
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003 489

Algorithm and VLSI Architecture for High
Performance Adaptive Video Scaling

Arun Raghupathy, Member, IEEE, Nitin Chandrachoodan, and K. J. Ray Liu, Fellow, IEEE

Abstract—We propose an efficient high-performance scaling
algorithm based on the oriented polynomial image model. We
develop a simple classification scheme that classifies the region
around a pixel as an oriented or nonoriented block. Based on this
classification, a nonlinear oriented interpolation is performed to
obtain high quality video scaling. In addition, we also propose a
generalization that can perform scaling for arbitrary scaling fac-
tors. Based on this algorithm, we develop an efficient architecture
for image scaling. Specifically, we consider an architecture for
scaling a Quarter Common Intermediate Format (QCIF) image
to 4CIF format. We show the feasibility of the architecture by
describing the various computation units in a hardware descrip-
tion language (Verilog) and synthesizing the design into a netlist
of gates. The synthesis results show that an application specific
integrated circuit (ASIC) design which meets the throughput
requirements can be built with a reasonable silicon area.

Index Terms—Adaptive scaling, oriented polynomial interpola-
tion, video zoom, VLSI architecture.

I. INTRODUCTION

I N VIDEO applications, the raw data rates involved are ex-
tremely high. This implies that a very large bandwidth is re-

quired to transmit video signals. A number of widely accepted
video compression standards (such as JPEG, MPEG, H.263)
have been developed in order to reduce the data rate. Inspite of
these developments, in applications in which the available band-
width is limited, the image size is restricted. For example, in PC
video-telephony applications QCIF/CIF is the standard format.
Obviously, a larger image size format will improve the percep-
tual quality. But, this quality comes at the cost of increased data
rate (and, hence, bandwidth). A high-performance scaling algo-
rithm that can scale an image without introducing much distor-
tion will allow us to transmit image data using a small image
size format while maintaining perceptual quality. Another mo-
tivation for developing a good scaling algorithm is to enable dis-
play of lower resolution images on higher resolution monitors.

Manuscript received September 29, 2000; revised February 11, 2002. This
work was supported in part by the National Science Foundation NYI Award
MIP9457397. The associate editor coordinating the review of this paper and
approving it for publication was Dr. Sethuraman Panchanathan.

A. Raghupathy was with the Department of Electrical and Computer Engi-
neering and Institute for Systems Research, University of Maryland, College
Park, MD 20742 USA. He is now with Qualcomm, Inc., San Diego, CA 92121
USA (e-mail: arunr@qualcomm.com).

N. Chandrachoodan was with the Department of Electrical and Computer En-
gineering and Institute for Systems Research, University of Maryland, College
Park, MD 20742 USA. He is now with the Intel Software Radio Laboratory,
Indian Institute of Technology, Madras, India.

K. J. R. Liu is with the Department of Electrical and Computer Engineering
and Institute for Systems Research, University of Maryland, College Park, MD
20742 USA (e-mail: kjrliu@eng.umd.edu).

Digital Object Identifier 10.1109/TMM.2003.813282

For example, if an NTSC (National Television Standards Com-
mittee) format picture is to be displayed on HDTV monitors.
Image scaling is also sometimes referred to as spatial up-con-
version.

Scaling techniques that are commonly used include simple
pixel replication, bilinear interpolation and cubic convolutional
interpolation. These techniques can be considered as separable
FIR filters [1] of two, three and seven taps, respectively, in each
dimension. However, when the images contain sharp edges or
thin lines, these techniques cause visible effects such as jagged
or blurred edges.

Nonlinear model based interpolation techniques have been
proposed in [1]–[4]. Martinez and Lim [2] approximated edges
in interlaced images by a line shift model and interpolated each
point in the missing line by averaging two points in adjacent
lines separated by the estimated shift parameter. The technique
proposed by Jensen and Anastassiou [3] used a bilevel step-edge
model to approximate an edge block and assigned one of these
two values to each pixel. Salonen [4] proposed an edge and mo-
tion adaptive interpolation for interlaced video. The edge orien-
tations are obtained using compass operators and interpolation
is performed in the dominant direction. Wang and Mitra [1] pro-
posed an image model based on oriented polynomials that can
model various types of edges, including both step and ramp-type
edges and thin lines. Using this model, an image scaling tech-
nique was proposed [1] that performed very well. However, this
technique was considered difficult to implement in practical sys-
tems because of the complexity of the classification and the fil-
tering.

In this paper, our focus is to develop an efficient algorithm
based on the oriented polynomial image model to enable prac-
tical implementation. We develop a simplified classification
scheme that classifies the region around a pixel as an oriented
or nonoriented block. In addition, we also propose a general-
ization that can perform scaling for arbitrary scaling factors.
This algorithm can be efficiently implemented in software
or hardware. Based on the algorithm, we develop efficient
architectures for the various computation units required for
scaling. Starting with a simple system architecture we discuss
how applying transformations to the data flow graph can
systematically lead us to an efficient architecture that meets
the throughput requirements. Then the results of synthesis
based on a Verilog description of the architecture are discussed.
Results indicate that an ASIC design that can scale a QCIF
video sequence to 4CIF format at 30 frames/s is possible. We
also suggest how this architecture can be extended to larger
image input formats (which correspond to larger throughput
requirements) by applying speed-up techniques.

1520-9210/03$17.00 © 2003 IEEE

490 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

The paper is organized as follows. In Section II, we discuss
the details of our algorithm. Then, in Section III, we discuss
an architecture for an implementation of the algorithm in Sec-
tion II. We also discuss the synthesis results of a Verilog de-
scription of the system. We show that the throughput required
to perform a video scaling from QCIF to 4CIF can be met. Fi-
nally, in Section IV, we present the conclusions.

II. DESCRIPTION OFOUR ALGORITHM

Image scaling is the process of converting an image from
its original dimension to a new dimension. The success of this
process is based on our ability to determine the values of missing
pixels located between the given original pixels. Normally, the
process is based on fitting a continuous function through the dis-
crete input samples.

The image scaling system is designed to take an input image
in the color format as specified by CCIR Recommenda-
tion 601-1 and performs arbitrary size scaling. The input image
has one 8-bit luminance component, and two 8-bit chromi-
nance components and . We note that the scaling system
can be applied equally well to 8-bit gray scale images by simply
performing the luminance operation on the image while skip-
ping the chrominance operations. All our algorithms have been
implemented and tested on the digital signal with 8-bit
depth. In the discussion that follows, we refer to the chromi-
nance components as theand components.

It is well known that the human visual system (HVS) is not
very sensitive to the chrominance components. Indeed, this fact
has been used in most video coding standards where the source
chrominance components are subsampled before encoding. In
our scaling system, we also take advantage of this fact and
simply apply bilinear interpolation to scale the chrominance
components. On the other hand, the HVS is highly sensitive
to the luminance component. Thus, an adaptive interpolation
system is used to scale the luminance component. The adaptive
interpolation system used to process the luminance component
is composed of three modules namely classification module,
oriented interpolation module and bilinear interpolation
module. Basically, the adaptive interpolation system performs
classification for each output pixel using the input pixels to
determine whether the output pixel is located in a region with
a distinct orientation (edge) or not. Afterward, appropriate
filtering (interpolation) will be carried out using the input pixels
to produce the output pixel. For pixels located along edges,
directional filtering are performed along the edges rather than
across it. This ensures that the visually annoying “staircase
effect” does not appear along edges.

We found that in color images it is sufficient to apply bilinear
interpolation for the chrominance (and) components. An
adaptive interpolation is used for the luminance compo-
nent. The classification module determines whether thecom-
ponent’s neighborhood is oriented or nonoriented. Based on this
result, the desired resampledcomponent is interpolated using
the appropriate interpolation module.

The terminology that we use to explain the algorithm is de-
fined below. For each input component, we define it’s associ-
ated block and neighborhood as shown in Fig. 1, where each dot

Fig. 1. Input/output pixel relationship.

represents the component of the pixel from the input image.
A pixel’s block consists of the area enclosed by the square
formed from four adjacent pixels, with the current inputpixel
being the top-left vertex (i.e., the inner square in Fig. 1). The
neighborhood of the component of the pixel is defined as the
set of pixels that are enclosed by the outer square in Fig. 1. Let

denote the luminance value of the digital image at loca-
tion . Also, let denote the set of pixels in the neigh-
borhood of the current input pixel. In the following, when we
refer to a pixel we mean the component of the pixel unless
we explicitly specify otherwise. The and components of
the pixel will be explicitly referred to as pixels and pixels,
respectively. In Sections II-A and II-B, we consider two sce-
narios of image expansion.

A. Image Expansion by Powers of Two

We will describe the algorithmic implementation of expan-
sion by two in each dimension. In order to expand by a factor
of , we can simply apply the factor of two expansiontimes.
The interpolation process for a scaling by two in each dimen-
sion proceeds as follows. Since we are doubling the dimensions
of the input image, we will produce four output pixels for each
input pixel. The chrominance componentsand are bilin-
early interpolated except for the last row or column where pixel
replication is applied. We note here that for inputpixels that
are located on the border of the image where a valid neighbor-
hood cannot be defined due to the lack of pixels, we do not use
adaptive interpolation. Rather, we simply use bilinear interpola-
tion except for the pixel located on the last row or last column
where nearest neighbor interpolation is used due to nonexis-
tence of a right/bottom adjacent pixel component.

In the following, we describe the adaptive interpolation pro-
cedure for those pixels that have valid neighborhoods. For each
input pixel, we first classify whether its block is located in an
oriented or nonoriented region by examining its neighborhood.
Intuitively, an oriented block possesses certain directional pat-
tern that often occurs in regions containing strong edges while
a nonoriented block does not. Therefore, directional or oriented
interpolation is used to interpolate the missing samples inside
oriented blocks while bilinear interpolation is used for nonori-
ented blocks. Each oriented block is further classified by its
dominant direction, which is quantized into eight major direc-
tions to reduce complexity and maintain robustness. The classi-
fication process is shown in Fig. 2.

As a first test, we compute and , which is de-
fined as the maximum and the minimum luminance value of
all the pixels in the current neighborhood. If the difference be-
tween and is less than 25, then the block is classified

RAGHUPATHY et al.: ALGORITHM AND VLSI ARCHITECTURE 491

Fig. 2. Pixel classification.

as nonoriented. Otherwise, we proceed with the classification
process. The work in [1] suggests that a block can be classified
as “constant” based on the idea of “just noticeable difference”,
which is a piecewise linear function of the average background
intensity in the neighborhood of the block. Since implementing
such a function in hardware is complex, the possibility of a fixed
threshold was considered. Based on experiments with test data,
a value of 25 was chosen for the threshold. Further, as noted in
Section III, the experiments also showed that this step can be
omitted without significant loss in visual quality.

In the next step, we need to compute the quantized orienta-
tion of each pixel in the current neighborhood. We set up a table
in RAM whose dimensions are equal to the input image. Each
table entry contains the computed quantized orientation for the
corresponding pixel of the input image at that location. All en-
tries of the table are initialized with a special flag indicating that
no quantized orientation has been computed for this pixel and
as the classification process proceeds, we will gradually replace
the flag with quantized orientation values. Since the classifica-
tion process needs to be carried out for each pixel and adjacent
pixels share common pixels in their neighborhood, we can elim-
inate redundant computation of the quantized orientation by or-
ganizing our information in this way. Therefore, we see that we
will only compute the quantized orientation of the pixels in
our neighborhood, if it is not available already. Now, the quan-
tized orientation is computed as follows:

(1)

where and are the gradients of in the and
directions, respectively, computed at is the full precision
orientation and is the quantized orientation.

Once we have computed the quantized orientationof each
pixel in the neighborhood, we will calculate the histogram
of quantized orientation. Subsequently, we find the dominant
quantized orientation from the histogram. Let denote the
number of pixels that has the dominant quantized orientation
in the neighborhood. If then we declare the current
block as oriented with direction set to the dominant quantized
orientation. Otherwise, the block is said to be a nonoriented
block. The threshold value for deciding if the block is oriented
is based on the fact that the neighborhood of a pixel consists of
16 pixels, and we would like to classify the block as oriented
only if a significant number of these show the same orientation.
Based on experiments with test data, a value of 6 was found
to be suitable for classifying the block as oriented. After the
classification, different interpolation is applied to find the
missing samples inside the block according to the block type.

For a nonoriented block, bilinear interpolation is used to ob-
tain the missing sample from the surrounding four original
image pixels , and (see Fig. 1). The general for-
mula for bilinear interpolation is given as follows:

(2)

Since the location of resampled pixels are known to us, we can
further simplify the evaluation of the bilinear interpolation. In
this case, the four output pixels (see Fig. 1) are computed from
the input pixels as

and .
For an oriented block, we use an adaptive directional inter-

polation technique. We model the missing samples inside the
block using oriented polynomials up to degree. The oriented
model for the block is given by

(3)

where . Here, denotes the desired inter-
polated point inside the block anddenotes the dominant ori-
entation of the block. The parameterdenotes the degree used
for the orientation. In our system, we used degree 4 for the
horizontal and vertical direction and degree 7 for the other six
directions. As mentioned in [1], a higher order approximation
is used for the skew-oriented blocks as they have a higher de-
gree of freedom along the orthogonal direction (i.e., for a given
orientation, more parallel lines can exist within the neighbor-
hood for a skewed direction than for the horizontal and vertical

492 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

Fig. 3. Pixel arrangement.

cases). The coefficients are found through least square mod-
eling using the known original pixels in the neighborhood of the
block. It can be shown that the following relationship holds:

(4)

where vector is a 16 1 vector containing the lu-
minance of the known pixels in the neighborhood of
the block with entries organized as shown in Fig. 3,

is a size matrix with
entries where are the
corresponding coordinate of (see Fig. 3), and is 1xd vector
with entries .

Let us define the vector .
Clearly, is a function of the orientation and the resampled
pixel’s location . Since we know the location of the
missing samples inside the blocka priori, we can precompute
the following three weight vectors for each orientation used to
compute the output pixels as shown in Fig. 1.

(5)

where each one of these weight vectors is 116. The weight
vectors and can be precomputed and stored in a table
(say, for example, in ROM). There are a total of eight sets of
weight vectors indexed by the eight quantized orientations. Each
component of the weight vector can be rounded to four decimal
accuracy. The configuration for our adaptive interpolation filter
is shown in Fig. 4. The inputs to the system are the dominant
quantized orientation and the neighborhood of the current pixel.
The orientation is used to address the appropriate bank of coef-
ficients. These coefficients are then used in the three filters on
the right portion of the schematic. The output pixels are found
through the following relationship.

(6)

B. Direct Arbitrary Dimension Expansion

In this section, we discuss expansion by an arbitrary factor.
Let the original image have width and height . Let the de-
sired expansion have width , and height . In the case of

Fig. 4. Computation requirements for adaptive interpolation in scaling by two.

Fig. 5. Illustration of 1-D backward warping.

Fig. 6. Scanning pattern.

scaling by 2, we took a forward warping approach. For arbi-
trary scaling, we use a backward warping approach. A 1-D il-
lustration of the backward warping approach is shown in Fig. 5.
In the backward warping approach, the pixels of the expansion
image are mapped back to the original image through coordi-
nate transformation. For those pixels that fall on the integer lat-
tice of the original image, we simply copy the pixel from the
original image to the expansion image. On the other hand, ex-
pansion pixels that do not fall on the integer lattice of the orig-
inal image are obtained through interpolation using the pixels
of the original image (see Fig. 6). We organize the computation

RAGHUPATHY et al.: ALGORITHM AND VLSI ARCHITECTURE 493

Fig. 7. Computation requirements for adaptive filtering in arbitrary expansion.

of the output pixels in the following way. First, we visit each
block in the input image in a raster scan format. Then for each
block, we compute all of the output pixels that map into this
block before we leave the block. This process is shown in Fig. 6.
The advantage of organizing the computation this way is that the
classification process will only be done once per block. For each
input image block, we perform classification as described for the
scaling-by-two case. Then we interpolate the output pixels that
are mapped back inside this input block. For output pixels that
fall inside a nonoriented input block, we use bilinear interpola-
tion. For output pixels that fall inside a nonoriented input block,
the directional adaptive filter is used. Since we do not know the
location of the output pixels (for any arbitrary irrational scaling
factor) inside the input blocka priori, the following simplified
computational procedure will be taken. Let us define the
matrix as . Here is the degree of ori-
ented polynomial used for theorientation. The matrices
can clearly be precomputed for each of the eight orientations and
stored in ROM as a table. Then, we can obtain our desired output
pixel through the following relationship with and based on
(4):

(7)

Fig. 7 shows the implementation of the direct arbitrary dimen-
sion expansion system.

If the expansion factor is irrational, then the computation
shown in Fig. 7 needs to be performed. In the special case when
the expansion factor is a rational number where and
are relatively prime, some simplifications can be made. We ob-
serve that there are noninteger pixel positions possible
after backward warping of the expansion pixels onto the orig-
inal image. In other words, there are only possibilities
for and only possible filters . Therefore, if

is small, we can precompute the filters (instead of performing
the matrix vector multiplication on-line to find shown in
Fig. 7) and store them in ROM (just as in Fig. 4). For example,
Fig. 6 shows a scaling of . For this scaling factor, we

can have possible values for the vector corre-
sponding to different values ofand . We can precompute and
store filters of 16 coefficients each in ROM.

We found that when performing an arbitrary dimension ex-
pansion, better visual quality can be obtained if we combined
the factor of two expansion with arbitrary expansion method
described above. In other words, we apply the factor of two
expansions iteratively until the dimensions of the resulting in-
termediate expansion image is no longer contained entirely in-
side the desired expansion dimension. At this point, we apply
the arbitrary expansion as described above to obtain the final
image from the intermediate expansion image. For example, if
we desire an expansion of 2.5 in each dimension, we perform
an expansion of 2 followed by an expansion of 1.25 in each di-
mension. This gives better visual quality than if we performed
an expansion of 2.5 directly using the arbitrary expansion algo-
rithm described in this section.

The adaptive scaling algorithm was applied to the Car Phone
sequence in QCIF format. Frame 10 of the original sequence is
shown in Fig. 8(a). Fig. 8(b) shows Frame 10 when scaled by a
factor of 4 (i.e., 4CIF) in each dimension using only bilinear in-
terpolation. Fig. 8(c) shows the same frame scaled using Cubic
Spline interpolation. Fig. 8(d) shows Frame 10 when scaled
using the adaptive scaling algorithm. Finally, Fig. 8(e) shows
Frame 10 when scaled using an emulation of a Verilog descrip-
tion of the adaptive scaling hardware (we will describe the hard-
ware architecture in detail in Section III). The emulation takes
into account finite precision hardware effects in the orientation
angle computation as well as in the filtering. No perceptable dif-
ference is observable between Fig. 8(d) and (e).

Due to the printing process, the visual quality of the images
may be lost.

III. A RCHITECTURE ANDDESIGN

In this section, we develop an efficient hardware architecture
based on the algorithm developed in the previous section. In par-
ticular, we focus on developing an architecture for scaling by a
factor of two in each dimension. Then, we discuss the imple-
mentation tradeoffs based on this architecture. Area/throughput
estimates based on the synthesis results of a Verilog descrip-
tion of this system will be discussed to show the feasability of a
single chip ASIC implementation.

The data flow graph for the and components is shown
in Fig. 9. The architecture for the two bilinear units required
for the and components are discussed in Section III-E.
We now focus on developing an architecture forcomponent
computation. The flow diagram of the computation for the
component is shown in Fig. 2.

In hardware implementations, it is desirable to reduce the
number of branches (or decision boxes) in the flow diagram.
We found that the classification can be simplified with an im-
perceptible loss in performance. In particular, we can avoid the
computation of the maximum and minimum luminance values
in the neighborhood of a block as well as the check on the mag-
nitude of . One possible reason for this observa-
tion is as follows: Our algorithm applies bilinear interpolation

494 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

(a)

(b) (c)

(d) (e)

Fig. 8. (a) Frame 10 of car salesman. (b) Bilinear interpolation. (c) Interpolation using cubic spline. (d) Adaptive interpolation algorithm. (e) Adaptive interpolation
result from Verilog description.

Fig. 9. Dataflow graph of computations for theU=V component.

to compute pixel values both for the case where a block is con-
stant , and for the case where no
single orientation is clearly dominant . For

blocks that are nearly constant, it is very likely that no single
orientation will be dominant, so most such blocks will undergo
bilinear scaling rather than directional adaptive scaling. This
could account for the negligible loss in visual performance even
when this step is omitted. In software implementations that do
not penalize conditional branches as heavily as hardware, it may
be worthwhile to retain this check to ensure that constant blocks
are scaled using a normal bilinear interpolation. The modified
flow diagram can be obtained from Fig. 2 by removing the com-
putations in lines 1 and 2.

A data flow graph based on this flow diagram is shown in
Fig. 10(b). Fig. 10(a) shows the notation used for the pixels, an-

RAGHUPATHY et al.: ALGORITHM AND VLSI ARCHITECTURE 495

Fig. 10. (a) Neighborhood of the present block. (b) Dataflow graph of computations in required in adaptive scaling.

gles and filter coefficients. In Fig. 10(b), output pixels are being
computed for the block corresponding to pixel in the
original image. The angle memory stores the previously com-
puted orientation angles so that recomputation can be avoided as
mentioned in Section II-A. The pixel memory stores the pixels
of the original image. The Sobel block computes the gradients

and at using the pixels shown within dotted lines in
Fig. 10. The angle block finds the quantized orientation angle for
pixel . Then, a histogram is computed for the orientation
angles in the neighborhood to find a dominant orientation (if it
exists) for the block. In particular, the orientation that occurs
the maximum number of times is found. Then is com-
pared with 6 to determine whether the block is oriented or not.
If the neighborhood is oriented, then the appropriate filter coef-
ficients are loaded from ROM and the interpolated pixels within
the block are found. Note that in a scaling by two, we need to
compute only three interpolated pixels per block. The fourth
output pixel matches exactly with . The filtering block
computes three inner products as mentioned in Section II-A.
Note that bilinear interpolation case can also be handled by the
same filtering unit. This can be achieved by storing another filter
in ROM with coefficients corresponding to the bilinear interpo-
lation. Thus we do not require separate hardware for the bilinear
interpolation of the component.

From the dataflow graph in Fig. 10(b), we observe that
the memory bandwidth required from the pixel memory is

pixels for every input pixel (or every four output
pixels). Similarly, the memory access rate per input pixel

for the angle memory is 15. This memory bandwidth can be
reduced by studying the structure of data that is required by the
algorithm. For example, the memory bandwidth can be reduced
by introducing some storage elements (i.e., registers) into the
Sobel, histogram and filtering units as shown in Fig. 11(a). In
this case, the memory access rate for the pixel data memory
can be reduced to seven per input pixel. Similarly, the memory
access requirements for the angle memory are reduced from
15 to three. The pixel memory access requirements can be
further reduced to five if pixels and which are
available in the Sobel unit can be shared with the filtering unit.
This is shown in Fig. 11(b). Also, note that the pixel and angle
memories are shown as delay lines. Due to the structure of the
data accesses in Fig. 11(a) and (b), delay lines can be used
instead of random access memories.

We also observe that the graph is feedforward. Therefore, we
can apply pipelining at any feedforward cutset. For example,
pipelining can be applied by using the Cutset 2 shown in Fig. 11.
It can also be noted that if such a pipelining is applied, the
pipeline registers for the pixels can be merged
with the pixel delay lines. Similarly, the pipeline registers for

can be removed by sharing data available in the
Sobel unit’s registers. Additional pipeline stages can be applied
at other feedforward cutsets to obtain further speedup.

In general, if the original image sequence hasrows and
columns at frames per second. Then, the system must be

able to accept input pixels at the rate . This must
be kept in mind when designing the individual units as well as

496 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

Fig. 11. Modified dataflow graph (a) showing reduced memory bandwidth requirements and (b) showing further reduction in memory bandwidth.

when deciding whether pipelining stages are required between
the various units. In the next few sections, we consider each unit
in detail and discuss various architecture level tradeoffs based
on the system requirements.

A. Sobel Computation

The Sobel operator involves computingand as given by
(1). A straightforward implementation would require ten adders
to compute and . We can rewrite (1) as

(8)

We assume for simplicity of discussion that all the adders are 12
bits (the output precision when no rounding is performed within
the computation). By using subexpression sharing as suggested
by (8), we can reduce the complexity of the Sobel operator to
eight 12-bit additions. Clearly, all the adders need to be carry
propagate adders (CPA) to permit sharing. Then the critical path,
if the data flow graph is implemented as a combinational circuit,
is given by two 1-bit full adders and one 12-bit carry propagate

adders (CPA). If the throughput of the system is not constrained
by the Sobel operator, we can fold the data flow graph so that
we use only four 12-bit adders and reuse the adders over three
clock cycles. Now the critical path is determined by a single
12-bit adder but we need three clock cycles. The adder com-
plexity has been halved while some additional control circuitry
and registers are required.

On the other hand, if we wanted a fast Sobel operator, then
we would use the architecture shown in Fig. 12. Here carry save
adders (CSA) are used (except at the final stage). A total of ten
12-bit adders (eight 12-bit CSA s and two 12-bit CPA s) are re-
quired. The critical path would now consist of three 1-bit full
adders plus one 12-bit CPA. There seems to be no apparent ad-
vantage with this circuit. However, by speeding up only the last
stage adder, the critical path of the combinational implementa-
tion can be reduced. In a conventional implementation [15], all
adders would need to be speeded up to obtain critical path reduc-
tion. In summary, we can conclude that the most efficient imple-
mentation is a folded version of a conventional implementation.
However, when a high speed implementation is required, the
computation can be performed as in Fig. 12 to obtain speed-up.

B. Orientation Angle Computation

After and have been computed, the next step is to com-
pute the corresponding quantized orientation angleas de-

RAGHUPATHY et al.: ALGORITHM AND VLSI ARCHITECTURE 497

Fig. 12. Sobel operator computation using carry save technique.

scribed by (1). The two 12 bit integers and are divided
and the result is computed at an appropriate precision.
Then the quantized angle is computed using a ROM lookup
table. The ROM table is a quantized version of

. Using the quantization terminology
in [5], the angles corre-
spond to the transition levels and the angles

correspond to the reconstruction levels. Clearly, the
size of the ROM table and the precision required in the division
would depend on the accuracy with which we need to define
the orientations. For example, if we could allow a 2error in
specification of the transition levels, then we can compute the
precision that would be required in the division operation. In
particular, a 2 error in the quantization region at 11.25would
imply that we need to choose the precision so that we can repre-
sent the difference between and (i.e.,

). We consider the transi-
tion level 11.25 because at this angle the derivative of the tan
function is the smallest amongst all the transition levels. A pre-
cision of at least 5 bits after the decimal point is required to rep-
resent 0.036. This requires that the division provide an output of

bits. The size of the ROM look-up required would
be K words of size 3 bits each. Clearly, the hardware
complexity required for this approach is extremely large.

The CORDIC trignometric computation technique was pro-
posed in [6] as a technique for computing plane rotations as
well as in conversions from rectangular to polar coordinates.
The CORDIC computing technique also allows us to compute
various trignometric functions. In particular, when the CORDIC
processor is used in the angle accumulation mode [7], the angle

corresponding to the initial point coordinates
is computed. The angle is found by applying a series of

shift and add operations on the initial coordinates . Each
CORDIC circular rotation step performs

(9)

where sign of . Note that the angle can be rep-
resented as a sequence of’s. The angle is accumulated as

where . With this se-
quence of , any angle between and 90 can be accu-
mulated. Usually, we set so that at step
is rotated by an angle . Since we want to define the
quantization regions with an accuracy of 2, the angle accu-
mulation must be approximated within 2. This means that we
need at least six stages of CORDIC followed by a look-up table
(addressed by the vector). The look-up
table has words of size 3 bits. Later we show how a modified
CORDIC-like procedure can be used to perform the required
computation using five stages followed by a look-up table of
size words of size 3 bits. In fact, the look-up table can be
simplified into three combinational functions of four variables
each.

Let us assume that as a first step we find the absolute
value of and . This ensures that we have a point
in the first quadrant. In particular, we want to efficiently
represent the angles that separate the quantization regions
(i.e., 11.25, 33.75 , 56.25 , 78.75) in terms of the ele-
mentary angles . For example,
we can write

. Similarly,

and
. This means that if we use

a CORDIC type computation with the shift sequence
and appropriate con-

trol to decide whether to add or subtract at each stage, we can
obtain the required quantized orientation angle. The complete
architecture is shown in Fig. 13. We note that apart from the
signs of and , we need the sign of for to
determine the orientation, as shown in Table II. This is shown as
a combinational function in Fig. 13. Note that this signal flow
graph can be folded [8] onto a single CORDIC like processor
to obtain an area efficient implementation. If the throughput of
the angle computation is critical, the unfolded data flow graph
shown in Fig. 13 can be directly implemented. See [15] for the
details of the folded implementation.

C. Histogram Computation

After the orientation angles in the current pixel’s neighbor-
hood have been computed, the next step is to compute the his-
togram of the pixel orientations in the neighborhood. As men-
tioned before, a complete histogram is not necessary. We need
to find the dominant orientation in the neighborhood as well as
the number of times that orientation occurs. The most obvious
way to implement this computation is shown in Fig. 14. In this
architecture, the 16 registers holding the pixel orientations in
the neighborhood are each connected to a 3 to 8 decoder. If, for
example, the pixel orientation is, then the th output is 1 and
all others are 0. Then, for each orientation, a (16, 4) compressor
counts the number of times each orientation occurs. An
compressor is a combinational circuit that sums itsinputs and
provides an -bit encoding of the sum as its output. Finally, the
dominant orientation is found along with the number of times it
occurs.

498 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

Fig. 13. Angle computation using CORDIC-like technique.

Clearly, this is a complex circuit with global communication
between the decoders and the compressors. Such a complex par-
allel implementation would be required if the histogram compu-
tation is the throughput bottleneck. Otherwise, the architecture
can be folded to obtain a much simpler implementation (shown
in Fig. 15). The contents of the orientation angle registers are
compared with the 3-bit counter output every clock cycle. The
outputs of the comparators are fed to a (16, 4) compressor to
obtain the total number of pixels that have the same orientation
corresponding to the 3-bit counter contents. The dominant ori-
entation and the maximum count registers are both initialized
to zero. Also, during each cycle the output of the (16, 4) com-
pressor is compared with the previous contents of the maximum
count register. If the present output of the (16, 4) compressor is
larger than the previous contents of the maximum count reg-
ister, both the maximum count and dominant orientation regis-
ters are updated. The maximum count register is updated with
the output value from the (16, 4) compressor, while the domi-
nant orientation register is updated with the present 3-bit counter
contents. Therefore, after eight cycles desired histogram data is
obtained in the maximum value register and dominant orienta-
tion registers.

D. Oriented and Nonoriented Filtering

We observe that when performing a scaling by a factor of 2
in each direction, we need to find three interpolated pixels per
input pixel. When the neighborhood around the current pixel is
oriented, the oriented filter involves all the pixels in the neigh-
borhood. On the other hand, if the neighborhood is nonoriented,

then the bilinear filter involves only the region around the cur-
rent pixel (see Fig. 1). In general, the same hardware can be used
whether the neighborhood is oriented or not. When bilinear fil-
tering is required, the coefficients corresponding to the unused
pixels in the neighborhood can be set to zero.

The specific filter coefficients needed for oriented filtering
are shown in the Appendix of [15]. In order to enable imple-
mentation of the filter using fixed point arithmetic, the coeffi-
cients need to be quantized. Ifbits are used to represent each
signed filter coefficient, then we can place an upper bound on
the error in the output due to this quantization. We are in fact cal-
culating an inner product which has the form
where are the filter coefficients, are in the input pixels
and is the filter output. All the filter coefficients are such that

. The maximum quantization error in the filter coeffi-
cients is given by . The maximum possible error
at the output will be given by either or

where is the largest number of
positive coefficients in any required filter and is the
largest number of negative coefficients in any required filter. For
our case, and . This means that the
maximum possible error due to coefficient quantization is given
by . In order that the error is upper-bounded by
5, we need bits. Note that the bound we have derived is
not tight. We found that bits is sufficient and no signifi-
cant error is introduced by the quantization process.

Clearly, the fastest implementation would require 16 multi-
pliers per output pixel. This means a total of 48 multipliers. Ob-
serve also that the required multipliers arenot fixed coefficient
but general purpose multipliers. This is because the filter corre-
sponding to different orientations are different. It would not be
feasible to have such a large number of multipliers on a single
chip. This would mean that a transformation of some form must
be applied so that the multiplier hardware can be reused. One ap-
proach is to fold the computation required for each output pixel
onto a smaller number multiply-accumulate (MAC) units. The
choice of the appropriate number of MAC units (in other words,
the folding factor) will depend on the throughput requirements.
In particular, if we had one multiply accumulate unit for each
output pixel, then we would need a total of three multiply accu-
mulate units. The architecture for computing one output pixel
in this case is shown in Fig. 16. The pixel data and the control
circuitry is shown on the right hand side of Fig. 16. The partial
sums of the filtering operation are accumulated in carry save
form. The final addition is performed after the 16 MAC s have
been completed.

E. Bilinear Interpolation for and Components

As mentioned earlier, it is enough to perform bilinear inter-
polation for the and components (no classification is re-
quired). A straightforward implementation would require five
adders. A more efficient architecture is shown in Fig. 17 that
uses sub-expression sharing [8] to reduce the number of adders.
It consists of four 8-bit carry propagate adders. The division by
two is achieved by a simple right shift by one bit. Note that
two such bilinear units are required—one each for theand

components.

RAGHUPATHY et al.: ALGORITHM AND VLSI ARCHITECTURE 499

Fig. 14. Histogram computation.

Fig. 15. Folded architecture for histogram computation.

F. System Discussion and VLSI Design

In this section, we discuss the system level tradeoffs that
are involved in the design of a video scaling system. The
H.261/H.263 standards [9] for videoconferencing/videotele-
phony specify two possible video formats, viz., QCIF and CIF.
In order to enable a scaling of the videotelephone/videoconfer-
encing signal, we consider here a scaling from QCIF (144 rows
by 176 columns) to 4CIF (576 rows by 704 rows) at 30 frames
per second. As mentioned before, performing the scaling in
two steps (i.e., from QCIF to CIF and then from CIF to 4CIF)
leads to better performance. We consider an architecture that

can perform scaling in this manner. The system architecture
is shown in Fig. 18. There are two identical scaling blocks
corresponding to scaling from QCIF to CIF and from CIF to
4CIF. The input delay lines provide component of the pixel
to the sobel, angle and filter units. They also provideand
components to the bilinear unit. In all, four input delay lines are
needed for the component and lines lines (of half the size)
for the and components. As explained in Section III-D,
the output pixels corresponding to a block of pixels (shown in
Fig. 1) are generated at one time. In order to convert the output
pixels to raster scan (progressive scan) order, output sync delay
lines are required. We note that four lines are required for each

500 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

Fig. 16. Folded filter architecture.

of the and components (two lines are used to store the
output from the filter/bilinear units and while the other two
lines provide the outputs in progressive scan order).

A QCIF video sequence at 30 frames/s has a pixel rate of
pixels/s while a CIF video sequence has a pixel rate

of pixels/s. The first scaling-by-two block (QCIF to
CIF) is required to compute the four output pixels corresponding
to one input pixel within 1315 ns. The second scaling-by-two
block (CIF to 4CIF) is required to compute the output pixels
corresponding to one input pixel within 328 ns. In general, for
an image with dimension rows and columns at a frame rate

, the time available to compute the output pixels in the region
around one input pixel can be written as

(10)

where is in ns.
We first estimate the number of clock cycles required by each

unit to complete the computation corresponding to one input
pixel. This will tell us whether or not we need pipelining be-
tween units [like that shown in Fig. 11(b)] to obtain the re-
quired throughput. Based on the architecture shown in Fig. 16,
at least 17 clocks are needed to complete the filtering computa-
tion. Similarly, the folded histogram architecture requires about
ten clock cycles to complete the histogram computation. The
angle computation requires about seven clock cycles while the
folded Sobel computation requires about three clock cycles. We
estimate that the architecture takes about 37 clock cycles to com-
plete the output pixels corresponding to one input pixel. Taking
into account the interface between these units and the output
synchronization delay lines, a total of 42 clock cycles are re-
quired. This means that for real-time conversion of CIF to 4CIF

Fig. 17. Bilinear interpolation forU andV components.

(corresponding to the second scaling-by-two block in Fig. 18),
a clock cycle of less that ns is required. The
above assumes that there is no pipelining between units.

In order to show that the throughput can be attained in a
real design, we described the various blocks in Verilog, syn-
thesized them and performed a static timing analysis to esti-
mate the speed. The synthesis was performed using am
standard library using Cadence’s Synergy tool. We also esti-
mate the area based on an automatic layout of the standard cells
using Cadence’s Silicon Ensemble corresponding to the com-
putation and control circuitry. The area of the delay lines and
ROM were estimated based on the literature [10]–[12]. Our goal
is to perform synthesis to obtain a clock period as close to 8 ns
as possible. If we are unable to attain the required throughput,
then there are two possible approaches. The first approach is to
apply pipelining to obtain a speed-up that allows us to meet the
throughput. Alternately, we can use a newer technology such
as m. If we assume a linear scaling of propagation delay
[13] with technology, then it is enough to obtain a critical path
of ns. In reality, the scaling will be less
than linear so that the requirements using the library will
be tighter. In the following, we assume that the target was to
achieve the throughput requirements at m. Therefore, all
synthesis timing requirements were scaled up to m. A Ver-
ilog description was specified for each computational block. In
addition, a controller was designed that handled all interaction
between blocks. Besides, the controller also maintained a count
of the rows/columns and handled image boundary conditions.

The synthesis results suggested that the final adder of 22 bits
in the filtering block be separated into two 11-bit additions per-
formed in consecutive clock cycles. This enabled a clock period
less than 12.8 ns. A total of 20 clocks were needed to complete
the filtering (assuming that the histogram output was available).

Architectures were specified in Verilog for the other blocks
so that the required clock speed can be matched. The Sobel
computation was implemented using the carry save technique in
Fig. 12. This was required in order to meet the clock speed re-
quirements. A total of three clock cycles were required to com-
plete the computation.

Some optimizations were required in the folded CORDIC-
based angle computation unit in order to match the clock speed

RAGHUPATHY et al.: ALGORITHM AND VLSI ARCHITECTURE 501

Fig. 18. Overall system architecture for scaling-by-four in each dimension.

TABLE I
CELL AREA AND TIMING FROM SYNTHESIS

requirements. The critical path was governed by the 15-bit adder
that was used to perform the CORDIC shift and add operation.
The implementation of the 15-bit adder was modified into a
carry select adder [14] with three blocks of 5 bits each in order
to meet the clock speed requirements. The complete angle com-
putation requires seven clock cycles.

The histogram was implemented as shown in Fig. 15. Again,
optimizations were required to meet the throughput require-
ments. The critical path consists of the 4-bit equality compara-
tors, the (16, 4) compressor followed by the 4-bit comparator. In
order to meet the throughput requirements, the unit was inter-
nally pipelined. The (16, 4) compressor was split into four (4,
3) compressor circuits followed by an adder that sums up the
four results from the four (4, 3) compressors. The first pipeline
stage consists of the 4-bit equality comparators and the four (4,
3) compressors. The second pipeline stage consists of the adder
that sums up the results and the 4-bit comparator. This allowed
a clock speed less than 12.5 ns.

Table I summarizes some of the synthesis results using Ca-
dence’s Synergy tool. Note that three such copies of the filter
are required to compute all three interpolated output pixels in
parallel. The computation and control parts required an area of
35.3 mm at m. The delay lines required an estimated area
(based on [11]) of mm at m. This implies a total
area of mm at m. Assuming that the areas scale
by , an area of about 30.6 mmat m. The results
indicate that without pipelining between units we can achieve
the throughput required to scale a QCIF image to a 4CIF image
at 30 frames/s using a m technology.

TABLE II
ORIENTATION AS A FUNCTION OF SIGNS OFy ; x ; y ; y AND y

G. Extension to Larger Image Dimensions

The architecture we have proposed in the previous section can
be extended to handle the scaling of larger input image sizes.
This will require increasing the throughput by applying a com-
bination of pipelining and parallelism as suggested in Section II.
In particular, by using two multipliers per output pixel (instead
of the one multiplier we used in Fig. 16), we can complete
the filter computation in cycles. Let us introduce pipeline
latches after the Sobel and angle units (at Cutset 1 in Fig. 11)

502 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

and after the histogram unit (at Cutset 2 in Fig. 11). The pipeline
stage that takes the largest number of clock cycles is the filter
stage. This means that we have managed to raise the throughput
by a factor of . This means that at m we can
expect to handle an image of size about rows by

or nearly . If we had access to m
technology, we can increase the throughput by a further factor
of two. In other words, we can handle input image sizes of upto
760 930. This suggests that our architecture could find appli-
cation in conversion from SDTV to HDTV (see [9] for summary
of HDTV standard).

IV. CONCLUSION

In this paper, we have proposed a high-performance algo-
rithm for image scaling using the oriented polynomial image
model. The algorithm was also extended to arbitrary scaling
factors. We have also shown that an efficient VLSI architec-
ture and implementation can be obtained for the case when we
scale-by-two along each dimension. Static timing analysis of the
circuits synthesisized from an RTL Verilog description showed
that the throughput requirements can be met for a system that
scales QCIF video to 4CIF format at 30 frames/s. The total chip
area for such an implementation was estimated to be about 20
mm at m.

REFERENCES

[1] Y. Wang and S. K. Mitra, “Image representation using block pattern
models and its image processing applications,”IEEE Trans. Pattern
Anal. Machine Intell., vol. 15, pp. 321–336, Apr. 1993.

[2] D. M. Martinez and J. Lim, “Spatial interpolation of interlaced televi-
sion pictures,” inProc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing, May 1989, pp. 1886–1889.

[3] K. Jensen and D. Anastassiou, “Saptial resoultion enhancement of im-
ages using nonlinear interpolation,” inProc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing, Apr. 1990, pp. 2045–2048.

[4] J. Salonen, “Edge and motion controlled spatial upconversion,”IEEE
Trans. Consumer Electron., vol. 40, pp. 225–233, Aug. 1994.

[5] A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[6] J. E. Volder, “The CORDIC architectures computing technique,”IRE
Trans. Electron. Comput., vol. EC-8, pp. 330–334, Sept. 1959.

[7] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal pro-
cessing,”IEEE Signal Processing Mag., vol. 9, pp. 16–35, July 1992.

[8] K. K. Parhi, “High-level algorithm and architecture transformations for
DSP synthesis,”J. VLSI Signal Process., vol. 9, pp. 121–143, Jan. 1995.

[9] Digital Consumer Electronics Handbook, McGraw-Hill, New York,
1997.

[10] K. Dejhan, F. Jutand, N. Demassieux, O. Colavin, A. Galisson, and A.
Artieri, “A new high-performance programmable delay line IC,”IEEE
Trans. Consumer Electron., vol. 35, pp. 893–899, Nov. 1989.

[11] H.-J. Mattausch, F. Matthiesen, J. Hartl, R. Tielert, and E. P. Jacobs,
“A memory-based high-speed delay line with large adjustable length,”
IEEE J. Solid-State Circuits, vol. 23, pp. 105–110, Feb. 1988.

[12] F. Rothan, C. Joanblanq, and P. Senn, “A video delay line compiler,” in
IEEE Int. Symp. Circuits and Systems, May 1990, pp. 65–68.

[13] N. H. E. Weste and K. Eshraghian,Principles of CMOS VLSI De-
sign. Reading, MA: Addison-Wesley, 1993.

[14] D. A. Patterson and J. L. Hennessy,Computer Architecture: A Quanti-
tative Approach. San Mateo, CA: Morgan Kaufmann, 1996.

[15] A. Raghupathy, “Low Power and High Speed Algorithms and VLSI
Architectures for Error Control Coding and Adaptive Video Scaling,”,
Ph.D. dissertation, Univ. Maryland, College Park, Dec. 1998.

Arun Raghupathy (S’95-M’99) received the
B.Tech degree in electronics and communications
engineering from the Indian Institute of Technology,
Madras, in 1993, and the M.S and Ph.D degrees in
electrical engineering from the University of Mary-
land at College Park in 1995 and 1998, respectively.
His Ph.D. research focused on the development of
techniques that enable the implementation of low
power high-performance VLSI signal processing
systems.

Currently, he is a Staff Engineer in the ASIC de-
partment at Qualcomm, Inc., San Diego, CA, where he is involved in the devel-
opment of modem ASICs for Third Generation (3G) CDMA systems including
those used in direct conversion receivers. His areas of interest include signal
processing for communications, image and video processing.

Nitin Chandrachoodan was born on August 11, 1975 in Madras, India. He re-
ceived the B. Tech degree in electronics and communications engineering from
the Indian Institute of Technology (IIT), Madras, in 1996, and the M.S. and
Ph.D. degrees in electrical engineering from the University of Maryland at Col-
lege Park in 1998 and 2002, respectively.

He is currently with the Intel Software Radio Laboratory at IIT Madras. His
research interests include analysis and representation techniques for system
level synthesis of DSP dataflow graphs.

K. J. Ray Liu (F’03) received the B.S. degree from
the National Taiwan University, Taipei, Taiwan,
R.O.C., in 1983, and the Ph.D. degree from the
University of California, Los Angeles, in 1990, both
in electrical engineering.

He is Professor with the Electrical and Computer
Engineering Department and the Institute for
Systems Research, University of Maryland, College
Park. His research interests span broad aspects of
signal processing algorithms and architectures;
multimedia communications and signal processing;

wireless communications and networking; information security; and bioin-
formatics, in which he has published over 280 refereed papers. He was the
founding Editor-in-Chief ofEURASIP Journal on Applied Signal Processing
and an editor ofJournal of VLSI Signal Processing Systems.

Dr. Liu is the Editor-in-Chief of IEEE SIGNAL PROCESSING MAGAZINE

and has been an Associate Editor of IEEE TRANSACTIONS ON SIGNAL

PROCESSING, a Guest Editor of special issues on Multimedia Signal Processing
of PROCEEDINGS OF THEIEEE, a Guest Editor of special issue on Signal
Processing for Wireless Communications of IEEE JOURNAL OF SELECTED

AREAS IN COMMUNICATIONS, a Guest Editor of special issue on Multimedia
Communications over Networks of IEEE SIGNAL PROCESSINGMAGAZINE, and
a Guest Editor of special issue on Multimedia over IP of IEEE TRANSACTIONS

ON MULTIMEDIA . He has served as Chairman of the Multimedia Signal
Processing Technical Committee of the IEEE Signal Processing Society. He
is the recipient of numerous honors and awards, including the IEEE Signal
Processing Society 2004 Distinguished Lecturer, the 1994 National Science
Foundation Young InvestigatorAward, the IEEE Signal Processing Society’s
1993 Senior Award (Best Paper Award), IEEE 50th Vehicular Technology
Conference Best Paper Award, Amsterdam, 1999. He also received the George
Corcoran Award in 1994 for outstanding contributions to electrical engineering
education and the Outstanding Systems Engineering Faculty Award in 1996
in recognition of outstanding contributions in interdisciplinary research, both
from UMD.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

