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ABSTRACT

Motivation: Identification of genes expressed in a cell-cycle-specific

periodical manner is of great interest to understand cyclic systems

which play a critical role in many biological processes. However, iden-

tification of cell-cycle regulated genes by raw microarray gene expres-

sion data directly is complicated by the factor of synchronization loss,

thus remains a challenging problem. Decomposing the expression

measurements and extracting synchronized expression will allow to

better represent the single-cell behavior and improve the accuracy in

identifying periodically expressed genes.

Results: In this paper, we propose a resynchronization-based algo-

rithm for identifying cell-cycle-related genes.We introduce a synchron-

ization loss model by modeling the gene expression measurements as

a superposition of different cell populations growing at different rates.

The underlying expression profile is then reconstructed through

resynchronization and is further fitted to the measurements in order

to identify periodically expressed genes. Results from both simulations

and real mircorarray data show that the proposed scheme is promising

for identifying cyclic genes and revealing underlying gene expression

profiles.

Availability: Contact the authors.

Contact: qiupeng@umd.edu

Supplementary information: Supplementary data are available at:

http://dsplab.eng.umd.edu/�genomics/syn/

1 INTRODUCTION

A central goal of molecular biology is to use genetic data in order to

understand the fundamental cyclic systems, such as regulatory net-

work in yeast cell-cycle (Lee et al., 2002). Recent advances in high-
throughput gene expression data acquisition technologies, such as

microarrays, provide a rich opportunity for achieving this goal

(Moor, 2001). The first critical task in understanding such cyclic

systems is to identify the related genes which are periodically

expressed during the cell-cycle. In the current technologies, most

expression data are measured based on a population of cells which

are synchronized to exhibit similar behaviors (Spellman et al.,
1998). However, even with the most advanced synchronization

method, maintaining a tight synchronization population even

over a couple of cycles is a challenging research issue, since con-

tinuous synchronization loss is gradually observed owing to the

diversity of individual cell growth rates (Shedden and Cooper,

2002). Therefore, in addition to the noise effect on the measure-

ments, a significant difficulty in identifying cell-cycle regulated

genes by analyzing microarray gene expression data arises from

synchronization loss. Direct periodicity testing on the expression

measurements could be misleading or fail due to the fact that the

expression values measured are contributed by a mixed cell popu-

lations growing at different rates.

Several approaches for identifying cell-cycle regulated genes,

when taking into consideration the issue of synchronization loss,

have been proposed in the literature. They can be divided into two

major categories, differentiated by the absence or presence of other

complementary information besides gene expression data. Most

studies in the literature belong to the former category, which relies

solely on expression data. Fourier analysis algorithm was employed

for synchronization test in Shedden and Cooper (2002), Johansson

et al. (2003) and Whitfield et al. (2002). The authors presented

an exact statistical test to identify periodically expressed genes

by distinguishing periodicity from random processes in Wichert

et al. (2004). In Lu et al. (2004), a periodic-normal mixture

(PNM) model was proposed to fit transcription profiles of

periodically expressed (PE) genes and a principled statistical

estimation approach was developed for estimating the periodicity

of gene expressions. In the second category, an algorithm

combining budding index and gene expression data was

proposed recently to deconvolve expression profiles in Bar-

Joseph et al. (2004). Regardless of these developments, efforts

are still needed to accurately identify cyclic genes and recover a

more accurate gene profile compared with the current expression

measurements.

The goal of this paper is to develop an efficient scheme for

identifying periodically expressed genes and reconstructing the

underlying gene expression profiles by estimating the effects of

synchronization loss. The main contributions of this paper are

2-fold.

� We propose a synchronization loss model by representing the

gene expression measurements as a superposition of different

cell populations growing at different rates, because the model

can mimic the synchronization loss observed in microarray

experiments and is easy to implement. Also, we develop a

model-based estimation algorithm to reconstruct the underlying

single-cell gene expression profiles. In previous studies, the

single-cell expression profile is often assumed to be sinusoids.�To whom correspondence should be addressed.
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However, the proposed algorithm does not require that

assumption. It is able to handle a much larger variety of

single-cell expression profiles.

� Using the fitting residue error as criteria,we explore a supervised

learning scheme for identifying the cell-cycle regulated genes.

The performance of the proposed scheme are examined via

both simulations and real microarray gene expression data of

Saccharomyces cerevisiae.

The organization of the rest paper is as follows. We start by intro-

ducing a synchronization loss model and our formulation. After that,

a cyclic gene identification scheme is proposed. In Sections 4 and 5,

the proposed scheme is examined and compared with two

previous studies. From the results, we conclude that the proposed

scheme is promising in improving quality of gene expression time

series data.

2 SYSTEM MODEL AND FORMULATION

2.1 A mixture model for synchronization loss

Even with the best synchronization method currently available, cells begin

to lose their synchronization in a short time. Therefore, we propose to

model the observed gene expression data as a superposition from a

mixed population of cells growing at slightly different rates as

yiðtÞ ¼
XN
m¼0

bmxiðrmtÞ‚ ð1Þ

where yi(t) is the observed expression of gene i at the time t; xi(t) is the

underlying single-cell expression profile; rm represents the relative growth

rates of cells with respect to standard cell-cycle; bm represents the

percentage of cells with a growth rate rm, and it is assumed to be constant

in one series of measurements. Although rm can take continuous values

in experiment, due to the limited size of microarray data, rm is approximated

by N + 1 components. Because of the different growth rates in experiment

cell population, even if a gene is cell-cycle regulated, the measured

expression may not exhibit clear periodicity. Therefore, it is difficult to

accurately detect periodically expressed genes and distinguish them from

non-periodically expressed genes based on the noisy microarray data.

Note that in Equation (1), for gene i, from the underlying expression

profile xi(t) to the observation yi(t), the distortion is dictated by bm and

rm, which describes the synchronization loss status of the whole cell popu-

lations.We propose to utilize some common properties of all genes to extract

underlying expression profiles from the observations.

2.2 An inverse model for synchronization loss

Since the underlying expression profile xi(t) is unknown, we propose to

re-write Equation (1) into the following form,

xiðtÞ ¼
XM
m¼0

amyiðcmtÞ ¼ ½a0‚a1‚ . . . ‚aM�

yiðc0tÞ
yiðc1tÞ

..

.

yiðcMtÞ

2
6664

3
7775‚ ð2Þ

where the underlying expression xi(t) is represented by the superposition of

M multiple scaled versions of the observation yi(t). Parameters ams and cms

describe the coefficient and scaling factor of each component. An intuitive

explanation for Equation (2) is motivated by the inverse relationship between

finite impulse response (FIR) filters and infinite impulse response (IIR)

filters, since the structure of (1) is quite similar to that of FIR filters. Equation

(1) describes an FIR-like operation which transforms xi(t) to yi(t). In order to

perform the inverse transformation, an IIR-like operation is required. If the

range of cm is properly chosen, Equation (2) can be regarded as a truncated

IIR-like operation, which is an approximate inverse of the FIR-like operation

in Equation (1). Therefore, Equations (1) and (2) relate xi(t) and yi(t) in

approximately the same way.

It is worth mentioning that the parameters ams and cms depend solely on

bms and rms. They are common constants for all genes. Thus, we propose to

utilize this common property of all genes to extract underlying expression

profiles.

Equations (1) and (2) are not mathematically equivalent in general.

However, if xi(t) is polynomial, Equations (1) and (2) can be equivalently

represented. In this paper, we are particularly interested in the case of poly-

nomials, since polynomial is a common tool for data fitting (Stoer and

Bulirsch, 1991). As shown in the literature, polynomials are often success-

fully used to fit the time-series gene expression data (Bar-Joseph et al.,

2004).

Suppose xi(t) is a polynomial of order K such that

xiðtÞ ¼
XK
k¼0

bkt
k ¼ ½1‚1‚ . . . ‚1�

b0t
0

b1t
1

..

.

bKt
K

2
6664

3
7775‚ ð3Þ

with bks being the polynomial coefficients. Then, according to Equation (1),

yi(t) can be expressed as

yiðtÞ ¼
XN
m¼0

bmxiðtrmÞ ¼ ½bTr0‚bTr1‚ . . . ‚bTrk�

b0t
0

b1t
1

..

.

bKt
K

2
6664

3
7775‚ ð4Þ

where b ¼ ½b0‚b1‚ . . . ‚bN �T, and rk ¼ ½rk0‚rk1‚ . . . ‚rkN �
T
. Similarly,

since

yiðctÞ ¼ ½bTr0c0‚bTr1c1‚ . . . ‚bTrKcK �

b0t
0

b1t
1

..

.

bKt
K

2
6664

3
7775‚ ð5Þ

if we pick up multiple scaled version yi(cmt) of the observation yi(t),

we can write them together into the following matrix form,

yiðc0tÞ
yiðc1tÞ

..

.

yiðcMtÞ

2
6664

3
7775 ¼

bT r0 c00 bT r1 c10 . . . bT rK cK0
bT r0 c01 bT r1 c11 bT rK cK

..

. ..
.

»
..
.

bT r0 c0M bT r1 c1M . . . bT rK cKM

2
66664

3
77775

b0t
0

b1t
1

..

.

bKt
K

2
6664

3
7775: ð6Þ

Now, if we want to find a set of coefficients ams to represent the

underlying expression profile xi(t) as in Equation (2), based on

Equations (3) and (6), we will require coefficients ams to satisfy the follow-

ing equation,

½a0‚a1‚ . . . ‚aM�

bT r0 c00 bT r1 c10 . . . bT rK cK0
bT r0 c01 bT r1 c11 . . . bT rK cK1

..

. ..
.

»
..
.

bT r0 c0M bT r1 c1M . . . bT rK cKM

2
66664

3
77775 ¼ ½1‚1‚ . . . ‚1�:

ð7Þ

Note that in the matrix in Equation (7), every element in one column

shares a common factor. If we pull out the common factor, the remaining

part will be a Vandermonde matrix. And the Vandermonde matrix is of

full rank min{M, K}, as long as different scaled (cm) observations are

considered, shown in Equation (8). We can show that, as long as M is

greater than or equal to K, there exists at least one solution to equation

(7). That is, there exists at least one set of coefficients ams that satisfies
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Equation (7). In this case, Equations (1) and (2) are mathematically

equivalent.

bT r0 c00 bT r1 c10 . . . bT rK cK0
bT r0 c01 bT r1 c11 . . . bT rK cK1

..

. ..
.

»
..
.

bT r0 c0M bT r1 c1M . . . bT rK cKM

2
66664

3
77775

¼

c00 c10 . . . cK0
c01 c11 . . . cK1
..
. ..

.
»

..

.

c0M c1M . . . cKM

2
6664

3
7775

bT r0 0 . . . 0

0 bT r1 . . . 0

..

. ..
.

»
..
.

0 0 . . . bT rK

2
66664

3
77775: ð8Þ

In the above argument, the underlying expression xi(t) does not assume

periodicity. However, in this study, the most interested expression signal is

cell-cycle regulated, i.e. periodic,

xiðtÞ ¼
XK
k¼0

bkðt mod TÞk‚ ð9Þ

where mod means the modulus operator that gives the reminders after

division. In microarray time series experiment, the range of relative growth

rate rm is not large. With cm carefully chosen, although periodic, the above

argument holds for most of the cell-cycle data. In the following section,

we will demonstrate that under such a periodic condition Equation (2) is a

fine approximation of the inverse of Equation (1).

2.3 Formulation for estimating ams

For cell-cycle regulated genes, because of periodicity, xi(t) ¼ xi(t + T), from
Equation (2), the observations and parameters ams and cms are related as

follows:

XM
m¼1

am½yiðcmtÞ � yiðcmðtþ TÞÞ� ¼ 0: ð10Þ

Denote yi(t) ¼ [yi(c1t) � yi(c1(t + T)), . . . , yi(cMt) � yi(cM(t + T))]T and

a ¼ [a1, . . . , aM]
T. Equation (10) can be re-written as

yi
�
ðtÞT a

�
¼ 0: ð11Þ

Note that, we can evaluate Equation (11) at different time points (as long as

the time-series data allows). Also, all cell-cycle regulated genes satisfy

Equation (11). So, the estimation of am parameters can be formulated as

a constrained least square problem,

½yi ðt1Þ‚ . . . ‚yi ðtnÞ‚yj ðt1Þ‚ . . . ‚yj ðtnÞ‚ . . . �
Ta ¼ 0‚ ð12Þ

subject to
XM
m¼1

am ¼ 1‚ ð13Þ

where genes i, j, . . . are cell-cycle regulated genes; t1, . . . , tn are the mea-

surement time points that satisfies (tn + T)cm < 2T, for all m ¼ 1, . . . ,M,

since in the current S.cerevisiae time-series gene expression data, only two

cell-cycles are available. The value of n in Equation (12) is quite small, e.g.

4 or 5, depending on parameters cm and the experiment sampling rate.

Therefore it is important to use many cell-cycle regulated genes together

to estimate the coefficients ams reliably. In this formulation, cm are assumed

known. Since in real experiment, the growth rate of different cells differ

slightly. The range of the relative growth rate rm is not large. In later

simulations, we will show that, it is accurate enough to choose cm to cover

the range from 0.6 to 1.4. The fixed-summation constraint in Equation (13)

is chosen to avoid the trivial 0-vector solution, i.e. a ¼ 0.

2.4 Fitting residue criterion

After estimating ams, the model in (2) is used to reconstruct the underlying

periodical component xi(t) for every gene. In order to detect cell-cycle

regulated genes, a criterion is needed to justify the question whether the

extracted signal is the underlying periodical expression profile of a cell-cycle

regulated gene, or it is the periodical component from a non-cell-cycle

regulated gene. We propose a criteria based on the model in (1), using

the extracted periodical signal to fit the observations. The fitting residue

will serve as the criterion in detecting cell-cycle regulated genes. For a

particular gene, if the fitting residue is sufficiently small, compared with

a threshold, then the extracted signal could lead to the measurements owing

to synchronization loss, which means the gene is highly likely to be cell-

cycle regulated. On the other hand, if the fitting residue is large, then the

extracted periodical signal is not closely related to experimental observation,

which means the gene is more likely to be non-cell-cycle regulated. In the

proposed identification scheme, the threshold of fitting residue is dynam-

ically determined during iterations. Details are described in Sections 3 and 5.

3 THE IDENTIFICATION SCHEME

Based on the synchronization loss model and estimation approach

described in Section 2, we further proceed to identify the cyclic

genes. The scheme described in this section is a supervised learning

scheme, since it requires an initial training set which consists of cell-

cycle regulated genes previously identified by traditional biology

experiments. Specifically, we propose an iterative framework to

purify the training set and detect cyclic genes simultaneously.

The main steps in the proposed iterative framework is described

as follows:

(1) Define initial training set as cell-cycle regulated genes

previously identified by traditional methods.

(2) Apply the proposed model on training set to estimate the

parameters ams, and extract the underlying periodical signal

for every gene in the training set.

(3) Based on the extracted signal xi(t), fit it to the observation

model in (1). According to the fitting residue criterion, remove

some non-periodically expressed genes from the training set.

Then, re-estimate the parameters ams using the training set

and use the estimated ams to extract periodical signal for

every gene in the testing set.

(4) According to the fitting residue criterion, include some

periodically expression genes into the training set. Then go

back to Step 2.

Note that, under this framework, in order to purify the training set

and detect the periodically expressed genes correctly, the criteria for

removing and including genes in Steps 2 and 4 should be carefully

designed and fine tuned for each dataset. The ultimate goal of Steps

2 and 4 is to find a set of cyclic genes as prior knowledge, such

that the cyclic genes identified by the proposed scheme do not

violate the prior knowledge, or maximally support the prior knowl-

edge. It is a difficult optimization problem with numerous possible

solutions. The proposed scheme, although heuristic in updating the

training set, yields satisfactory results as will be demonstrated in

what follows.

4 SIMULATIONS

In this section, we simulate time-series expression data with

synchronization loss for both periodically expressed genes and
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non-periodically expressed genes. The proposed method is used to

resynchronize the simulated data and identify periodically

expressed genes. To evaluate the performance of the proposed

method, we compare it with the methods studied in Spellman

et al. (1998) and Lu et al. (2004). We also perform sensitivity

analysis to examine the robustness of the proposed method.

4.1 Simulations based on sinusoids

In this subsection, we simulate time-series expression data for 100

periodically expressed genes and 600 non-periodically expressed

genes. The underlying single-cell periodical expression profile for

cyclic gene i is generated by a linear combination of four sinusoids

with random phases,

xiðtÞ ¼
X4
j¼1

lijsin
2pj

T
tþ fij

� �
‚ ð14Þ

where the period T is set to be 60 min, same as the cell-cycle

duration in the alpha experiment in Spellman et al. (1998). The
parameter lij is randomly chosen, different for each gene. fij

represents the random phase, which is uniformly distributed on

[0,2p). For the 600 non-cyclic genes, their underlying expressions

are obtained through random permutations of expressions of cyclic

genes.

For each gene, we simulate the synchronization loss by

yiðtÞ ¼ b1xiðt � sÞ þ b2xiðtÞ þ b3xiðt � f Þ þ v‚ ð15Þ

where f ¼ 1.3 and s ¼ 0.7 represent the relative growth rates. bm is

randomly generated, representing the percentage of cells growing at

different rates. v represents the microarray measurement noise. It is

modeled as a zero-mean Gaussian random variable. Its variance is

chosen to make the signal to noise ratio (SNR) to be 5.716 dB,

which is close to the SNR value estimated from the alpha dataset

in Spellman et al. (1998). Equation (15) is applied to all genes,

representing the common synchronization status of the cell popu-

lations. In the simulations, measurements are taken every 6 min

from 0 to 120 min, yielding 21 time points in total.

In the simulation, 50 cyclic genes are assumed known, in order to

form the initial training set. The testing set contains the left 650

genes. For a particular choice of cm, by applying the proposed

model, am parameters are estimated, the underlying periodical sig-

nals for all genes are extracted, and the fitting residue criterion is

examined.

The parameterM is set to beM¼ 7. As mentioned in Section 2.2,

we need to chooseM to be larger than or equal to K. Since the exact
value of K does not affect the proposed method as long as K � M,

therefore, with M ¼ 7, the proposed method can handle all poly-

nomials with K � 7. And we know, that the seventh order polyno-

mials can generate a large variety of curves, with up to six peaks and

valleys. We believe the current parameters-setting can sufficiently

model gene expression profiles.

As mentioned earlier, cm should be chosen properly, in order to

extract underlying expression profiles accurately. In Table 1,

different choices of cm are examined. To ensure a fair comparison,

with M set to be 7, the values of cm are chosen to be uniformly

spaced in tested range. In the fitting residue criterion, rm is set to be

[0.7, 0.8, . . . , 1.3]. From Table 1, we can see that, different choice

of cm leads to different fitting residues for both cyclic genes and

non-cyclic genes. As the range of cm increases, the fitting residues

for cyclic genes tend to decrease first, and then increase. This

observation can be intuitively explained by the trade-off between

errors owing to the model-complexity and the data size. In one hand,

from the implication of FIR and IIR filters, owing to the larger range

of cm considered, the truncation error will be smaller. However, if

the range of cm is too large, because of the limited size of time series

data, the number of available time points n in Equation (11) will be

small. Less training data will cause the fitting residues to increase.

Therefore, based on Table 1, we choose the range of cm to be

[0.6, 1.4], since with this choice the average fitting residue for cyclic

genes is small and the difference between cyclic genes and non-

cyclic genes is large, resulting in a good detection performance.

After determining the choice of cms, the proposed model is

applied to estimate parameters ams based on the training set, and

extract the underlying periodical signals for genes in the training set.

Figure 1 gives a typical example of genes in the training set.

Although there is clear difference between the underlying periodical

expression and the simulated observation, based on the proposed

method, the extracted expression is quite similar to the underlying

periodical expression.

Based on the am and cm parameters, the proposed model is applied

to extract periodical signal components for all genes, and the fitting

Table 1. Comparison of the normalized average fitting residues for cyclic

and non-cyclic genes

Range of cm Average fitting

residue cyclic genes

Average fitting

residue non-cyclic genes

Difference

[0.9, 1.1] 0.4424 0.9373 0.4949

[0.8, 1.2] 0.4164 0.9560 0.5396

[0.7, 1.3] 0.3993 0.9583 0.5590

[0.6, 1.4] 0.3917 0.9355 0.5437

[0.5, 1.5] 0.4052 0.9478 0.5426

[0.4, 1.6] 0.4354 0.9865 0.5511

0 20 40 60 80 100 120
-1.5

-1

-0.5

0

0.5

1

1.5

2
underlying expression
observed expression
extracted expression

Fig. 1. The simulated sinusoid underlying periodical expression, experiment

observation and extracted expression of one simulated gene.
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residue criterion is examined. In Figure 2a, the histogram of all

genes’ fitting residues is shown, where the shaded part corresponds

to the 100 cyclic genes. We can see that the cyclic genes have

smaller fitting residues, while non-cyclic genes yield larger fitting

residues statistically. Therefore, this clear separation between these

two groups of genes leads to the accurate identifications of cyclic

genes.

In order to examine the identification performance of the pro-

posed method, we compare it with two previous works, Spellman

et al. (1998) and Lu et al. (2004), by applying them to the same

simulated time series data. In Spellman et al. (1998), Fourier anal-
ysis is applied to calculate the energy of the periodical components

for each gene. The energy serves as a metric to identify cyclic genes.

From Figure 2b, we can see that, this method can identify cyclic

genes with small outage. However, its performance is worse than

that of the proposed method. In Lu et al. (2004), a PNM model is

proposed, where a probabilistic (Gaussian) distribution and Fourier

analysis are combined to model the synchronization loss. Before

identifying cyclic genes, the parameters of the Gaussian distribution

have to be estimated. In our implementation, we skip the parameter

estimation step by feeding the actual parameter values into the PNM

model. Therefore, Figure 2c shows the performance upper method

in Lu et al. (2004), which is close to that of the proposed method.

However, it is worth mentioning that the PNM-based method

is admittedly sensitive to the parameter estimates of the Gaussian

distribution.

In Table 2, we present the results in Figure 2 in a more quanti-

tative fashion. We employ the Neyman–Pearson framework in

detection theory (Poor, 1994). During comparison, we fix the pro-

bability of correctly detecting cyclic genes and examine the

probability of false positive of different methods. That is, under

the condition that certain amount of cyclic genes are correctly

detected, how many non-cyclic genes will be falsely detected as

cyclic. From Table 2, we can see that, when fixing the probability

of detection, the proposed method has much less false positives,

compared with the two previous studies.

In this subsection, the time series are simulated with the

underlying signal xi(t) being sinusoids. Together with the fact

that Fourier analysis is employed, both previous works have

nice performance in identifying cyclic genes. However, if the

underlying signal is based on polynomials, the result could be

different.

4.2 Simulation based on polynomials

In this subsection, we simulate time-series expression data based on

polynomial models. Again, 100 cyclic genes and 600 non-cyclic

genes are simulated. The underlying periodical expression profile

for cyclic gene i is generated by polynomials of order K ¼ 6,

xiðtÞ ¼
XK¼6

k¼0

akðt mod TÞk‚ ð16Þ

where the period T is set to be 60 min, same as the cell-cycle

duration in the alpha experiments. The parameter ak is randomly

chosen in [�1, 1], different for each gene. For the 600 non-cyclic

genes, the underlying expressions are obtained through random

permutations as in previous subsection.

For each gene, we simulate the synchronization loss by

Equation (15). All parameters are set to be the same as previous

subsection. A total of 50 cyclic genes are assumed known, forming

the training set. For a particular choice of cm, by applying the

proposed model, am parameters are estimated based on the training

set, the underlying periodical signals for all genes are extracted,

and the fitting residue criterion is examined. Again,M is set to be 7,

and different choices of cm are examined. From Table 3, similar

result is observed. We choose the range of cm to be [0.6, 1.4],

because the average fitting residue for cyclic genes is small, and

the difference between cyclic genes and non-cyclic genes is large.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

(a) (b) (c)

Fig. 2. The histogram of fitting residues for all genes, with the shaded area being the histogram of the 100 cyclic genes. The horizontal axis represents fitting

residue, and the vertical axis represents number of genes with certain value of fitting residue. (a) Shows the result of the proposed method. (b) The result of the

Fourier analysis used in Spellman et al. (1998). (c) Shows the upper bound of results from method in Lu et al. (2004).

Table 2. Comparison of the proposed method and two previous studies

Probability of

detection

False positive

of proposed

method

False positive

of Spellman

et al. (1998)

False positive

of Lu et al.

(2004)

0.75 0 0.0741 0.0132

0.80 0 0.0805 0.0123

0.85 0 0.1053 0.0116

0.90 0 0.1262 0.0217

0.95 0 0.1518 0.1121

1.00 0.01 0.2857 0.1597

When the probability of correctly detecting cyclic genes is fixed, we compare the

probability of false positive, which means the probability of detecting a non-cyclic

gene as cyclic.
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Figure 3 is a typical example of genes in the training set. We can

see that the simulated observations is quite different from the

underlying periodical expression profile. Owing to synchronization

loss, the observed time-series does not exhibit a clear periodicity,

especially in the second cycle. From poorly synchronized observa-

tions, the proposed method can successfully recover the underlying

periodical expression profile.

Based on the estimates of ams and cms, the proposed model is

applied to extract periodical signal components for all genes, and

the fitting residue criterion is examined. In Figure 4 a the histogram

of residues shows that the cyclic genes and non-cyclic genes are

well separated, meaning that the proposed method can successfully

identify the cyclic genes.

The methods in Spellman et al. (1998) and Lu et al. (2004)
are also examined in this subsection, with results shown in

Figure 4b and 4c. From these figures, we note that both previous

methods failed to separate cyclic and non-cyclic genes in the case

that underlying expression profiles being polynomials. Similar to

the previous subsection, the result is shown in a more quantitative

way, in Table 4. As it is easy to see, the proposed method out-

performs previous studies in the simulation based on polynomials. It

is encouraging to see that the proposed method works well for a

much larger variety of the underlying single-cell expressions.

4.3 Sensitivity analysis

In our discussions so far, the standard cell-cycle duration T is

assumed to be known as a prior knowledge. However, the cell-

cycle duration may vary because of various environmental and

experimental factors. In this subsection, we examine the perfor-

mance of the proposed method when inexact prior knowledge of

the cell-cycle duration T is considered.

The sensitivity analysis is conducted based on the simulated data

by sinusoids. In the simulated data, the true cell-cycle length is

T ¼ 60. However, when applying the proposed method, we do

not know the cell-cycle length exactly as prior knowledge. In

Figure 5, we can see that, when the prior knowledge is inexact,

the separation of fitting residues between cyclic and non-cyclic

genes is not affected much. In Table 5, we quantitatively examine

the sensitivity of the proposed method in terms of probability of

detection and false positive. In Table 5, each row corresponds to

a certain requirement of probability of detection; each column

corresponds to a case where certain value of T is taken as prior

knowledge; and each element is the probability of false positive.

From this table, as long as we do not require probability of detection

to be extremely high (i.e. 100%), only when the prior knowledge is

significantly different from the truth (i.e. the prior T� 40 or T� 70),

will the performance degrade severely. This simulation result

demonstrates the robustness of the proposed method with respect

to the cell-cycle duration.

5 REAL DATASETS

In this study, three real datasets are investigated, alpha, cdc15

in (Spellman et al., 1998) and cdc28 in (Cho et al., 1998). From
Spellman et al. (1998), 93 cell-cycle regulated genes previously

identified by traditional methods are selected as initial training

set. Since there is no guarantee that all those 93 genes will behave

periodically in a particular experiment, we employ the iterative

framework to purify the training set and identify cyclic genes simul-

taneously. During each iteration, we adopt simple removing and

including criterion in Steps 2 and 4. In Step 2, the size of training set

is reduced to half in order to purify the training set. In Step 4,

200 genes with smallest fitting residues are included into the train-

ing set. In this way, we hope to purify the training set. As mentioned

before, the ultimate goal of Steps 2 and 4 is to find a set of cyclic

genes as prior knowledge, such that the identified cyclic genes

identified by the proposed method do not violate the prior knowl-

edge, or maximally support the prior knowledge. It is a quite dif-

ficult optimization problem, with numerous possible solutions.

However, with the simple criterion we adopted, this goal can be

achieved within several iterations (5–10). As results, the histograms

of fitting residues for the alfa, cdc15 and cdc28 datasets are shown

in Figure 6, where the identified cyclic genes in the training set

have small fitting residues.

To make a fair comparison with Spellman et al. (1998) and Lu

et al. (2004), 800 genes with smallest fitting residues are identified

as cyclic genes. In Figure 7, a Venn diagram showing the overlap of

genes identified by different studies. The proposed method and

Spellman et al. (1998) is 403; the intersection between proposed

method and Lu et al. (2004) is 433; the intersection between

Spellman et al. (1998) and Lu et al. (2004) is 541; the intersection
among all three studies is 355. It is encouraging to see the large

overlaps illustrated in Figure 7, an indication of consistency of the

Table 3. Comparison of the normalized average fitting residues for cyclic

and non-cyclic genes

Range of cm Average fitting

residue cyclic genes

Average fitting residue

non-cyclic genes

Difference

[0.9, 1.1] 0.2240 0.9439 0.7199

[0.8, 1.2] 0.2164 1.0267 0.8104

[0.7, 1.3] 0.2157 1.0256 0.8099

[0.6, 1.4] 0.2284 1.0567 0.8283

[0.5, 1.5] 0.2455 1.1299 0.8845

[0.4, 1.6] 0.3411 1.0531 0.7120
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Fig. 3. The simulated polynomial underlying periodical expression, experi-

ment observation and extracted expression of one simulated gene.
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proposed method to the previous researches. In Supplementary

Material, we show some examples of genes identified by both the

proposed method, (Spellman et al., 1998), and traditional experi-

mental methods. Both the observed expression and extracted

expression are shown. We can see that, for the cyclic genes that

already exhibit periodical expression, the extracted expression is

closed to experiment observed expression. And for the cyclic genes

that do not exhibit periodical expression, the proposed method can

recover the periodicity.

Although the genes identified by the proposed method have

large overlap with those of the previous studies, it is interesting

to examine the non-overlapping genes identified by the proposed

method, but not identified in the previous studies, neither Spellman

et al. (1998) nor Lu et al. (2004). In the Supplementary Material,

some examples are shown. Since both previous studies relied on

Fourier analysis, genes without clear periodicity may not be iden-

tified. However, the proposed method may be able to identify them,

because synchronization loss is estimated and recovered. We need

to further investigate the genes identified by the proposed method

only, and to validate the identified genes through biology experi-

ments or previous biology knowledge. One possible validation

method is to validate the biological relevance of such identified

cell-cycle genes by semantic analysis based on the Gene Ontology

(GO) terms. To achieve this purpose, an online tool is applied,

the SGD GO Term Finder (http://db.yeastgenome.org/cgi-bin/

GO/goTermFinder). We analyzed the set of non-overlapping

genes which are identified by one method, but not by the other

two methods. The top GO terms associated with each method’s

results can be found in the Supplementary Material. For the pro-

posed method, in the top 25 GO terms, there are several cell-cycle

related terms, such as ‘M phase’, ‘cell-cycle’, ‘mitotic cell cycle’

and ‘M phase of mitotic cell cycle’, including 84 genes. It suggests

that some genes identified by the proposed method but not by

the other two methods are cell-cycle related. For the sets of non-

overlapping genes identified by the two reference methods, it is

noted that none of the above four cell-cycle related GO terms

appears in the top 25 GO terms. Details of top GO terms associated

with results of each method can be found in the Supplementary

Materials. Theseencouraging observations demonstrate that the

proposed method is promising for identifying cyclic genes.

6 CONCLUSION

Synchronization loss is a major concern in identifying cyclic genes

to understand the fundamental cyclic systems. We developed

a model-based framework for identifying cell-cycle regulated

Table 4. Comparison of the proposed method and two previous studies

Probability of

detection

False positive of

proposed method

False positive of

(Spellman et al., 1998)

False positive of

(Lu et al., 2004)

0.75 0 0.6622 0.7768

0.80 0 0.6887 0.7838

0.85 0 0.7028 0.7870

0.90 0 0.7443 0.7897

0.95 0 0.7765 0.7894

1.00 0.7375 0.8415 0.8353

When the probability of correctly detecting cyclic genes is fixed, we compare the

probability of false positive, which means the probability of detecting a non-cyclic

gene as cyclic.
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Fig. 5. The horizontal axis is the prior knowledge of cell-cycle length, though

it may not be the true cell-cycle length T ¼ 60. The vertical axis is the

difference of fitting residues between cyclic and non-cyclic genes.
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Fig. 4. Simulation based on polynomials. The histogram of fitting residues for all genes, with the shaded area being the histogram of the 100 cyclic genes. The

horizontal axis represents fitting residue, and the vertical axis represents number of geneswith certain value of fitting residue. (a) Shows the result of the proposed

method. (b) The result of the Fourier analysis used in Spellman et al. (1998). (c) Shows the upper bound of results from method in (Lu et al., 2004).
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genes through resynchronization and reconstructing the under-

lying gene expression profiles, which representing a single-cell

behavior more accurately. We consider a simple synchroniza-

tion loss model where the gene expression measurements are

regarded as superposition of mixed cell populations with different

growth rates. The proposed scheme is shown feasible, promising

and robust via simulations. Results from real mircoarray data

analysis reveal that the reconstructed profiles represent a more

accurate expression profiles and improve our ability to identify

cyclic genes. We will further investigate the proposed method by

combining complementary information such as budding index.

Conflict of Interest: none declared.
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Fig. 6. Histogram of fitting residues for the cdc28 dataset. (a) alpha, (b) cdc15 and (c) cdc28. Solid curve represents the histogram of fitting residues for training

gene set.
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Fig. 7. Venn diagram of genes identified by proposed method and Spellman

et al. (1998), Lu et al. (2004). The intersection between proposedmethod and

Spellman et al. (1998) is 403 (B + D); the intersection between proposed

method andLu et al. (2004) is 433 (A+D); the intersection between Spellman

et al., 1998 and Lu et al., 2004 is 541 (C +D); the intersection among all three

studies is 355 (D).
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