that the eigenvalue
pattern of the proposed models may have potential to predict the early
stage of cancer development. In addition, we examine the effects of
possible model mismatch on the proposed scheme.
Availability: see Supplemental website at http://dsplab.eng.umd.edu/
∼genomics/edm
Contact: qiupeng@umd.edu

INTRODUCTION
With the rapid development of microarray expression technologies in
the past few years, it is possible to monitor the expression levels of
thousands of genes simultaneously (Lockhart and Winzeler, 2000;
Young, 2000). The large amount of data generated by expression
microarrays have stimulated the development of many computational
methods to study different biological processes at the gene expression
level. Among these, understanding the difference between cancer
and normal cells is of particular interest. This includes the difficult
task of distinguishing cancerous subtypes, such as benign, invasive,
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neoplastic and metastatic. Cancer is the fourth most common disease
and the second leading cause of death in the United States. Therefore,
detection of cancer is a research topic with significant importance.
Recently, gene array techniques have been shown to provide insight
into cancer study (Chang et al., 2003; Van’t Veer et al., 2002),
and molecular profiling, based on gene expression array techno-
logy, is expected to offer the promise of precise cancer detection
and classification. We plan to address this challenge in this paper.

Current methods for the classification of microarray gene expres-
sion data can usually be divided into two categories. One is based on
the clustering of samples, which can be used to distinguish can-
cer and normal samples and to distinguish subtypes of cancers.
Some example schemes include hierarchical clustering (Eisen et al.,
1998), local maximum clustering (Wu et al., 2004), self-organizing
map (SOM) (Kohonen, 1997) and K-means clustering and its vari-
ations (Tavazoie et al., 1999). These clustering methods are mainly
data-driven approaches. Usually, they do not require many prior
assumptions, i.e. an underlying model. However, determining the
number of clusters is a challenging problem in itself, and there
is a lack of widely accepted measures to evaluate the clustering
performance.

The other category is based mainly on a machine-learning
approach. Motivated by the success of machine-learning algorithms
in image and speech processing, many researchers have applied
them to microarray data analysis, for example, K-nearest neighbors
(KNN) (Duda et al., 2001), support vector machine (SVM) (Furey
et al., 2000) and neural network analysis (O’Neill and Song, 2003).
Machine-learning methods generally yield better results than the
traditional clustering methods. However, in these machine-learning
methods, the features used for classification are preselected genes
identified by statistical tests on training datasets. Although selec-
ted genes form a feature vector and are processed jointly, they are
still treated in quite a separate fashion. Genes’ group behaviors and
interactions are not considered. In this work, we propose to take
genes’ group behaviors and interactions into account by developing
an ensemble dependence model (EDM).

In this paper, we propose an EDM-based classification approach.
Because of the limited size of current data, it is not feasible to examine
the regulation relationship between all genes. Also, the microar-
ray gene expression data is noisy. However, if genes are clustered
properly, the noise level in the resulting cluster expression will be
reduced, and we will be able to reveal the ensemble dependence
dynamics of gene clusters. This paper is organized as follows: we
start by introducing the EDM. In the ‘Model-based classification’
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section, the major components of the proposed classification method
are discussed, including feature selection, clustering of genes and
hypothesis-testing. The proposed scheme is then applied to several
publicly available datasets, with results reported in the ‘Results‘
section. Finally, in the ‘Model-based prediction and performance
analysis’ section, we explain why the proposed method works well.
We show the two different patterns in the eigen domain between
cancer and normal cases, and suggest that the eigen pattern can be
used for predicting the transition from the healthy state to the disease
state. In addition, we discuss the effects of model mismatch on the
proposed scheme.

ENSEMBLE DEPENDENCE MODEL
Because of the limited size of current data, it is not feasible to examine
the regulation relationship between all genes. In the proposed EDM,
genes are clustered into several clusters. We predict, given appropri-
ate and well-sorted clustering results, that genes’ group behavior and
ensemble dynamics can be revealed. In what follows, several clus-
tering methods are compared, and we will discuss the appropriate
way to cluster genes. In this section, we assume we can cluster genes
appropriately and focus on the proposed EDM.

After clustering, each cluster contains specific genes that have
a well-defined mathematical relationship to one another. To average
out experiment noise and enhance genes’ common expression within
each cluster, the average gene expression profile is used to represent
each cluster. Without any prior knowledge, we assume that each
cluster is, to some extent, dependent on all the other clusters. A linear
dependence relationship is studied here, as shown in Figure 1, where
each arrow represents an inter-cluster dependence relationship. There
is a weight aij associated with each arrow, which indicates to what
extent cluster i depends on cluster j . The so-called self-regulation
is assumed to be zero, i.e. aii = 0, i = 1, 2, 3, 4. Because the
cluster average is used to represent each cluster, the intra-cluster
dependence relationship within each cluster is averaged out. Later, it
is clear that, from a mathematic point of view, allowing non-zero aii

terms will make the model-learning process trivial and unreasonable,
since the results will simply be aii = 1 for any i, and aij = 0 for
any i �= j .

The dependence relationship shown in Figure 1 can be expressed
as the following linear equation:
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or equivalently defined as

X = AX + N, (2)

where matrix A is what we call the dependence matrix and xi ,
i = 1, 2, 3, 4, are the expression profiles for each gene cluster. There
is a noise-like term N, which could be contributed by the model mis-
match (i.e. those clusters’ expression profiles may not be completely
linearly dependent) and measurement uncertainty from microarray
experiments. For simplicity, the noise-like term is modeled as a
Gaussian random vector. Later, we will show that the dependence
matrix and statistics of the noise term could be used to distinguish
cancer and normal samples.

Fig. 1. Ensemble dependence model.

Equation (1) may appear similar to the space–time model of a
discrete linear time invariant system in control theory. However, it
is quite different. In the state–space model of a discrete linear time
invariant system, matrix A describes how the system state will evolve
from the current time step to the next time step. In our case, there is no
time concept in the dependence model. The X vectors on both sides
are actually the same. Therefore, the elements of the dependence
matrix A do not imply any time evolution, but only indicate to what
extent one gene cluster is dependent on another cluster.

MODEL-BASED CLASSIFICATION
Since not all genes’ expression profiles are informative in under-
standing the difference between cancer and normal cases, feature
selection is needed to exclude irrelevant genes. And, as required in
the EDM, gene clustering is performed to group together genes with
similar expressions. After feature selection and clustering, selected
genes are divided into several groups. Then, the proposed EDM is
used to describe the dynamics of gene clusters—one model for the
cancer case and another for the normal case. With these two depend-
ence models, a hypothesis-testing-based method is applied to classify
cancer and normal data. The main flow of the proposed classifica-
tion method is shown in Figure 2. It includes four main components:
feature selection, gene clustering, EDM and hypothesis-testing. We
will discuss these components in turn.

Feature selection
In this study, we employ two feature selection methods. The t-Test
feature selection criterion is quite popular in microarray analysis. In
the t-test, each gene is given a score which evaluates the similarity
between its expression profiles in cancer and normal samples. All
genes are ranked according to their t-test scores. A P -value is chosen,
and genes with scores lower than the P -value are believed to behave
most differently between cancer and normal samples.

We also apply another feature selection criterion used in Golub
et al. (1999) and Slonim et al. (2000). Equation (3) is used to calculate
a score for each gene:

F(xj ) =
∣∣∣∣∣
µ+

j − µ−
j

σ+
j + σ−

j

∣∣∣∣∣ , (3)

where, µ+
j and σ+

j are the mean and standard deviation of gene j ’s

expression level in cancer samples, and µ−
j and σ−

j are the mean and
standard deviation of gene j ’s expression level in normal samples.
Similarly, genes are ranked according to F(xj ) scores. Compared
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 feature selection

Fig. 2. Classification procedure.

with the t-test approach, for this criterion, genes with the highest
scores are believed to behave most differently between cancer and
normal samples.

Clustering of genes
As mentioned above, a proper way of gene clustering is required by
the EDM. Three standard clustering algorithms are compared: K-
means (Tavazoie et al., 1999), SOM (Kohonen, 1997) and Gaussian
mixture model (GMM) (Steinhoff et al., 2003). In these clustering
algorithms, the number of clusters can be predefined, as we do in
the proposed dependence model. However, K-means clustering is
an unstructured method, and it depends more on algorithm initials.
SOM is a soft clustering method, but it blurs the difference between
adjacent clusters, which is what we want to examine. Therefore,
GMM is chosen to cluster genes, since it is a soft clustering method,
it can capture cluster difference and it is much more stable than
K-means clustering.

No matter which clustering method is chosen, a measure of sim-
ilarity should be defined. In this study, Euclidean distance of genes’
expression profiles is chosen to measure the similarity because genes
with similar expression profiles are likely to share similar functional-
ity (Eisen et al., 1998). One may argue that Euclidean distance may
not cluster genes correctly in terms of their functionalities. Genes
in different clusters may share similar functions or be functionally

closely related. For example, suppose that two genes, gene a and
gene b, are directly down-regulated by each other. When expression
of gene a increases, the expression of gene b decreases. In terms
of the Euclidean distance of their expression profiles, gene a and
gene b could be far away from each other and would thus be likely to
fall into different clusters. In this case, mutual information or Euc-
lidean distance of the expressions’ derivatives as similarity criteria
would be more appropriate. However, in the proposed method, the
average gene expression profile over all genes within one cluster
is used to represent each cluster. Even if gene a and gene b are in
the same cluster, the example above will be averaged out. This is
why we choose the Euclidean distance of genes’ expression as the
similarity criterion. Although functionally related genes may fall
into different clusters, at least genes with similar behaviors will be
grouped together, and thus will represent ensemble mean behaviors
more clearly.

Before clustering, the number of clusters needs to be decided.
The optimal number of clusters is difficult to determine, because it
may depend on different diseases and different sets of genes under
investigation. To determine this parameter, we examine different
choices, apply the proposed classification method and suggest the
best one by comparing the overall classification performance. In this
study, the number of clusters is chosen to be four, an in the ‘Results’
section. In two of the investigated datasets, the number of normal
samples is only ∼6, which means we cannot afford to analyze many
clusters with the limited current data size. Although the appropriate
number of clusters is hard to determine, in general the more clusters,
the more the dependence relationship is examined, and the more the
difference between cancer and normal samples can be revealed.

Hypothesis-testing
In binary hypothesis-testing problems (Poor, 1994), there are two
possible hypotheses, H0 and H1, associated with two probability dis-
tribution functions, f0 and f1, on the observation space. In this study,
H0 and H1 represent the normal case and the cancer case, respect-
ively. Under each hypothesis, the observation Y , gene expression,
follows a certain probability distribution, written as

H0 : Y ∼ f0,
H1 : Y ∼ f1,

(4)

where f0 and f1 are the distribution of the gene expression in cancer
and normal samples, respectively. A decision rule δ is a partition
of the observation space � into �1 and �0 = �c

1, where �c
1 is the

complement set of �1. In this study, the maximum likelihood (ML)
approach is used to form the decision rule, that is, to compare the con-
ditional probability of observation Y , given underlying hypothesis
H0 or H1,

�1 = {Y ∈ �|f1(Y ) > f0(Y )}. (5)

Model learning and classification
Given the gene-clustering result, cluster expression profiles can be
easily obtained by taking the cluster average. Then, the dependence
matrix A can be estimated row by row, based on the least squares
(LS) criterion. For example, for the first row of matrix A,

x1 = a12x2 + a13x3 + a14x4 + n1, (6)

using the LS criteria, coefficients a1i , i = 2, 3, 4, which minimize
noise term n1 are estimated. The statistics of the noise-like term n1

is estimated at the same time.
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The classification procedure is illustrated in Figure 2. For each
dataset, after feature selection and gene-clustering, a portion of the
cancer samples are used to estimate a model for the cancer case,
represented by the dependence matrix (Ac) and the distribution of
the noise term (Nc); a portion of the normal samples are used to
estimate a model for the normal case, represented by the dependence
matrix (An) and the distribution of the noise term (Nn). These two
models form a hypothesis-testing problem:

H1 : X = AcX + Nc.
H0 : X = AnX + Nn.

(7)

For each incoming unknown sample X (samples not used in model
learning), the ML decision rule is applied to predict whether it is
cancer or normal. That is, we check whether the incoming sample fits
the cancer model better or fits the normal model better, by comparing
the following two log-likelihoods

Pr(X|H1) = −0.5 log((2π)k |Vc|) − 0.5(X − Mc)
TVc

−1(X − Mc), (8)

Pr(X|H0) = −0.5 log((2π)k |Vn|) − 0.5(X − Mn)TVn
−1(X − Mn), (9)

where k is the number of clusters, and Vc, Mc and Vn, Mn are the
first- and second-order statistics of the Gaussian noise-like terms in
cancer and normal cases, respectively.

DATASETS
Since in general cDNA microarray gene expression data follows a
standard format and preprocessing operations (e.g. normalization),
five publicly available cDNA datasets are investigated in detail first.
Each of them contains both cancer samples and normal samples. They
are a gastric cancer dataset (Chen et al., 2003) containing 90 cancer
samples and 22 normal samples; a liver cancer dataset (Chen et al.,
2002) containing 82 cancer samples and 74 normal samples; a pro-
state cancer dataset (Dhanasekaran et al., 2001) containing 4 stages
of samples [normal adjacent prostate (NAP), benign prostatic hyper-
lasia (BPH), localized prostate cancer (PCA) and metastatic cancer
(MET)] which can be roughly regarded as 15 normal samples (7 NAP
and 8 BPH) and 25 cancer samples (14 PCA and 11 MET); a cervical
cancer dataset (Wong et al., 2003), containing 25 cancer samples and
8 normal samples; and a lung cancer dataset (Garber et al., 2001),
containing 37 cancer samples and 6 normal samples.

To be complete, we also investigate three Affymetrix datasets and
one proteomic dataset.

RESULTS
For each dataset, we use Golub’s approach for feature selection,
employ the GMM to group selected genes into four clusters and
apply the proposed classification scheme to perform leave-one-out
cross-validation (Antoniadis et al., 2003). The results are shown in
Table 1. From Table 1, we can see that the proposed scheme yields
high classification accuracy for the first three datasets. For the last
two datasets, because there are only 6–8 normal samples, a lack of
training data results in relatively poor classification performance for
normal samples. However, the proposed model can still make the
correct classification for cancer samples.

In the reference papers mentioned in the ‘Datasets’ section, a
hierarchical clustering method is applied to group samples. Since
hierarchical clustering does not give precise classification results, it
is hard to compare the proposed method with it. To examine the pro-
posed scheme, we compare it with the widely applied linear SVM

Table 1. Correct classification rate of ensemble dependence model for
different datasets, with t-test feature selection and number of clusters being
four (%)

Correct Correct Overall
classification classification classification
for cancer samples for normal samples rate

Gastric cancer 100 100 100
Liver cancer 97.5 100 98.72
Rostate cancer 100 93.3 97.5
Ervical cancer 100 75 93.9
Lung cancer 100 66.7 95.35

approach. The SVM algorithm is a supervised machine-learning
algorithm. It is a powerful tool in classification and pattern recog-
nition commonly used in the areas of face detection (Jonsson et al.,
2002), speaker/speech recognition (Dong and Zhaohui, 2001) and
handwriting recognition (Choisy and Belaid, 2001). It has also been
applied to the problem of microarray data classification (Furey et al.,
2000; Rifkin et al., 2003), where SVM is shown to provide excellent
classification performance.

In Table 2, for linear SVM and EDM, different feature selection
approaches and different choices of clusters are examined using the
gastric cancer dataset. From Table 2, we can see that the choice
of feature selection does not affect the classification performance
significantly. We believe that using a purely mathematical criterion to
select genes is not enough, and that a more meaningful gene selection
method which can incorporate biological knowledge is desirable. In
the proposed method, different choices of the number of clusters yield
slightly different results. Although it is hard to conclude which choice
is the best, in general, with sufficient samples, the more clusters, the
more the dependence relationship is examined, and thus the better the
classification performance that can be achieved. Since the number
of samples is limited, we cannot afford to analyze many clusters.
As illustrated in Table 2, the performance of the five-cluster case
is worse than that of the four-cluster case. The number of clusters
is heuristically chosen to be four. We also investigated four other
datasets and observed similar results (see Supplemental website).

From Table 2, for we also notice that the linear SVM and the
proposed algorithm perform comparably, both providing very high
classification accuracy. An interesting observation during the result-
checking procedure is that the classification errors in nearly all leave-
one-out validation experiments happen with the same two samples,
which may be because of sample mislabeling. We will explore this
issue further in our future related work.

Although the SVM and EDM provide similar classification per-
formance, it is worth mentioning that the proposed approach has its
advantages. The linear SVM is a hard test approach since a hyper-
plane in feature space is generated to classify test samples. In the
proposed EDM, two likelihoods are evaluated to determine the class
index. The proposed scheme is a soft test approach, where not only
the class index is determined, but also the confidence level of each
classification operation can be obtained.

It is worth mentioning that all the five datasets reported above
are from cDNA microarray experiments. Besides cDNA, there are
commercial oligobased expression arrays, such as Agilent’s 60mer
platform and Affymetrix’s 25mer genechip® system. Since different
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Table 2. Classification performance comparison on gastric cancer dataset (%)

Golub’s approach Golub’s approach t-test All features
100 genes 500 genes 3319 genes 6688 genes

Linear SVM 98.8/95.4 98.8/100 98.8/100 98.8/100
EDM 2 clusters 98.8/95.4 98.8/95.4 98.8/100 98.8/100
EDM 3 clusters 98.8/100 98.8/95.4 100/100 98.8/100
EDM 4 clusters 98.8/100 98.8/100 100/100 98.8/100
EDM 5 clusters 98.8/90.9 98.8/100 100/100 98.8/100

‘EDM # clusters’ means ensemble dependence model with choice of # clusters. In each cell, ‘#/#’ means ‘correct classification rate for cancer samples/correct classification rate for
normal samples’.

normalization schemes are utilized for these two systems (loess for
two-channel normalization with Agilent and MAS5, RMA, GC-
RMA and dChip with Affymetrix), for a specific classifier the
resulting classification performance may be sensitive to different
normalization preprocessing. For instance, it may be sensitive to
different levels of normalization from mild (MAS5) to robust (GC-
RMA). Here we apply a simple normalization approach: expression
data is normalized by the mean intensity of each experiment, as
suggested by Alon et al. (1999). To illustrate the classification per-
formance, we investigated three oligonucleotide microarray datasets:
the colon cancer, lung cancer and prostate cancer datasets. We notice
that the overall classification performance ranges from 85 to 98%
for different types of cancer. Also, we notice that the performance
of the proposed EDM approach is comparable to that of the SVM
scheme. To further investigate the generality of the proposed EDM,
we also applied our model to a proteomics dataset for ovarian cancer,
where we obtained a classification performance of 97.63% (see Sup-
plemental website for detailed information). This example indicates
that the proposed EDM might be generally applicable to both gene
and protein expression data. We will further examine this issue in
future work.

MODEL-BASED PREDICTION AND
PERFORMANCE ANALYSIS

Prediction in the eigen domain
The proposed EDM yields excellent classification performance. Now
we want to explore intuitively why it works well. Below is a typ-
ical example of the estimated cancer dependence matrix Ac and the
normal dependence matrix An:

Ac =




0 0.3676 0.1098 −0.0398
1.6274 0 −0.5400 0.0067
0.2103 −0.2336 0 0.3922

−0.1537 0.0058 0.7912 0


 . (10)

An =




0 0.4502 0.5154 −0.4208
1.8188 0 −1.0142 0.5021
0.6592 −0.3210 0 0.7028

−0.7767 0.2294 1.0145 0


 . (11)

Looking at these two matrices directly does not reveal a clear differ-
ence. However, when exploring the eigenvalue domain, we observe
that there are clearly two different patterns. In Figure 3, 200 different
subsets of the gastric cancer dataset are used to estimate cancer and
normal dependence matrices. Their eigenvalues are calculated and

plotted. It is clear that, in general, the eigenvalues for the normal
dependence matrix have larger absolute values than those of the can-
cer case. The difference is most distinct at the smallest eigenvalue.
We believe that the different patterns in the eigenvalue domain could
play an important role in predicting whether an unknown sample is
normal or cancer.

Recall that, after gene-clustering, the dependence matrix is
obtained from cluster expression profiles. What is the relationship
between cluster expression profiles and the eigenvalue pattern of the
dependence matrix? What kind of cluster expression profiles will res-
ult in the two different patterns observed in Figure 3? To answer these
questions, an ideal case is defined where there is no noise-like term
in Equation (1), meaning that the four cluster expression profiles are
completely linearly dependent and that their rank is three. In other
words, each cluster expression profile could be exactly written as the
linear combination of the other clusters’ expression profiles. Thus,
the noise-like term is zero. More specifically, if the four clusters’
expression profiles satisfy

x1 = α1x2 + α2x3 + α3x4, (12)

then the noise-like term is zero. In this case, the dependence matrix
will have the special structure

Aideal =




0 α1 α2 α3
1

α1
0 −α2

α1
−α3

α1
1

α2
−α1

α2
0 −α3

α2
1

α3
−α1

α3
−α2

α3
0




. (13)

We can show that the eigenvalues of the above matrix are 1, 1, 1,
−3, no matter what the values of αi , i = 1, 2, 3. We define the above
case in Equation (13) as the ideal case.

Based on the ideal case model, we gradually introduce larger and
larger random variation to make the four cluster expression profiles
more and more noisy. At each variation level, a dependence matrix
is estimated as in the ‘Ensemble dependence model’ section, and
the corresponding eigenvalues are calculated. Compared with the
ideal case, as the cluster expression profiles suffer more and more
noisy variations, the eigenvalues of their dependence matrix will
change and follow the trends shown in Figure 4. Compared with
Figure 3, it can be suggested that the cluster expression profiles in
cancer samples correspond to a much larger variation level than those
of the normal samples, which means the gene clusters’ behavior in
cancer samples is much more noisy than in normal samples. Here
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Fig. 3. Eigenvalue pattern of the gastric dataset. (a) Shows the four eigenvalues of normal dependence matrices, estimated using 200 different subsets of gastric
cancer data. (b) Shows the four eigenvalues of cancer dependence matrices, estimated using 200 different subsets of gastric normal data.
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Fig. 4. The horizontal axis is variation level, which indicates how noisy
the four cluster expression profiles are. As the cluster expression profiles
become more noisy because of diseases, the eigenvalues of the corresponding
dependence matrix will change, following the curves.

we propose explaining this intuitively. In the normal samples, the
gene clusters’ dependence relationship is clearer, and gene clusters
work more cooperatively to maintain genetic stability. On the other
hand, in the cancer case, the dependence relationship between gene
clusters is overwhelmed by a large variation caused by diseases,
which thus makes gene clusters work less cooperatively and makes
the cell system become worse and worse. Moreover, the transition
stage between normal and cancer patterns suggests that the resulting
eigenvalue pattern from the proposed models can be used as a feature
to predict the early stage of cancer development, i.e. whether a sample
is in transition from healthy to cancer.

To support the above argument, we use the prostate cancer data-
set as an example. As mentioned earlier, it contains four stages of

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–3.5
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–1.5

–1

–0.5

0

0.5
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eigenvalue trend prostate

NAP BPH PCA MET 

Fig. 5. Trend of eigenvalue change in the four-stage prostate dataset.

data, NAP, BPH, PCA and MET, which can be simply regarded as
being from normal (NAP and BPH), to early cancer stage (PCA), to
cancer in late stage (MET). The dependence matrix and eigenvalues
of each stage are calculated. As shown in Figure 5, the overall trend
of eigenvalues from normal to cancer follows the trend in Figure 4,
which verifies the above argument. However, since what Figure 4
shows are statistical-mean curves, there is a certain probability of
error, especially under limited learning data size. One possible solu-
tion in practical clinical use is to gather more samples from a single
person with the hope of averaging out statistical error.

Performance analysis
As indicated in Equation (1), a linear model is assumed, and the
noise-like term could be contributed both by the model mismatch and
by the microarray experiment process. One may argue that a linear
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assumption may not truly fit the classification problem of interest
here. In this subsection, we plan to examine the effect of model
mismatch on classification accuracy.

Based on the observations about eigenvalue patterns above, we
suggest that the underlying true models for the normal and cancer
cases can be described as

Normal case: X = AidealX0 + Nn, (14)

Cancer case: X = AidealX0 + σ�X + Nc, (15)

where Nc and Nn are white Gaussian random vectors whose vari-
ance is chosen to yield a similar eigenvalue pattern to that observed
in the real datasets. The expressions X0 are generated according to
the ideal case model, i.e. X0 = AidealX0; Aideal is a matrix with
the structure defined in Equation (13); N is a Gaussian noise term;
�X represents the unit variation and σ is a factor representing the
variation level. The vector �X represents different types of model
mismatch (e.g. non-linear feature of the model). Here we consider
one form of a second-order non-linear variation vector �X whose
i-th element is defined as �X(i) = X0(i)

2 − b0, with b0 being the
mean of the X0(i)

2. In our proposed scheme, the models represent-
ing the normal and cancer hypotheses are described in Equation (7).
Therefore, there is model mismatch between the model in Equa-
tion (7) and the above underlying true model. Specifically, a linear
model An as in Equation (7) is estimated to approximate the model in
Equation (14), which is based on both Aideal and an unknown vector
X0; a simple linear model Ac is estimated to approximate the model
in Equation (15), which contains a non-linear element. The larger
the factor σ , the higher the level of non-linearity observed in the true
model. Our purpose is to evaluate the effects of this mismatch on
the proposed scheme by examining the classification performance
loss, compared with the hypothesis-testing approach, assuming the
true models in Equations (14) and (15) are known. Clearly, the clas-
sification accuracy of the latter approach serves as a performance
bound since, in practice, the information of Aideal, X0 and �X is not
available.

We now describe how to generate simulated samples. Based on
the estimated distribution of normal gastric samples from experi-
ment data and the ideal case model, we simulated 1000 X0 samples.
Based on these generated X0 samples, half of them are used to gen-
erate normal samples, with the noise term N added, according to
the model in Equation (14). The other half is used to generate cancer
samples, as in the model in Equation (15), which simulates the model
mismatch in the cancer case.

In the model-learning part of the proposed scheme, because of
the unknown vector X0, neither estimated Ac nor estimated An will
be the same as Aideal. And in the simulation setting, the model for
the cancer case suffers more model mismatch than the mismatch in
the normal case since it includes a non-linear component σ�X. In
other words, the estimated Ac is used for taking into account both
the unknown X0 and the non-linear variation σ�X.

In Figure 6, we report the classification performances of the
hypothesis-testing approaches, using the proposed model in Equa-
tion (7) and the underlying true model as in Equation (14) and (15),
where the classification accuracy rate Pd versus the factor σ used
in Equation (15) is plotted. From Figure 6, we can see that, as the
factor σ increases, meaning that the underlying model for the cancer
case drifts away from the model for the normal case, the classi-
fication error reduces. We also notice that there is a performance

0 0.2 0.4 0.6 0.8 1 1.2
0.4

0.5

0.6

0.7

0.8

0.9

1

factor σ

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
 P

d

proposed model
true model

Fig. 6. Correct classification accuracy rate Pd versus the factor σ in
model (15). The larger σ , the more non-linear the underlying model in
Equation (15) is.

loss, though not significant, when applying the proposed scheme
in Equation (7), compared with the performance bound achieved
by assuming the true underlying non-linear model. The peak per-
formance loss, 0.1589, occurs around σ = 0.14, where the correct
classification rate for the proposed scheme in Equation (7) is 0.7284
and the maximum classification accuracy is 0.8873 when we assume
that we know the underlying non-linear model exactly. The perform-
ance of the proposed model follows the same tendency as the true
non-linear model. Since it is not practical to estimate the underlying
model where Aideal, X0 and σ�X are all unknown, it is encouraging
to see that the proposed simple model does not demonstrate a signific-
ant classification performance loss. It is also interesting to observe
that, when σ is large enough, meaning that the underlying model
is highly non-linear, the proposed scheme in Equation (7) provides
high classification accuracy which almost coincides with that of using
the true non-linear model. Therefore, although the true underlying
model in Equation (15) for the cancer case is not linear, the proposed
linear model may not be a good approximation for the underly-
ing true non-linear model; however, it works well for classification
purposes.

CONCLUSION
We developed an EDM to classify cancer and normal samples, using
microarray gene expression data. The results on real datasets show
that the proposed method yields high accuracy in identifying cancer
and normal samples. We also compared the proposed approach with
the widely applied SVM algorithm. Although these two algorithms
show similar performance, our algorithm presents a fundamental
departure from the existing SVM approach to classification because
it develops a more plausible EDM by taking genes’ group behaviors
and interactions into account, and thus may have potential to classify
intransigent data at which other classifiers balk.

An interesting observation is noted in the eigen domain analysis:
two distinguishing patterns of the eigenvalues of the dependence
models are noted for the cancer and normal hypotheses. By examin-
ing one prostate cancer dataset, we also illustrated the ‘expected’
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changes in the eigenvalue pattern from the ideal case to the normal
case, and further to the cancer case. This example suggests that the
eigenvalue pattern changes gradually from a healthy status to cancer
status. Since such an eigenvalue is an indicator of genes’ ensemble
dependence (cooperative) status, the eigenvalue pattern is promising
for serving as a feature for the prediction of the transition from the
healthy stage to the cancer stage and the early stage of cancer devel-
opment, and thus for potential cancer diagnosis usage. Therefore, we
plan to further explore and verify this promising approach in future
study.
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