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C
ancer is the fourth most common disease and the
second leading cause of death in the United States.
For instance, more than 500,000 people die from
various forms of cancer each year in the United
States. Cancer causes a significant financial burden

to the health care system, in addition to the tremendous toll on
patients and their families. Despite many advances derived from
important innovations in technology during the last decades, in
the field of cancer medicine, limited successes are still overshad-
owed by the tremendous morbidity and mortality incurred by
this devastating disease. Therefore, the accurate detection, clas-
sification and early prediction of cancer is a research topic of
significant importance. It has become increasingly important to
integrate new technologies into cancer classification and predic-
tion in hope to win the battle against cancer. 

Life-science-based research has evolved rapidly during the
past decade, driven largely by the sequencing of the complete
genome of many organisms and high-throughput technological
advances, such as microarray technique, with a shift from a
reductionist approach towards an integrated approach. The new

integrated approach investigating “complex” systems instead of
individual components leads to the emerging field of systems
biology aiming at a system-level understanding of biology sys-
tems. Since a thorough understanding of the DNA and protein
related to cancer would eventually lead to breakthroughs in can-
cer study, we focus our attention on genomics and proteomics of
cancer. Recently, microarray techniques, which allow measuring
the expression level of thousands of genes simultaneously and
thus present unique opportunities to investigate gene function
on a genomic scale, are shown to provide insights into cancer
study [1], [2] and have found promising applications in cancer
classification by investigating molecular profiling based on gene
expressions. Many different design formats of microarrays exist,
and the types of gene expression assays include serial analysis of
gene expression (SAGE), cDNA arrays (e.g., Stanford University),
fiber optic arrays (e.g., Illumina), short oligonucleotide array
(e.g., Affymetrix), and long oligonucleotide arrays (e.g., Agilent
Inkjet). Since it is believed that it is the proteomic data and the
collective functions of proteins that directly dictate the pheno-
type of the cell and, thus, are more accurate in interpreting the



cause of biological phenomenon, proteomics, the study of the
proteins of a cell, is an emerging field in cancer research. The
study of protein samples presents a new horizon for cancer clas-
sification and prediction. In recent years, protein separation
methods coupled with various mass spectrometry (MS) technolo-
gies, considered as a major advance in the identification of
polypeptides, have evolved as the dominant tools in the field of
proteomics [3]. For protein samples, MS is a rapidly evolving
methodology that converts proteins or peptides to charged pieces
that can be separated on the basis of the mass-to-charge (m/z)
ratio of the ionized proteins (or protein fragments). By measur-
ing the intensity for different m/z ratio, the abundance of differ-
ent peptides can be assessed. There are several types of MS
ionization methods currently available, and interested readers
are referred to [4]. In this article, we place our emphasis on sig-
nal processing and modeling of genomic and proteomic data
from these two cutting edge technologies, namely microarray
technology and MS technologies, as they are clearly among the
leading frontiers that will rapidly reshape cancer study.

As the gene microarray and MS technologies become more
accessible, microarray gene expression data and MS data analy-
sis is finding applications in diverse areas of cancer study.
Applied creatively, they can be used to test and generate new
hypotheses. We now give some specific examples of microarray
and MS’s applications in cancer study to highlight the current
advances and applications of these two technologies. The ration-
ale behind these applications is based on the belief that the over-
all behavior of a cancer is determined by the expression profiles
of genes/proteins. Some typical examples of the microarray’s
applications in cancer study include the following:

■ Molecular classification of tumors. Serious limitations are
associated with the traditional tumor classification method
primarily based on morphological appearance, since tumors
with similar histopathological appearance can follow signifi-
cantly different clinical courses and show different responses
to therapy. Many researches have been proposed in the litera-
ture for tumor classification by using gene expression data,
including a hierarchical gene-clustering algorithm [5], a class
discovery procedure based on self-organizing maps (SOMs)
[6], an analysis procedure combining the ideas of partial least
squares (PLS) and discriminant analysis (DA) in [7] for classi-
fying (predicting) human tumor samples, and artificial neural
networks (ANNs) approach in [8]. 
■ Prediction of prognosis and tumor response to specific
therapies. For example, in [1], gene expression profiling was
used for predicting responders and nonresponders to
chemotherapy. 
■ Drug development and identification of therapeutic targets.
Expression microarray technology can be used to generate
information rapidly for the identification and validation of
novel therapeutic targets. For instance, analysis utilizing
principle components analysis and hierarchical clustering
revealed tissue-specific candidate targets in [9]. 
During the past few years, great attention has been focused on

gene expression microarray data. Until very recently, MS has also

been applied to cancer study. These approaches can be similarly
categorized as in the case of microarray gene expression data clas-
sification. For instance, in [10] three biomarkers were selected
using the linear combination based unified maximum separability
analysis (UMSA) to best separate cancer and noncancer samples. A
decision tree classification algorithm was discussed to differenti-
ate prostate cancer from noncancer samples in [11]. The objective
of these different examples can be generalized as to develop a
multipurpose detector, classifier, and predictor based on the
microarray data and MS data. The specific methods reviewed in
later are applicable to address the above different concerns. 

This tutorial article is organized as follows: we first review a
few major design methodologies for cancer classification and
prediction using genomic or proteomic data. We then present
an ensemble dependence model (EDM)-based framework and
discuss the concept of dependence network. The EDM frame-
work is applied to both microarray gene expression and MS data
sets in cancer study. Further, we present the performance-based
idea and dependence network-based idea for biomarker identifi-
cation. Our goal is to provide a broad review of the recent
advances on model-based genomic and proteomic signal pro-
cessing for cancer detection and prediction. 

METHODS REVIEW FOR CANCER CLASSIFICATION
With the goal of understanding cancer development, assisting
diagnosis, and treatment, many studies have investigated vari-
ous methods for cancer classification using genomic and pro-
teomic data. Current methods can be roughly divided into two
broad categories: data-driven and model-driven methods. 

DATA-DRIVEN METHODS

CLUSTERING METHODS
As clustering is probably the most popular type of data-driven
classification methods, many clustering methods have been pro-
posed for classifying cancer and normal genomic or proteomic
samples. Some example schemes include hierarchical clustering
[5], K-means and its variations [12], SOM [13], and local maxi-
mum clustering [14], among which the hierarchical clustering is
most commonly applied in the literature. In hierarchical cluster-
ing, a dendrogram binary tree is constructed to describe the sim-
ilarity between all genes. A similarity measure is used to examine
pairs of genes, e.g., in [5] the similarity is defined based on a
form of thresholded correlation coefficient. For a set of n genes,
each of which is represented by a node in the dendrogram tree,
the similarities of their expression profiles are examined pair
wisely. Then the gene pair showing the largest similarity is
replaced by a newly created node, whose expression profile is
set to be the average expression profile of the gene pair. Now
with a set of (n − 1) nodes, the similarity scores are computed
again, and the gene pair yielding the largest similarity score
will be merged. In this way, after repeating the same process for
(n − 1) times, a binary tree is constructed for display. In K-
means method, genes are partitioned into K clusters, where K
is a predetermined number. The algorithm initializes K
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centers, one for each cluster, and each gene is assigned to one
cluster based on its similarity to the K centers. Then the cen-
ters are updated as the average of genes within each cluster.
This iterative process between assigning individual genes and
updating the cluster centers continues until convergence. In
the SOM method, the number of clusters is also predetermined.
Different from K-means method, the clusters are connected
according to some predetermined topology. After initializing
the cluster centers, genes are assigned one by one. For each
gene, it is assigned to the cluster having the most similar cen-
ter, and the cluster center is updated toward the gene. At the
same time, the cluster centers that are connected to the
assigned one are also updated toward the similar direction but
with a smaller step size. When the algorithm converges, SOM
gives a map of cluster centers, where connected neighbor clus-
ters have similar expression profiles. The clustering methods are
able to group together genes with similar expression profiles. It
is proposed that genes with common functions can be identified
based on similar expression profiles. However, clustering can
only provide qualitative analysis. In addition, determining the
number of clusters is a challenging problem itself, and there is a
lack of widely accepted measures to systematically perform clas-
sification and evaluate the clustering performance. 

MACHINE LEARNING METHODS
Several machine learning schemes have been proposed in the liter-
ature, such as K-nearest neighbors (KNN) [15], perceptron
method [16], support vector machine (SVM) [17], and neural net-
work [18]. They have also been demonstrated effective in many
signal processing applications, such as the face detection,
speaker/speech recognition, handwriting recognition, etc., espe-
cially the SVM method. The KNN is a nonparametric method for
density estimation. For the purpose of supervised classification,
the KNN algorithm is easy to implement. Given labeled training
samples and unlabeled testing samples, for each testing sample, a
label is assigned based on a majority vote of the K most nearby
training samples. In general, KNN’s classification performance is
affected by such factors as the number of training samples and the
size and dimension of the sample space. The perceptron method is
actually a simple form of neural network. For each sample, a
weighted sum of its features (e.g., expression of different genes) is
used to infer the class label. The weights are learned from the
training set and used for the classification of testing samples. The
SVM algorithm is a powerful supervised learning algorithm. Given
a set of binary labeled training data (e.g., normal and cancer sub-
jects’ gene expression profiles), the SVM finds a hyperplane that
best separates the two classes of training data. Such a hyperplane
is the maximal margin hyperplane, which has the maximum dis-
tance from the two classes of training data. After learning the
hyperplane, for each testing data, SVM assigns the class label based
on which side of the hyperplane the testing data is in. In [17], SVM
was compared with perceptron method, and the superior perform-
ance of SVM was reported, where SVM yields nearly perfect classifi-
cation performance. In general, machine-learning methods yield
better classification performance than that of the clustering meth-

ods, since the main difference between cancer and normal data in
the data domain can be revealed in the machine learning methods.
However, there still lacks of means to interpret the difference from
the biological, DNA/protein functional point of view. 

MODEL-DRIVEN METHODS
To our knowledge, a few model-driven methods have been pursued
in the literature for this purpose. One example is the Bayesian net-
work classifier (BNC) [19], where a Bayesian network is induced
from the data and then the resulting model is used as a classifier.
In Bayesian network, joint multivariate probability distributions
are used to model the regulation relationships between genes. In
[20], Bayesian network is constructed from Saccharomyces cere-
visiae cell-cycle time series data, where 76 genes were analyzed. In
[21], based on a microarray data set of human fibroblast response
to a serum, a Bayesian network is constructed, and its potential in
oral oncology study is outlined. Another approach is the EDM,
recently developed by the authors, where the dependence relation-
ship between genes/proteins is examined. The details of EDM
model will be presented in the following sections. In model-driven
methods, a model is induced to describe experiment data. A mean-
ingful model not only normally yields better classification per-
formance but, more importantly, can provide insights into the
underlying biology systems. The primary appeal of an approach
like BNC or EDM lies in its automated hypothesis generation abili-
ty, and thus it is capable of reverse-engineering the biological net-
works. Therefore, model-driven methods can potentially play a
major role in understanding biology systems. 

ENSEMBLE DEPENDENCE MODEL
FOR CANCER CLASSIFICATION AND PREDICTION 
The EDM was recently developed by the authors, where the depend-
ence relationship between genes/proteins is examined [22], [23].
EDM is different from previous studies: in clustering methods,
genes/proteins are compared pair wisely to find genes that have
similar expression profiles; in machine learning methods, although
genes form a feature vector and are processed jointly, they are still
treated in a separate fashion. In either case, genes’ group behaviors
and interactions are not considered. The proposed EDM approach
takes the genes’ group behaviors and interactions into account and
yields promising results in cancer classification and prediction.

EDM
Because of the large dimensionality and small sample size of
current available data, it is not feasible to examine the depend-
ence relationship among all genes. To avoid this “curse of
dimensionality” and reduce the noise effect, genes are grouped
into several clusters first. We predict, given well-sorted cluster-
ing results, that genes’ group behaviors and ensemble dynamics
can be revealed. The methods of clustering will be discussed in a
later section. In this section, we assume that genes are clustered
properly and focus on the EDM model.

After clustering, each cluster contains specific genes that
have a well-defined relationship to one another. The average
gene expression profile is used to represent each cluster, so that
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the experiment noise can be averaged out and the genes’ com-
mon expression within each cluster can be enhanced. Without
any prior knowledge, we assume that each cluster is, to some
extent, dependent on all the other clusters. The dependence
relationship between gene clusters is described by the following
linear model, as shown in Figure 1, where each arrow represents
an inter-cluster dependence relationship. The weight aij associ-
ated with each arrow indicates to what extent cluster i is
dependent on cluster j. The so-called self-regulation is
assumed to be zero, i.e., aii = 0. Because the cluster average is
used to represent each cluster, the intracluster dependence
relationship within each cluster is averaged out. Also, it is
proved that, from a mathematic point of view, allowing nonze-
ro aii terms will make the model-learning process trivial and
un-reasonable, since the results will simply be aii = 1 for any
i, and aij = 0, for any i �= j.

The dependence relationship shown in Figure 1 can be
expressed as the following linear equation: 
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or, equivalently,

X = AX + N (2)

where xi , i = 1, 2, 3, 4 are the expression profiles for each
cluster. The noise-like terms ni are contributed by model mis-
match and measurement uncertainty from microarray experi-
ments. The matrix A is called the dependence matrix. Each
element in the dependence matrix A describes to what extent
one gene cluster is dependent on another cluster. In the fol-
lowing section, we will show that, the dependence matrix and
the statistics of the noise term could be used to perform classi-
fication on cancer and normal gene/protein samples. 

EDM-BASED MODEL LEARNING 
AND CLASSIFICATION
Since not all genes are informative in the classification of can-
cer and normal cases, feature selection is needed to exclude
irrelevant genes. And, as required in the ensemble dependence
model, gene clustering is performed to group together genes
with similar expression. Then, the EDMs are used to describe
the relationships among gene clusters, one model for the can-
cer case, and another for the normal case. With these two
dependence models, a hypothesis-testing based method is
applied to classify cancer and normal data. The main flow of the
proposed classification method is shown in Figure 2. It includes
four main components: feature selection, gene clustering,
ensemble dependence model, and hypothesis testing. 

FEATURE SELECTION
For the purpose of feature selection, the T-test is quite popular in
microarray analysis. In the T-test, each gene is given a score, which

evaluates the similarity between its expression profiles in cancer
and normal samples. All genes are ranked according to their T-test
scores. A p-value is chosen, and genes with scores lower than such
a p-value are believed to behave most differently between cancer
and normal samples. Another feature selection criterion was pro-
posed in [6], using (3) to calculate a score for each gene

F (xj ) =
∣∣∣∣∣
µ+

j − µ−
j

σ+
j + σ−

j

∣∣∣∣∣ (3)

where µ+
j , σ+

j and µ−
j , σ−

j are the mean and standard deviation
of gene j ’s expression level in cancer and normal samples, respec-
tively. Similarly, genes are ranked and selected according to F (xi )

scores. In [24], a more sophisticated feature selection criterion is
discussed, where the features are ranked by the classification per-
formance associated with certain classifier. It is reported that, for
the purpose of classification, the optimal feature selection depends
on the genes’ expression profiles, the specific classifier, and the size

[FIG1] Ensemble dependence model with number of clusters
being four.
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[FIG2] The EDM-based classification framework.
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of the training set. In the following section, clustering of genes is
also a form of feature selection and dimension reduction.

In feature selection, one concern is the selection bias,
regarding cross-validation methods. In [25], it is reported that,
regarding cross validation, if the feature selection step is based
on both training and testing data, the classification performance
will tend to be higher. It is suggested that the feature selection
step and the classification validation step should be considered
jointly to avoid such bias. In other words, the feature selection
step should be based on the training data only.

CLUSTERING OF GENES
As mentioned above, a proper way of gene clustering is required
by the ensemble dependence model. Three standard clustering
algorithms are considered in [22]: K-means [12], SOM [13], and
Gaussian mixture model (GMM) [26]. K-means clustering is an
unstructured method, and it depends more on algorithm ini-
tials. SOM is a soft-clustering method, but it blurs the difference
between adjacent clusters, which is what we want to examine.
Therefore, GMM is chosen to cluster genes, since it is a soft-
clustering method, it can capture cluster difference, and it is
much more stable than K-means clustering. 

Before clustering, the number of clusters needs to be decided.
The optimal number of clusters is difficult to determine, because
it may depend on different diseases and different sets of genes
under investigation. In literature, the MDL, AIC, and BIC criteria
have been studied to solve such an order selection problem [27].
In our study, we took a simple approach to determine this param-
eter. We examined different choices, applied the proposed classifi-
cation method, and suggested the best one by comparing the
overall classification performance. In this study, the number of
clusters is chosen to be four. Although the appropriate number of
clusters is hard to determine, in general, the more clusters, the
more the dependence relationship is examined, and the more dif-
ferences between cancer and normal samples could be revealed.
In practice, however, since the number of model parameters
grows quadratically with the number of clusters, how many clus-
ters to be analyzed is limited by the available samples size.

MODEL LEARNING AND CLASSIFICATION
The EDM-based classification scheme is a supervised learning
method. Given the gene-clustering result, cluster average is cal-
culated to represent each cluster. Based on cancer training data
and normal training data with reduced dimensions, the ensemble
dependence models for normal case (An and Nn) and cancer case
(Ac and Nc) are estimated, respectively. The dependence matrix
can be estimated row by row, based on the least squares (LS) cri-
terion. For example, for the first row of the dependence matrix,
x1 = a12 x2 + a13 x3 + a14 x4 + n2 , coefficients a1i, i = 2, 3, 4
that minimize noise term n1 are estimated by projecting x1 on to
the subspace span{x2, x3, x4}. The statistics of the noise-like
term n1 is estimated at the same time. The two estimated depend-
ence models can form the two hypotheses in a binary hypothesis-
testing problem, and the maximum likelihood rule can be applied
to classify unknown testing samples based on the two hypotheses:

H1 : X = Ac X + Nc

H0 : X = An X + Nn. (4)

For each unknown testing sample X (samples not used in model
learning), the ML decision rule is applied to predict whether it is
cancer or normal. That is, we check whether the testing sample
fits the cancer model better or fits the normal model better, by
comparing the following two log-likelihoods:

Pr(X |H1) = − 0.5 log((2π)k|Vc|) − 0.5(X − Ac X − Mc)
T

× V−1
c (X − Ac X − Mc)

Pr(X |H0) = − 0.5 log((2π)k|Vn|) − 0.5(X − An X − Mn)
T

× V−1
n (X − An X − Mn) (5)

where k is the number of clusters and Mc, Vc and Mn, Vn are the
first- and second-order statistics of the Gaussian noise-like
terms in cancer and normal cases, respectively. Some details of
the dependence model are available in our research Web site
(http://dsplab.eng.umd.edu/~genomics/dependencenetwork/).

EDM ANALYSIS USING GENOMIC DATA 

RESULTS ON MICROARRAY GENE EXPRESSION DATA
In [22], EDM is applied on five public-available cDNA microarray
data sets and three affymetrix microarray data sets. In Tables 1
and 2, the results are the classification performance of leave-
one-out cross validation. The results indicate that the EDM
method is highly effective in distinguishing cancer and normal
samples. Based on a comparison with a widely applied classifier,
SVM, results show that both methods have similar classification
performance. However the EDM algorithm presents a funda-
mental departure from the traditional SVM approach to classifi-
cation because of its plausible hypothesis generation ability. 

EIGENVALUE PATTERN AND EDM-BASED PREDICTION
The EDM yields excellent classification performance. Now, we
want to explore its working principle. From the comparison of
the estimated cancer dependence matrix Ac and the normal
dependence matrix An, no clear difference is observed entry
wisely. However, when exploring the eigenvalue domain, we
observe two clearly different patterns. In Figure 3, 200 differ-
ent subsets of the gastric data set are used to estimate cancer
and normal dependence matrices and their eigenvalues are cal-
culated and plotted. It is noted that, in general, the eigenval-
ues for the normal dependence matrix have larger absolute
values than those of the cancer case. The difference is most
distinct at the smallest eigenvalue. We believe that the differ-
ent patterns in the eigenvalue domain could play an important
role in cancer classification.

To explain the eigenvalue patterns, an ideal case is defined
where there is no noise-like term in (2), meaning that the four
cluster expression profiles are completely linearly dependent.
In this case, the dependence matrix will have a special structure
as follows:
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Aideal =
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It is proved that the eigenvalues of the above matrix are
1, 1, 1,−3, no matter what are the values of αi, i = 1, 2, 3. For
a more general case where we have M clusters, we note that
the eigenvalues of the M -by- M matrix Aideal are
{1, 1, . . . , 1,−(M − 1) }, no matter what are the values of
αi, i = 1, 2, . . . , M − 1 [23]. 

Based on the ideal case model, we gradually introduce larger
and larger random variation to make the four cluster expression
profiles more and more independent. At each variation level, a
dependence matrix is estimated, and the corresponding eigen-
values are calculated. Compared with the ideal case, as the clus-
ter expression profiles suffer more and more noisy variations,
the eigenvalues of their dependence matrix will change and fol-
low the trends shown in Figure 4(a). Compared with Figure 3, it
can be suggested that the cluster expression profiles in cancer
samples correspond to a much larger variation level than those
of the normal samples. Here we try to explain this intuitively. In
the normal samples, the gene clusters’ dependence relationship
is clearer, and gene clusters work more cooperatively. On the
other hand, in the cancer case, the dependence relationship
between gene clusters is overwhelmed by a large variation
caused by diseases, which thus makes gene clusters work less
cooperatively and makes the cell system become worse and
worse. Moreover, the transition stage between normal and can-
cer patterns suggests that the resulting eigenvalue pattern from
the proposed models can be used as a feature to predict the early
stage of cancer development, i.e., whether a sample is in transi-
tion from healthy to cancer. The authors speculated that the
patterns in eigenvalue spectrum have the promise of early-stage
cancer prediction. To support the above argument, we use the
prostate cancer data set as an example. The prostate data set
contains four stages of data, NAP, BPH, PCA and MET, that can

be simply regarded as being from normal (NAP and BPH), to
early cancer stage (PCA), to late stage cancer (MET). The
dependence matrix and eigenvalues of each stage are calculated.
As shown in Figure 4(b), the overall trend of eigenvalues from
normal to cancer follows the trend in Figure 4(a), which sup-
ports the above argument.

EDM ANALYSIS USING PROTEOMIC DATA

RESULTS ON MS PROTEOMIC DATA
Encouraged by the promising performance, the authors extended
the original EDM concept to the protein MS data by taking into
consideration the special properties of the proteomic MS data [23].
Due to the different properties of microarray and MS data, a few
preprocessing step and different detail treatments is needed before
EDM is applicable. However, the general framework is similar.

In the classification of microarray genes expression data,
to effectively represent each gene cluster, the cluster expres-
sion profile is generated by the average expression profile of

[FIG3] Eigenvalue pattern of gastric data set: (a) the normal case and (b) the eigenvalues for the cancer case. Eighty percent normal
samples of the gastric cancer microarray data set are randomly picked 200 times to learn 200 dependence matrixes. Eigenvalues are
calculated and plotted in (a). 
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EDM CLASSIFICATION SVM CLASSIFICATION 
DATA SET RATE RATE
GASTRIC CANCER 100% 99.1%
LIVER CANCER 98.72% 98.72%
PROSTATE CANCER 97.5% 100%
CERVICAL CANCER 93.9% 93.9%
LUNG CANCER 95.35% 97.67%

[TABLE 1]  CLASSIFICATION PERFORMANCE COMPARISON
BETWEEN EDM AND SVM IN CDNA MICROARRAY
DATA SETS.

EDM CLASSIFICATION SVM CLASSIFICATION 
DATA SET RATE RATE
COLON CANCER 88.71% 85.48%
PROSTATE CANCER 85.29% 91.18%
LUNG CANCER 97.79% 99.45%

[TABLE 2]  CLASSIFICATION PERFORMANCE COMPARISON
BETWEEN EDM AND SVM IN AFFYMETRIX
MICROARRAY DATA SETS.



all genes within the cluster. However, due to the specific prop-
erties of the protein MS data, we propose the concept of virtual
protein as cluster representatives, where virtual protein is gen-
erated by a weighted combination of different MS features
within a cluster. The virtual protein representation is favored
for two main reasons. First, in mass spectrum data, some fea-
tures correspond to high intensity peaks, while some features
correspond to low intensity peaks. To avoid high-intensity fea-
tures dominating its cluster, the virtual protein is generated by
a weighted average of the cluster members. Second, mass
spectrometry measures the m/z ratio of the ionized peptides
and their abundance in the sample. Due to the measurement
process of MS, one particular cancer-related protein can be
represented by several peptides. A linear combination of MS
features may lead to a virtual protein that better represents the
underlying cancer-related protein. In our approach, the
weights are determined through linear discriminant analysis
(LDA). Since we are interested in virtual proteins that are can-
cer related and thus best represent the difference between a
cancer and noncancer sample, LDA provides an efficient way to
construct a virtual protein. 

Except the virtual protein cluster representative, the classifi-
cation framework for protein MS data is the same as that of the
microarray gene expression data. EDM is applied on two protein
MS experiment data sets. In Table 3, the results are the classifi-
cation performance of leave-one-out cross validation. It is shown
that EDM has high discriminate power in cancer and normal
MS data. Moreover, it is noticed during comparison that, in one
MS data set with normal samples, early-stage cancer samples
and late-stage cancer samples, EDM and SVM have the same
classification performance in distinguishing normal and late-
stage cancer samples. However, when classifying normal and
early-stage cancer samples, a task that is more difficult, EDM
outperforms the SVM, as shown in Table 3.

EIGENVALUE PATTERN AND 
EDM-BASED DEPENDENCE NETWORK
The functionality of a molecular component (e.g., gene or pro-
tein) is not solely characterized by its own structure. Its sur-
roundings and interacting/dependent components also play
important roles in determining its function. In short, the
interaction/dependence network can provide detailed function-
al insights of the whole system. Moreover, such a network is
also the basis for finding biological signal pathways for dis-
eases, which is important in understanding the diseases mech-
anism. These motivate to further explore the EDM concept and
learn a dependence network for exploring the functionalities of
the underlying biological system.

When studying gene clusters, two different eigenvalue pat-
terns in normal and cancer samples are observed. For the gene
microarray data, the analysis is based on gene clusters, not indi-
vidual genes. Because gene expression data is quite noisy, if indi-
vidual genes are examined, large noises may overwhelm the
underlying dependence relationship. However, in proteomic MS
data, the peaks are relatively strong compared with noise. This
enables us to examine individual mass features and their
dependence relationship. In recent study by the authors, when
examining several individual protein MS features, the eigenval-
ue pattern also exhibit difference between cancer and normal
cases. Recall Figure 4(a), where the eigenvalue pattern is closely
related to dependence relationship. From the ideal case, as the
features’ expression suffer from more and more random varia-
tions, the eigenvalue pattern will change monotonically, espe-
cially the smallest eigenvalue. Therefore, the eigenvalue pattern
can indicate how closely these individuals are dependent on one
another. Thus, through the dependence model and eigenvalue
pattern, closely dependent genes/proteins can be identified.
From these dependence relationships, a network can be assem-
bled, which is called a dependence network. 
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[FIG4] (a) The theoretical curve of the eigenvalue change caused by noise variation. The horizontal axis is variation level, which
indicates how noisy the four cluster expression profiles are. As the cluster expressions become more independent, the eigenvalues of
the corresponding dependence matrix will change and follow the curves. (b) The trend of eigenvalue change in the four-stage prostate
data set, which matches the theoretical curve.
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Since the eigenvalue pattern can serve as an indicator of how
closely related the examined features are, if we examine three
individual MS features at one time, through an exhaustive search,
we can find all closely related feature triples. The elements in each
triple share a strong dependence relationship with one another.
Because of the computational complexity of exhaustive search, we
choose to examine three MS features at one time. Future analysis
will be conducted to examine other model orders, four, five, etc.
Take the ovarian cancer data set as an example. For the cancer
and normal cases, respectively, all possible feature triples are
examined. A threshold −1.5 is applied. If the smallest eigenvalue
of a feature triple is lower than the threshold, there exists a strong
dependence relationship within the triple. We call this kind of
triples the “binding triples.” In the normal case, 520 triples pass
the threshold; while in the cancer case, 269 triples pass the
threshold. Moreover, there are only 80 overlapping triples. The
small overlap indicates that, from healthy to cancerous, the over-
all dependence relationship goes through a major change.

The dependence network is constructed from binding
triples. As in graph theory, the topology of an n-node network
can be represented by an n × n adjacency matrix D. If feature i
and feature j both appear in a binding triple, it is suggested by
the dependence model that feature i and feature j are closely
related. So, we will count once for Dij. Then, the adjacency
matrix D is normalized by the total number of binding triples.
Each element Dij is a confidence value, describing the impor-
tance and strength of the connection between feature i and fea-
ture j. We call network D the dependence network. Since a
confidence value Dij associated with each connection indicates
the strength of the dependence relationship, making use of this
information, the dependence networks can be presented as
shown in Figure 5, where strong dependence relationship is
reflected in small distance between connected nodes. The
length of each connection is defined to be inverse proportional
to the confidence value, 1/Dij. From Figure 5, we are able to
see the importance of each node and identify potential bio-
markers. In the normal case, features 11 and 19 are important
core features. They have rich dependence relationships with

lots of other features. However, in the cancer case, there are
more core features 11, 14, 20, 46. From normal case to cancer
case, the number of dependence relationships increases, and
the number of core features increases. Similar to a previous
study [22], it can be suggested that in cancer case, there are
large variations which mess up the normal dependence rela-
tionships. These core features are strongly suggested to be can-
cer related biomarkers.

BIOMARKER IDENTIFICATION
In a certain disease, biomarkers are defined as the alternations
of patterns at the cellular, molecular, or genetic level. These bio-
markers normally serve as the indicators of diseases. Biomarker
identification is a direction of great importance because it pro-
vides new insights into the early detection, diagnosis of cancer,
and treatments. In [23], the authors have studied and compared
two biomarker identification criteria derived from the depend-
ence model and network: the classification performance-based
criterion and the dependence network-based criterion. The two
criteria are applied to MS data to find biomarkers. For the classi-
fication performance-based criterion, protein features are exam-
ined three at one time. A dependence model-based classifier is

[FIG5] Dependence networks for normal and cancer cases in the ovarian cancer MS data set. (Isolated nodes are omitted.) For the
purpose of illustration, the circles are used to indicate the core features.
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CLASSIFICATION CLASSIFICATION 
RATE IN RATE IN 
PROSTATE PROSTATE 

CLASSIFICATION CANCER CANCER 
RATE IN DATA SET, DATA SET, 
OVARIAN NORMAL VS. NORMAL VS. 
CANCER EARLY STAGE LATE STAGE 
DATA SET CANCER CANCER

3-CLUSTER 100% 100% 100%
EDM

4-CLUSTER 100% 98.18% 100%
EDM

5-CLUSTER 96.60% 98.79% 99.39%
EDM

LINEAR SVM 96.83% 78.79% 98.79%

[TABLE 3]  CLASSIFICATION PERFORMANCE OF EDM
WITH DIFFERENT MODEL PARAMETERS
AND SVM IN TWO MS DATA SETS.



build upon the three features to examine their classification
power. Through an exhaustive search, the classification per-
formances of all possible feature triples are examined. Triples
with classification accuracy higher than 95% are considered to
be informative triples. And, features frequently appear in the
informative triples are regarded as important cancer biomark-
ers. These biomarkers are called the classification performance-
based biomarkers. As described earlier, given a data set
containing cancer and normal samples, dependence networks
can be constructed for both cases. By comparing the depend-
ence networks, more specifically by comparing the two adjacency
matrixes for cancer and normal cases, the features with large
topology changes are identified as biomarkers. These biomark-
ers are called the dependence network-based biomarkers. 

Take the ovarian cancer MS data set as an example. To exam-
ine the reproducibility and consistency of the two criteria, both
criteria starts with 50 features preselected from T-test, and ten-
fold cross-validation strategy [28] is employed. During each of
the ten iterations in ten-fold cross-validation, 15 biomarkers are
identified from the classification performance-based criterion;
15 biomarkers are identified from the dependence network-
based criterion. In Figure 6(a), the histograms of all classifica-
tion performance-based biomarkers (during ten iterations) are
shown. The horizontal axis shows the feature indexes, and verti-
cal axis shows how many times out of the ten iterations a fea-
ture is identified. Since the histogram is not concentrated, from
the widely spread histogram, we can conclude that the result is
not quite consistent. In Figure 6(b), the histogram of all
dependence network-based biomarkers is shown. It is observed
that biomarkers identified by dependence networks are much
more consistent than the biomarkers identified by classification
performance. Another observation is that if we apply a simple
differential method, such as T-test, for biomarker identification,

the identified biomarkers will be features with indexes 40 ∼ 50
(since the pre-election 50 features are based on T-test). From
Figure 6, we can see that the histogram of performance-based
biomarkers have a high correlation with the simple differential
method. However, the network-based criterion identifies many
biomarkers that are not simply the most differentially expressed
features. The results indicate that the network-based biomarker
identification criterion yields much more information than the
simple T-test and the performance-based criterion. 

Another example is based on the prostate cancer MS data
set, which contains three stages of samples: normal, early-
stage cancer, and late-stage cancer. Two tasks are performed:
one is to find biomarkers for the early cancer stage based on
normal samples and early-stage cancer samples; and the other
is to find a biomarker for the late cancer stage based on nor-
mal samples and late-stage cancer samples. Both the perform-
ance-based and the network-based criteria are examined.
Similar to the previous example, the histograms of both meth-
ods are shown for the two tasks. In Figure 7(a) and (c), the his-
tograms of performance-based biomarkers for the two tasks are
both widespread, indicating a lack of consistency, while in
Figure 7(b) and (d), the histograms of network-based biomark-
ers show a much higher consistency than the performance-
based biomarkers. In comparison to the simple differential
method, T-test, it is again observed that the performance-based
criterion has high correlation with T-test while the network-
based criterion yields much more information.

More other examples can be found in [29], where the two
biomarker identification schemes have been applied to three
protein MS data sets and two gene microarray data sets. Similar
results are observed. In all investigated data sets, the network-
based biomarkers consistently show much higher consistency
and reproducibility than the performance-based biomarkers.
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[FIG6] (a) Histogram of performance-based biomarkers in the ovarian cancer data set. (b) Histogram of network-based biomarkers of
the ovarian cancer data set. In both figures, the horizontal axis is the feature indexes, and the vertical axis shows how many times one
feature is identified during the ten-fold iterations. Since in ten-fold cross validation, there are ten iterations, one feature can be
identified at most ten times. From these figures, we can see that the network-based criterion yields much more consistent biomarkers
than the performance-based criterion, which shows the superiority of network-based criterion over the performance-based criterion.
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(http://dsplab.eng.umd.edu/~genomics/dependencenetwork/
results.htm). Moreover, the identified biomarkers are also
examined from a biology point of view in [29], where the rela-
tionship between the functions of the identified biomarkers and
cancer development is discussed.

CONCLUSIONS AND FUTURE DIRECTIONS
In conclusion, we surveyed a few major design methodologies for
cancer classification and prediction using genomic or proteomic
data and reviewed a dependence modeling and network frame-
work for cancer classification and biomarker identification. The
results on real data sets clearly show that the EDM method yields
high accuracy, outperforming SVM, a widely applied supervised
machine learning algorithm. The advantages of the EDM-based
scheme lie in its nature as a model-driven approach. It takes fea-
tures’ group behaviors and interactions into account. This model-
driven approach can reveal the relationship between the global
gene/protein profiles and the subjects’ health status. Moreover,
the eigenvalue pattern observed in the gene microarray data

shows promise in early cancer detection and prediction. The EDM
concept is then extended to construct dependence networks
between protein MS features, and to identify cancer biomarkers.
The EDM framework provides two schemes (i.e., performance
based and network based) to identify biomarkers. Based on real
MS data examination, we found that the network-based approach
provides much more consistent results in identifying biomarkers.
This interesting consistency motivates us to further explore the
idea of a dependence network. The encouraging results reported
here demonstrate that the protein MS combined with the depend-
ence modeling and network framework can both facilitate discov-
ery of better biomarkers for different types of cancer and is
promising to provide an efficient cancer diagnostic platform that
can improve the early cancer detection and prediction. In the
future, we plan to further explore the effects of each component
within the proposed EDM-based framework. A mathematical
analysis will be desired to quantify the effects of small sample
sizes and to examine the effects of a possible model mismatch on
the proposed scheme. Also, the eigenvalue spectrum seems

[FIG7] (a) and (b) Histograms of performance-based biomarkers and network-based biomarkers of the prostate cancer data set,
respectively, when classifying normal samples against early stage cancer samples. (c) and (d) Histograms of performance-based
biomarkers and network-based biomarkers of the prostate cancer data set, respectively, when classifying normal samples against late
stage cancer samples.
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promising for predicting the early stage of cancer development.
Furthermore, the analyses of the proposed EDM are all based on
static data, one gene/protein sample for every subject. However, it
is believed that the analysis of time series data may reveal more
information about the processes of cancer development. The
authors conducted some preliminary studies about the quality
control and synchronization of time series data [30]. Further
efforts will be made to extend EDM analysis to dynamic time
series data, for potential cancer diagnosis usage. 
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