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Algorithm and VLSI Architecture for High
Performance Adaptive Video Scaling

Arun RaghupathyMember, IEEENitin Chandrachoodan, and K. J. Ray Lkellow, IEEE

Abstract—We propose an efficient high-performance scaling For example, if an NTSC (National Television Standards Com-
algorithm based on the oriented polynomial image model. We mijttee) format picture is to be displayed on HDTV monitors.

develop a simple classification scheme that classifies the regi0n|mage scaling is also sometimes referred to as spatial up-con-
around a pixel as an oriented or nonoriented block. Based on this version

classification, a nonlinear oriented interpolation is performed to . . ) .
obtain high quality video scaling. In addition, we also propose a  Scaling techniques that are commonly used include simple

generalization that can perform scaling for arbitrary scaling fac-  pixel replication, bilinear interpolation and cubic convolutional
tors. Based on this algorithm, we develop an efficient architecture interpolation. These techniques can be considered as separable
for image scaling. Specifically, we consider an architecture for FIR filters [1] of two, three and seven taps, respectively, in each

scaling a Quarter Common Intermediate Format (QCIF) image dimension. However, when the images contain sharp edges or
to 4CIF format. We show the feasibility of the architecture by ’ ' 9 p edg

describing the various computation units in a hardware descrip- thin lines, these techniques cause visible effects such as jagged
tion language (Verilog) and synthesizing the design into a netlist or blurred edges.
of gates. The synthesis results show that an application specific  Nonlinear model based interpolation techniques have been
integrated circuit (ASIC) design which meets the throughput ,r5n6sed in [1]-[4]. Martinez and Lim [2] approximated edges
requirements can be built with a reasonable silicon area. N - . . .
in interlaced images by a line shift model and interpolated each
tion, video zoom, VLS architecture. lines separated by the estimated shift parameter. The technique
proposed by Jensen and Anastassiou [3] used a bilevel step-edge
|. INTRODUCTION model to approximate an edge block and assigned one of these

N VIDEO applications, the raw data rates involved are e;Q-NO values_ to _each p|xe_l. Sa'of‘e” [4] prop_osed an edge and_ mo-
. o ... . _tion adaptive interpolation for interlaced video. The edge orien-
tremely high. This implies that a very large bandwidth is re-

uired to transmit video sianals. A number of widelv acce tegtions are obtained using compass operators and interpolation
q g . y P erformed in the dominant direction. Wang and Mitra [1] pro-

video compression standards (such as JPEG, MPEG, H'Zg‘gt%ed an image model based on oriented polynomials that can
have been developed in order to reduce the data rate. Inspitgo g POy

these developments, in applications in which the available bar;'a(-)deI various types of ed_ges, |_nclud|ng bOth. stepand “’?‘mp'type
%figes and thin lines. Using this model, an image scaling tech-

width is limited, the image size is restricted. For example, in Pryque was proposed [1] that performed very well. However, this
video-telephony applications QCIF/CIF is the standard form"ile'chnique was considered difficult to implement in practical sys-

Obviously, a larger image size format will improve the PETCER s because of the complexity of the classification and the fil-

tual quality. But, this quality comes at the cost of increased d .
rate (and, hence, bandwidth). A high-performance scaling algo- 9

. . : : . : In this paper, our focus is to develop an efficient algorithm
rithm that can scale an image without introducing much d'smkg'ased on the oriented polynomial image model to enable prac-
tion will allow us to transmit image data using a small imag{nT

) . N ; cal implementation. We develop a simplified classification
size format while maintaining perceptual quality. Another mo- e ) . .
L . ) ; ; .scheme that classifies the region around a pixel as an oriented
tivation for developing a good scaling algorithm is to enable di3- . e
2 . . - — or nonoriented block. In addition, we also propose a general-
play of lower resolution images on higher resolution monitors, _.. . . :
iZation that can perform scaling for arbitrary scaling factors.

This algorithm can be efficiently implemented in software
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The paper is organized as follows. In Section I, we discuss Current Neighborhood
the details of our algorithm. Then, in Section lll, we discuss
an architecture for an implementation of the algorithm in Sec-
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tion Il. We also discuss the synthesis results of a Verilog de-  Current — — 00

scription of the system. We show that the throughput required P Por aach input pixel,
to perform a video scaling from QCIF to 4CIF can be met. Fi- output 4 pixels
nally, in Section IV, we present the conclusions. W

Fig. 1. Input/output pixel relationship.
Il. DESCRIPTION OFOUR ALGORITHM

Image scaling is the process of converting an image frof@presents th& component of the pixel from the input image.
its original dimension to a new dimension. The success of tsY pixel's block consists of the area enclosed by the square
process is based on our ability to determine the values of missfagmed from four adjacent pixels, with the current inpupixel
pixels located between the given original pixels. Normally, theeing the top-left vertex (i.e., the inner square in Fig. 1). The
process is based on fitting a continuous function through the digighborhood of th& component of the pixel is defined as the
crete input samples. set ofY pixels that are enclosed by the outer square in Fig. 1. Let

The image scaling system is designed to take an input imaffe’, y) denote the luminance value of the digital image at loca-
in theY G, C,. color format as specified by CCIR Recommendation (z, ). Also, let N, denote the set df pixels in the neigh-
tion 601-1 and performs arbitrary size scaling. The input imad@rhood of the current input pixél In the following, when we
has one 8-bit luminance componént and two 8-bit chromi- refer to a pixel we mean thE component of the pixel unless
nance components;, andC,. We note that the scaling systenwe explicitly specify otherwise. Th& andV components of
can be applied equally well to 8-bit gray scale images by simpiiye pixel will be explicitly referred to a& pixels andV” pixels,
performing the luminance operation on the image while skipespectively. In Sections II-A and 1I-B, we consider two sce-
ping the chrominance operations. All our algorithms have besgarios of image expansion.
implemented and tested on the digital’, C,. signal with 8-bit ]
depth. In the discussion that follows, we refer to the chromf: Image Expansion by Powers of Two
nance components as theand V' components. We will describe the algorithmic implementation of expan-

It is well known that the human visual system (HVS) is nagion by two in each dimension. In order to expand by a factor
very sensitive to the chrominance components. Indeed, this fat2*, we can simply apply the factor of two expansiotimes.
has been used in most video coding standards where the sodige interpolation process for a scaling by two in each dimen-
chrominance components are subsampled before encodingsibm proceeds as follows. Since we are doubling the dimensions
our scaling system, we also take advantage of this fact aoftthe input image, we will produce four output pixels for each
simply apply bilinear interpolation to scale the chrominandeput pixel. The chrominance componeiitsand V" are bilin-
components. On the other hand, the HVS is highly sensitiearly interpolated except for the last row or column where pixel
to the luminance component. Thus, an adaptive interpolaticeplication is applied. We note here that for inpUpixels that
system is used to scale the luminance component. The adapéielocated on the border of the image where a valid neighbor-
interpolation system used to process the luminance componkobd cannot be defined due to the lack of pixels, we do not use
is composed of three modules namely classification modubgaptive interpolation. Rather, we simply use bilinear interpola-
oriented interpolation module and bilinear interpolatiotion except for th&” pixel located on the last row or last column
module. Basically, the adaptive interpolation system performgere nearest neighbor interpolation is used due to nonexis-
classification for each output pixel using the input pixels ttence of a right/bottom adjaceht pixel component.
determine whether the output pixel is located in a region with In the following, we describe the adaptive interpolation pro-
a distinct orientation (edge) or not. Afterward, appropriateedure for those pixels that have valid neighborhoods. For each
filtering (interpolation) will be carried out using the input pixelsnput pixel, we first classify whether its block is located in an
to produce the output pixel. For pixels located along edgesjented or nonoriented region by examining its neighborhood.
directional filtering are performed along the edges rather thémtuitively, an oriented block possesses certain directional pat-
across it. This ensures that the visually annoying “staircat®n that often occurs in regions containing strong edges while
effect” does not appear along edges. a nonoriented block does not. Therefore, directional or oriented

We found that in color images it is sufficient to apply bilineamterpolation is used to interpolate the missing samples inside
interpolation for the chrominancé/(and V') components. An oriented blocks while bilinear interpolation is used for nonori-
adaptive interpolation is used for the luminandé) compo- ented blocks. Each oriented block is further classified by its
nent. The classification module determines whetheiritttem- dominant direction, which is quantized into eight major direc-
ponent’s neighborhood is oriented or nonoriented. Based on thans to reduce complexity and maintain robustness. The classi-
result, the desired resampl®&dcomponent is interpolated usingfication process is shown in Fig. 2.
the appropriate interpolation module. As a first test, we computé.,,,., and L., which is de-

The terminology that we use to explain the algorithm is ddined as the maximum and the minimum luminance value of
fined below. For each inptt component, we define it's associ-all the pixels in the current neighborhood. If the difference be-
ated block and neighborhood as shown in Fig. 1, where each te¢enl ., andL;, is less than 25, then the block is classified
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Input: Neighborhood of a pixel in the image. fy=fG+1j+)+2x f(e,j+1)+ fE—-1,7+1)
Output: Classification of the pixel as either oriented or - . P - .
nonoriented so that oriented or bilinear interpolation B f(L Ly 1) —2x f(L’J B 1) B f(L —Li- 1)
can be applied. 0 = —57.2958 x tan™"(f,/f,) mod 180°
1: Compute maximum (Lnqz) and minimum (L) lu- —11.25
minance in the neighborhood of the pixel. = ij 4+ 1mod7 0}
2: if Liaz — Limin < 25 then
3:  return nonoriented where f, and f, are the gradients of (z,y) in thez andy
4: else directions, respectively, computed atj), § is the full precision
5:  for all pixels in neighborhood do orientation and) is the quantized orientation.
? if (_’I;D‘E_matlo_r} a{c"e?dy ;‘_)mpgz‘fwthen Once we have computed the quantized orientatiasf each
. el;Z rieve orientation trot pixel in the neighborhood, we will calculate the histogram
o compute and quantize the orientation, and of quz?mtlzed_ orlen_tatlon. Subse_quently, we find the dominant
store it in RAM quantized or!entatlon from the hlstogram. llsé,tﬂa)S denotg the _
10: end if number of pixels that has the dominant quantized orientation
11:  end for in the neighborhood. If{,,,., > 6 then we declare the current
12:  compute the histogram of the orientation to obtain block as oriented with direction set to the dominant quantized
the most frequently occuring orientation. orientation. Otherwise, the block is said to be a nonoriented
13:  Himas+ number of times most frequent orientation block. The threshold value for deciding if the block is oriented
occurs in neighborhood is based on the fact that the neighborhood of a pixel consists of
14: if Hpao > 6 then 16 pixels, and we would like to classify the block as oriented
12 els"zt“m oriented only if a significant number of these show the same orientation.
17 return nonoriented Based on experiments _Wl_th test data, a valu_e of 6 was found
18 end if to be suitable for classifying the block as oriented. After the

19: end if classification, different interpolation is applied to find the
missing samples inside the block according to the block type.
For a nonoriented block, bilinear interpolation is used to ob-
tain the missing sampl& from the surrounding four original
image pixelsXy, X1, X», andX3 (see Fig. 1). The general for-
as nonoriented. Otherwise, we proceed with the classificatigfula for bilinear interpolation is given as follows:
process. The work in [1] suggests that a block can be classified
as “constant” based on the idea of “just noticeable difference”
which is a piecewise linear function of the average backgrourid= (1 =2)((1 —y) x Xo +y x X1)
intensity in the neighborhood of the block. Since implementing +z((1—-y) x Xo+yx X3). (2)
such a function in hardware is complex, the possibility of a fixed
threshold was considered. Based on experiments with test d&iace the location of resampled pixels are known to us, we can
a value of 25 was chosen for the threshold. Further, as notedurther simplify the evaluation of the bilinear interpolation. In
Section lll, the experiments also showed that this step can thés case, the four output pixels (see Fig. 1) are computed from
omitted without significant loss in visual quality. the input pixels a®); = Xy, 0, = (Xo+X1)/2,05 = (Xo +
In the next step, we need to compute the quantized orienfsz)/2 andOy = (Xo + X1 + Xo + X3)/4.
tion of each pixel in the current neighborhood. We set up a tableFor an oriented block, we use an adaptive directional inter-
in RAM whose dimensions are equal to the input image. Eaplolation technique. We model the missing samples inside the
table entry contains the computed quantized orientation for thck using oriented polynomials up to degrkeThe oriented
corresponding pixel of the input image at that location. All ermodel for the block is given by
tries of the table are initialized with a special flag indicating that

Fig. 2. Pixel classification.

no quantized orientation has been computed for this pixel and d—1
as the classification process proceeds, we will gradually replace f(z,y) = Z aj(ycosa — zsin )’ (3)
the flag with quantized orientation values. Since the classifica- =0

tion process needs to be carried out for each pixel and adjacent
pixels share common pixels in their neighborhood, we can elinvherej = 0, ..., d— 1. Here,f(z, y) denotes the desired inter-
inate redundant computation of the quantized orientation by gelated point inside the block arddenotes the dominant ori-
ganizing our information in this way. Therefore, we see that wantation of the block. The parametédenotes the degree used
will only compute the quantized orientati@n of the pixels in for the « orientation. In our system, we used degree 4 for the
our neighborhood, if it is not available already. Now, the quarrorizontal and vertical direction and degree 7 for the other six
tized orientatiorO is computed as follows: directions. As mentioned in [1], a higher order approximation
is used for the skew-oriented blocks as they have a higher de-
gree of freedom along the orthogonal direction (i.e., for a given
fo=fl+17+1)+2x fli+1,5)+ f@+1,7-1) orientation, more parallel lines can exist within the neighbor-
—f-1,7+41)-2x fi—1,5)— f(i—-1,7-1) hood for a skewed direction than for the horizontal and vertical
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Fig. 3. Pixel arrangement. :____,Bapk_é_,__: b©) FIR filter 0,
3 : computes O, =b@)f
cases). The coefficients are found through least square mod- e ; (o) l o
. . . . ; . e FIR filter 3
eling using the known original pixels in the neighborhood of the| | ... Bank7 computes Oy =c(a)f
block. It can be shown that the following relationship holds: 2 !
f(z,y) = h(HTH) *HTf 4) s |
where vectorf is a 16x 1 vector containing the lu- Shomrae
minance of the known pixels in the neighborhood of
the block with entries organized as shown in Fig. 3,
f = [po,pl,...,plg,]T,H is a sizel6 x d matrix with Fig.4. Computation requirements for adaptive interpolation in scaling by two.
entriesH; ; = (y;cosa — x;sina)’ " where(z;, y;) are the
corresponding coordinate pf (see Fig. 3), anth is 1xd vector .\ ) ceoe , ,
with entriesh; = (ycosa — xsina)i=1, N\ \\ / /
Let us define the vectow(a,z,y) = h(HTH)'H?T. \ \ \ / /”
Clearly,z is a function of the orientation and the resampled \ \\ \ / /
pixel's location (z,7). Since we know the location of the e o o0...'0'0

missing samples inside the bloekpriori, we can precompute
the following three weight vectors for each orientation used to
compute the output pixel82, 03, 04 as shown in Fig. 1.

@®—~e—-0 O 'ﬁ
a(a) = z(a,0.5,0.0) /j/

Fig. 5. lllustration of 1-D backward warping.

b(a) = z(«,0.0,0.5)
c(a) = z(,0.5,0.5) 5)

<0~ —0—=
where each one of these weight vectors is 16. The weight O/@/é
vectorsa, b andc can be precomputed and stored in a table *— >—o—~
(say, for example, in ROM). There are a total of eight sets of

weight vectors indexed by the eight quantized orientations. Each o — —0—
component of the weight vector can be rounded to four decimal /
accuracy. The configuration for our adaptive interpolation filter oo () oo
is shown in Fig. 4. The inputs to the system are the dominant

guantized orientation and the neighborhood of the current pixel. O Original Pixels

The orientation is used to address the appropriate bank of coef-
ficients. These coefficients are then used in the three filters on
the right portion of the schematic. The output pixels are found Fig. 6. Scanning pattern.
through the following relationship.

® Expansion Pixels

scaling by 2, we took a forward warping approach. For arbi-

O1=ps trary scaling, we use a backward warping approach. A 1-D il-
02 =a(a)f lustration of the backward warping approach is shown in Fig. 5.
03 =b(a)f In the backward warping approach, the pixels of the expansion
04 = c(a)f. (6) image are mapped back to the original image through coordi-

nate transformation. For those pixels that fall on the integer lat-
tice of the original image, we simply copy the pixel from the
original image to the expansion image. On the other hand, ex-
In this section, we discuss expansion by an arbitrary factpansion pixels that do not fall on the integer lattice of the orig-
Let the original image have widtk0 and height,0. Let the de- inal image are obtained through interpolation using the pixels
sired expansion have widthl, and heightyl. In the case of of the original image (see Fig. 6). We organize the computation

B. Direct Arbitrary Dimension Expansion
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r‘f;;ﬁgﬂ:]c:ogixe"s can haves? — 1 = 24 possible values for the vectér corre-
1 sponding to different values afandy. We can precompute and
store24 x 8 = 192 filters of 16 coefficients each in ROM.

We found that when performing an arbitrary dimension ex-

Po Py eee Psaua Py Pys pansion, better visual quality can be obtained if we combined

Generate the 1xd vector, $f the factor of two expansion with arbitrary expansion method
h starting from h,using described above. In other words, we apply the factor of two

the recursion h FIR filter Output ) . N . . . . )

hisr=h X by ¥ computes O; =a()f pixel ~€xpansions iteratively until the dimensions of the resulting in-
Z(0) termediate expansion image is no longer contained entirely in-

side the desired expansion dimension. At this point, we apply
the arbitrary expansion as described above to obtain the final

Z0y 12y ... image from the intermediate expansion image. For example, if
A Bank  Bank Bank we desire an expansion of 2.5 in each dimension, we perform

9 ! 7 an expansion of 2 followed by an expansion of 1.25 in each di-

- . ROM table of Matrix . . . ; . .
cos() sin(r) Z(®) Coefficients mension. This gives better visual quality than if we performed
an expansion of 2.5 directly using the arbitrary expansion algo-
\ ‘ rithm described in this section.
X y Quantized

Orientation o The adaptive scaling algorithm was applied to the Car Phone
sequence in QCIF format. Frame 10 of the original sequence is
Fig. 7. Computation requirements for adaptive filtering in arbitrary expansioghown in Fig. 8(a). Fig. 8(b) shows Frame 10 when scaled by a
) i ) ) o factor of 4 (i.e., 4CIF) in each dimension using only bilinear in-
of the output pixels in the following way. First, we visit eacherpolation. Fig. 8(c) shows the same frame scaled using Cubic
block in the input image in a raster scan format. Then_ for ea_@ibline interpolation. Fig. 8(d) shows Frame 10 when scaled
block, we compute all of the output pixels that map into thigsing the adaptive scaling algorithm. Finally, Fig. 8(e) shows
block before we leave th_e_block. This process |s_shown_ in Fig.Brame 10 when scaled using an emulation of a Verilog descrip-
The advantage of organizing the computation this way is that tfi of the adaptive scaling hardware (we will describe the hard-
classification process will only be done once per block. For eagfyre architecture in detail in Section I11). The emulation takes
inputimage block, we perform classification as described for thgq account finite precision hardware effects in the orientation
scaling-by-two case. Then we interpolate the output pixels thggle computation as well as in the filtering. No perceptable dif-
are mapped back inside this input block. For output pixels th@lence is observable between Fig. 8(d) and (e).

fall inside a nonoriented input block, we use bilinear interpola- pye to the printing process, the visual quality of the images
tion. For output pixels that fall inside a nonoriented input blocky 5y pe |ost.

the directional adaptive filter is used. Since we do not know the
location of the output pixels (for any arbitrary irrational scaling
factor) inside the input block priori, the following simplified
computational procedure will be taken. Let us definedhel6

matrixZ asZ(a) = (H"H)~'HT. Hered is the degree of ori- | this section, we develop an efficient hardware architecture
ented polynomial used for theorientation. The matrices(a)  pased on the algorithm developed in the previous section. In par-
can clearly be precomputed for each of the eight orientations agq,jar, we focus on developing an architecture for scaling by a
stored in ROM as a table. Then, we can obtain our desired outpdfttor of two in each dimension. Then, we discuss the imple-
pixel through the following relationship with andf based on  mentation tradeoffs based on this architecture. Area/throughput
(4): estimates based on the synthesis results of a Verilog descrip-
tion of this system will be discussed to show the feasability of a

I1l. ARCHITECTURE AND DESIGN

,y) = hZ(a)f. 7 ) ) ) :
f.y) (@) ) single chip ASIC implementation.
Fig. 7 shows the implementation of the direct arbitrary dimen- The data flow graph for th& andV' components is shown
sion expansion system. in Fig. 9. The architecture for the two bilinear units required

If the expansion factor is irrational, then the computatiofor the U and V' components are discussed in Section IlI-E.
shown in Fig. 7 needs to be performed. In the special case whwa now focus on developing an architecture Yocomponent
the expansion factor is a rational numbgiy wherep andq computation. The flow diagram of the computation for e
are relatively prime, some simplifications can be made. We otemponent is shown in Fig. 2.
serve that there arg®? — 1 noninteger pixel positions possible In hardware implementations, it is desirable to reduce the
after backward warping of the expansion pixels onto the origumber of branches (or decision boxes) in the flow diagram.
inal image. In other words, there are ol — 1 possibilities We found that the classification can be simplified with an im-
for h and only8 x (p? — 1) possible filtershZ(«). Therefore, if perceptible loss in performance. In particular, we can avoid the
p is small, we can precompute the filters (instead of performirgpmputation of the maximum and minimum luminance values
the matrix vector multiplication on-line to findZ(«) shown in in the neighborhood of a block as well as the check on the mag-
Fig. 7) and store them in ROM (just as in Fig. 4). For examplejtude of L,.x — Lmin. One possible reason for this observa-
Fig. 6 shows a scaling &£5 = 5/2. For this scaling factor, we tion is as follows: Our algorithm applies bilinear interpolation
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(d)

Fig.8. (a)Frame 10 of car salesman. (b) Bilinear interpolation. (c) Interpolation using cubic spline. (d) Adaptive interpolation algoritheptie iterpolation
result from Verilog description.

pixel uv blocks that are nearly constant, it is very likely that no single
BILINEAR PIXEL orientation will be dominant, so most such blocks will undergo
MEMORY bilinear scaling rather than directional adaptive scaling. This
could account for the negligible loss in visual performance even
u10,0], uv[0,0.5] when this step is omitted. In software implementations that do
uv0.5,0], uv[0.5,0.5] not penalize conditional branches as heavily as hardware, it may
be worthwhile to retain this check to ensure that constant blocks
Fig. 9. Dataflow graph of computations for th/V component. are scaled using a normal bilinear interpolation. The modified

flow diagram can be obtained from Fig. 2 by removing the com-
to compute pixel values both for the case where a block is cquitations in lines 1 and 2.
stant(Lmax — Lmin < threshold), and for the case where no A data flow graph based on this flow diagram is shown in
single orientation is clearly dominafW¥,,,.. < threshold). For Fig. 10(b). Fig. 10(a) shows the notation used for the pixels, an-
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Pixels used in . .
computation for pixels pixel in

around p[0,0]
[-1-1]
f SOBEL 1:3,1:3 ‘—J

GRADIENT I\/féf\(/IFE)Ii(Y
OPERATOR

fy

fx

ORIENTATION
ANGLE a[2,2]
COMPUTATION

ANGLE
MEMORY

a[-1:2,-1:2

HISTOGRAM
COMPUTATION

Orientation
if oriented

address
Cols. ROM FILTER p[~1:2,-1:2]
r[-1:2,-1:2]

p’[0,0], p’[0.5,0]
p’[0,0.5] , p’[0.5,0.5]

(b)

Fig. 10. (a) Neighborhood of the present block. (b) Dataflow graph of computations in required in adaptive scaling.

gles and filter coefficients. In Fig. 10(b), output pixels are beinigr the angle memory is 15. This memory bandwidth can be
computed for the block corresponding to pix€D, 0) in the reduced by studying the structure of data that is required by the
original image. The angle memory stores the previously coralgorithm. For example, the memory bandwidth can be reduced
puted orientation angles so that recomputation can be avoidedgsntroducing some storage elements (i.e., registers) into the
mentioned in Section lI-A. The pixel memory stores the pixelSobel, histogram and filtering units as shown in Fig. 11(a). In
of the original image. The Sobel block computes the gradieritdés case, the memory access rate for the pixel data memory
f= andf, atp[2, 2] using the pixels shown within dotted lines incan be reduced to seven per input pixel. Similarly, the memory
Fig. 10. The angle block finds the quantized orientation angle faccess requirements for the angle memory are reduced from
pixel p(2,2). Then, a histogram is computed for the orientatioh5 to three. The pixel memory access requirements can be
angles in the neighborhood to find a dominant orientation (if firther reduced to five if pixelg(1,2) andp(2,2) which are
exists) for the block. In particular, the orientation that occumvailable in the Sobel unit can be shared with the filtering unit.
the maximum number of times is found. Théh,., is com- This is shown in Fig. 11(b). Also, note that the pixel and angle
pared with 6 to determine whether the block is oriented or nahemories are shown as delay lines. Due to the structure of the
If the neighborhood is oriented, then the appropriate filter coedata accesses in Fig. 11(a) and (b), delay lines can be used
ficients are loaded from ROM and the interpolated pixels withimstead of random access memories.
the block are found. Note that in a scaling by two, we need to We also observe that the graph is feedforward. Therefore, we
compute only three interpolated pixels per block. The fourttan apply pipelining at any feedforward cutset. For example,
output pixel matches exactly with(0,0). The filtering block pipelining can be applied by using the Cutset 2 shown in Fig. 11.
computes three inner products as mentioned in Section Il-l.can also be noted that if such a pipelining is applied, the
Note that bilinear interpolation case can also be handled by thipeline registers for the pixelg[2, —1 : 0] can be merged
same filtering unit. This can be achieved by storing another filtaiith the pixel delay lines. Similarly, the pipeline registers for
in ROM with coefficients corresponding to the bilinear interpop[2,1 : 2] can be removed by sharing data available in the
lation. Thus we do not require separate hardware for the bilineawbel unit’s registers. Additional pipeline stages can be applied
interpolation of theY” component. at other feedforward cutsets to obtain further speedup.

From the dataflow graph in Fig. 10(b), we observe that In general, if the original image sequence Hasows and
the memory bandwidth required from the pixel memory i€ columns atF’' frames per second. Then, the system must be
9 4+ 16 = 25 pixels for every input pixel (or every four outputable to accept input pixels at the raiex C' x F. This must
pixels). Similarly, the memory access rate per input pixéle keptin mind when designing the individual units as well as
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Fig. 11. Modified dataflow graph (a) showing reduced memory bandwidth requirements and (b) showing further reduction in memory bandwidth.
when deciding whether pipelining stages are required betwegiders (CPA). If the throughput of the system is not constrained

the various units. In the next few sections, we consider each umtthe Sobel operator, we can fold the data flow graph so that
in detail and discuss various architecture level tradeoffs based use only four 12-bit adders and reuse the adders over three

on the system requirements. clock cycles. Now the critical path is determined by a single
) 12-bit adder but we need three clock cycles. The adder com-
A. Sobel Computation plexity has been halved while some additional control circuitry

The Sobel operator involves computifigandf, as given by and registers are required.
(1). A straightforward implementation would require ten adders On the other hand, if we wanted a fast Sobel operator, then

to computef, and f,,. We can rewrite (1) as we would use the architecture shown in Fig. 12. Here carry save
adders (CSA) are used (except at the final stage). A total of ten
fo=(fE+1,7+1) = fli—1,j-1)) 12-bit adders (eight 12-bit CSA s and two 12-bit CPA s) are re-
+2x (fi+1,5)—fG—1,9)+(fGE+1,5—1) guired. The critical path would now consist of three 1-bit full
—fli—1,j41)) adders plus one 12-bit CPA. There seems to be no apparent ad-

Y p i 14 TN (£ L vantage with this circuit. However, by speeding up only the last

o= (/0 + LJ + D= fli-1j-1)) = (fi+1,j-1) stage adder, the critical path of the combinational implementa-
- f—=1,j+1)) tion can be reduced. In a conventional implementation [15], all
+2x (f(i,j+1)— f(i,5 —1)). (8) adderswould need to be speeded up to obtain critical path reduc-

) o ] ) tion. In summary, we can conclude that the most efficientimple-
We assume for simplicity of discussion that all the adders are i g hiation is a folded version of a conventional implementation.

bits (the output precision when no rounding is performed Withiﬂowever, when a high speed implementation is required, the

the computation). By using subexpression sharing as suggesigfhntation can be performed as in Fig. 12 to obtain speed-up.
by (8), we can reduce the complexity of the Sobel operator to

eight 12-bit additions. Clearly, all the adders need to be car,
propagate adders (CPA) to permit sharing. Then the critical path,
if the data flow graph is implemented as a combinational circuit, After f, and f, have been computed, the next step is to com-
is given by two 1-bit full adders and one 12-bit carry propagafmite the corresponding quantized orientation an@las de-

Orientation Angle Computation
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PILIL p(23] pL21) p[L3] pl1.2) p[3.2) 2+ 1) = 2(i) — psa(i) wherea(i) = 2=(), With this se-

quence ofs(), any angle betweer90° and 90 can be accu-
<<l pp,11 pl1,11 p33]  mulated. Usually, we set(i) = i so that at step, (z(4), y(7))
. J is rotated by an anglean(2~%). Since we want to define the
quantization regions with an accuracy df, 2he angle accu-
mulation must be approximated withifi.2This means that we
need at least six stages of CORDIC followed by a look-up table
(addressed by the vectpg;i = 0,1,...,n — 1). The look-up
table ha® words of size 3 bits. Later we show how a modified
CORDIC-like procedure can be used to perform the required

computation using five stages followed by a look-up table of

size 2* words of size 3 bits. In fact, the look-up table can be
simplified into three combinational functions of four variables
£ each.

Let us assume that as a first step we find the absolute
Fig. 12. Sobel operator computation using carry save technique.  value of f, and f,. This ensures that we have a point
in the first quadrant. In particular, we want to efficiently

scribed by (1). The two 12 bit integefs and £, are divided rgpresent the angles that separate.the guantization regions
and the resultf, / f, is computed at an appropriate precisior‘."e" 11.23, 33.79, 5?;)23’ 78.75) in terms of the ele-
Then the quantized angfe is computed using a ROM |00kupmentary anglesatan(T V)i = 107 %7 SRR Forl exa2mple,
table. The ROM table is a quantized versiorfof 57.5958 x W€ jan_g/vnte 78.75°71z_3tan— (2 )71+ _(zan_ (27%) +
tan~1(— f,/f,) mod 180°. Using the quantization terminology ' 0(2 ) + _(lta% (27%)  tan (2 ))'_1 S|[n3|IarIy,

in [5], the anglesp; = 11.25° +22.5° x 4;i = 0, 1,...7 corre- 56'251 =, fan™ (2 )1"' (Zfan (27%) + tan™(2 1)) o
spond to the transition levels and the angles- 22.5° x i;i — (120~ (12_ )2 + tan- (23_ ))733'7501 N (Z )
0,1,...7 correspond to the reconstruction levels. Clearly, thg(tan™" (27 >+tan1_ (02_ >>+(taln_ (22_ )'Harll_ (g_ )

size of the ROM table and the precision required in the divisidﬁ“jlll'%o3 ~ tan” (12 ) R (tan™"(27%) + tan™(277)) —
would depend on the accuracy with which we need to defifé (27°) + tan""(27%)). This means that if we use
the orientations. For example, if we could allow aeror in & CORDIC type computation with the shift sequence
specification of the transition levels, then we can compute tf€) = 0,2,3:3,4;¢ = 0,1,2,3,4 and appropriate con-
precision that would be required in the division operation. iifol to decide whether to add or subtract at each stage, we can
particular, a 2 error in the quantization region at 112ould obtain the required quantized orientation angle. The complete

imply that we need to choose the precision so that we can repREehitecture is shown in Fig. 13. We note that apart frrom the
sent the difference betweenn(11.25°) andtan(13.25°) (i.e., S19ns off. andf,, we need the sign (i) for i = 1,3,5 to
tan(11.25°) — tan(13.25°) = 0.036). We consider the transi- determine the orientation, as shown in Table II. This is shown as

tion level 11.25 because at this angle the derivative of the taf Combinational function in Fig. 13. Note that this signal flow
function is the smallest amongst all the transition levels. A prg_raph can be folded [8] onto a single CORDIC like processor
cision of at least 5 bits after the decimal point is required to re%:bta'” an area efficient implementation. If the throughput of
resent 0.036. This requires that the division provide an output'@f @ngle computation is critical, the unfolded data flow graph
12 + 5 = 17 bits. The size of the ROM look-up required wouIdSho"Y” in Fig. 13 can be directly mplemented. See [15] for the
be2'7 — 128 K words of size 3 bits each. Clearly, the hardward€tails of the folded implementation.

complexity required for this approach is extremely large. . .

The CORDIC trignometric computation technique was pro(;' Histogram Computation
posed in [6] as a technique for computing plane rotations asAfter the orientation angles in the current pixel's neighbor-
well as in conversions from rectangular to polar coordinate300d have been computed, the next step is to compute the his-
The CORDIC computing technique also allows us to comput@gram of the pixel orientations in the neighborhood. As men-
various trignometric functions. In particular, when the CORDI@ioned before, a complete histogram is not necessary. We need
processor is used in the ang|e accumulation mode [7], the an@éind the dominant orientation in the neighborhOOd as well as
f = tan~'(Y/X) corresponding to the initial point coordinateghe number of times that orientation occurs. The most obvious
(X,Y) is computed. The angle is found by applying a series #fy to implement this computation is shown in Fig. 14. In this
shift and add operations on the initial coordinat&sY'). Each architecture, the 16 registers holding the pixel orientations in

CORDIC circular rotation step performs the neighborhood are each connected to a 3 to 8 decoder. If, for
example, the pixel orientation s then thesth output is 1 and
z(@+1)| 1 —ui27O 7 T2(i)] all others are 0. Then, for each orientation, a (16, 4) compressor
[y(i + 1)} n [u,;z—S(’i) 1 } [y(i)} ' counts the number of times each orientation occurs(#\mn)
i=0,1,...,n—1 (9) compressorisacombinational circuit that sumsitsputs and

provides ann-bit encoding of the sum as its output. Finally, the
wherep; = —sign ofz; - y;. Note that the angle can be rep-dominant orientation is found along with the number of times it
resented as a sequence nfs. The angle is accumulated asoccurs.
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11-bit signed i - & fy-fy 11-bit signed Funcg?na“ty then the bilinear filter involves only the region around the cur-
| | ' adder/subtractor rent pixel (see Fig. 1). In general, the same hardware can be used
sgn(fo) | sgn(ty) KB whether the neighborhood is oriented or not. When bilinear fil-
%o ‘y_O\t:D @f/ sub/add tering is required, the coefficients corresponding to the unused
pixels in the neighborhood can be set to zero.
>< The specific filter coefficients needed for oriented filtering

are shown in the Appendix of [15]. In order to enable imple-
mentation of the filter using fixed point arithmetic, the coeffi-
cients need to be quantized./Ibits are used to represent each
signed filter coefficient, then we can place an upper bound on
the error in the output due to this quantization. We are in fact cal-
culating an inner product which has the fogm= Z,lfzo hipk
whereh;, are the filter coefficientsp;, are in the input pixels

3-bit andy is the filter output. All the filter coefficients are such that
Comb.| Orientation . o . . .
fn. [com@ponding |7k < 1. The maximum quantization error in the filter coeffi-
tofy & fy cients is given byyA| = 2-(~2)_ The maximum possible error

at the output will be given by eitheN,qs max X A X 255 or
Niegmax X A X 255 whereNpos max IS the largest number of
positive coefficients in any required filter an¥; ey max is the
largest number of negative coefficients in any required filter. For
our caseNpos max = 10 @aNdNyeq max = 8. This means that the
maximum possible error due to coefficient quantization is given
by 2550 x 2~(=2)_In order that the error is upper-bounded by
5, we need = 11 bits. Note that the bound we have derived is
not tight. We found that = 10 bits is sufficient and no signifi-
cant error is introduced by the quantization process.

Fig. 13. Angle computation using CORDIC-like technique. Clearly, the fastest implementation would require 16 multi-
pliers per output pixel. This means a total of 48 multipliers. Ob-

Clearly. this i | ircuit with global icati serve also that the required multipliers ai fixed coefficient
early, this 1S a complex circuit with giobal communicatiory, . general purpose multipliers. This is because the filter corre-

between the dechers andthe COMPressors. S_UCh a complex%hding to different orientations are different. It would not be
aII_eI |mplementat|on would be required |fthg histogram COMPYaasible to have such a large number of multipliers on a single
tation is the throughput bottleneck. Otherwise, the archltectugﬁip. This would mean that a transformation of some form must

can 'be folded to obtain a much smpler |mplementat|or1 (shov& applied so that the multiplier hardware can be reused. One ap-
in Fig. 15). The contents of the orientation angle registers ?&E

. . oach is to fold the computation required for each output pixel
compared with the 3-bit counter output every clock cycle. T to a smaller number multiply-accumulate (MAC) units. The
outp_uts of the comparators_ are fed to a (16, 4) comp_resso_rcpoice of the appropriate number of MAC units (in other words,
obtain the total number of pixels that have the same orientati

ding to the 3-bit i tents. The dominant ou folding factor) will depend on the throughput requirements.
corresponding to the S-bit counter contents. The dominant ofy particular, if we had one multiply accumulate unit for each
entation and the maximum count registers are both |n|t|al|zc(=jgnput pixel, then we would need a total of three multiply accu-
to zero. .AISO’ during each cycle the output of the (16, 4) COMKulate units. The architecture for computing one output pixel
pressor is compared with the previous contents of the maxim,

. If th tthe (16. 4 1 this case is shown in Fig. 16. The pixel data and the control
countregister. [f the present output of the ( ' ) COmpressord?cuitry is shown on the right hand side of Fig. 16. The partial
larger than the previous contents of the maximum count reg-

ister. both th . t and dominant orientat Hims of the filtering operation are accumulated in carry save
Ister, bo € maximum count and dominant onentation réQigs,, the final addition is performed after the 16 MAC s have
ters are updated. The maximum count register is updated V“btg
. en completed.

the output value from the (16, 4) compressor, while the domi-

nant orientation register is updated with the present 3-bit counter _

contents. Therefore, after eight cycles desired histogram dat&isBilinear Interpolation for/ and V' Components
obtained in the maximum value register and dominant orienta-

. . As mentioned earlier, it is enough to perform bilinear inter-
tion registers.

polation for thelU and V' components (no classification is re-
quired). A straightforward implementation would require five
adders. A more efficient architecture is shown in Fig. 17 that

We observe that when performing a scaling by a factor ofuses sub-expression sharing [8] to reduce the number of adders.
in each direction, we need to find three interpolated pixels pkrconsists of four 8-bit carry propagate adders. The division by
input pixel. When the neighborhood around the current pixeltiao is achieved by a simple right shift by one bit. Note that
oriented, the oriented filter involves all the pixels in the neighwo such bilinear units are required—one each forthand
borhood. On the other hand, if the neighborhood is nonorientdd,components.

D. Oriented and Nonoriented Filtering
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Fig. 15. Folded architecture for histogram computation.

can perform scaling in this manner. The system architecture
is shown in Fig. 18. There are two identical scaling blocks
In this section, we discuss the system level tradeoffs thadrresponding to scaling from QCIF to CIF and from CIF to
are involved in the design of a video scaling system. THECIF. The input delay lines providé component of the pixel
H.261/H.263 standards [9] for videoconferencing/videotelés the sobel, angle and filter units. They also providendV
phony specify two possible video formats, viz., QCIF and ClIEomponents to the bilinear unit. In all, four input delay lines are
In order to enable a scaling of the videotelephone/videoconfeileeded for th&” component and lines lines (of half the size)
encing signal, we consider here a scaling from QCIF (144 rodiar the U and V' components. As explained in Section IlI-D,
by 176 columns) to 4CIF (576 rows by 704 rows) at 30 frameke output pixels corresponding to a block of pixels (shown in
per second. As mentioned before, performing the scaling fig. 1) are generated at one time. In order to convert the output
two steps (i.e., from QCIF to CIF and then from CIF to 4CIFpixels to raster scan (progressive scan) order, output sync delay
leads to better performance. We consider an architecture tliaé¢s are required. We note that four lines are required for each

F. System Discussion and VLSI Design
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Fig. 17. Bilinear interpolation fot” andV" components.
Orientation
[S“m Ace. '3"” Ace (corresponding to the second scaling-by-two block in Fig. 18),
— Control a clock cycle of less tha328/42 ~ 7.81 ns is required. The
above assumes that there is no pipelining between units.
In order to show that the throughput can be attained in a
Filtered result real design, we described the various blocks in Verilog, syn-
after 16 MAC’s . . . . .
are completed thesized them and performed a static timing analysis to esti-
mate the speed. The synthesis was performed using,an
Fig. 16. Folded filter architecture. standard library using Cadence’s Synergy tool. We also esti-

mate the area based on an automatic layout of the standard cells

of theY, U andV components (two lines are used to store thésing Cadence’s Silicon Ensemble corresponding to the com-
output from the filter/bilinear units and while the other twgutation and control circuitry. The area of the delay lines and
lines provide the outputs in progressive scan order). ROM were estimated based on the literature [10]-[12]. Our goal

A QCIF video sequence at 30 frames/s has a pixel rate isfto perform synthesis to obtain a clock period as close to 8 ns
7.6 x 10° pixels/s while a CIF video sequence has a pixel rates possible. If we are unable to attain the required throughput,
of 3.04 x 106 pixels/s. The first scaling-by-two block (QCIF tothen there are two possible approaches. The first approach is to
CIF)is required to compute the four output pixels correspondirgpply pipelining to obtain a speed-up that allows us to meet the
to one input pixel within 1315 ns. The second scaling-by-twhroughput. Alternately, we can use a newer technology such
block (CIF to 4CIF) is required to compute the output pixelas0.5.m. If we assume a linear scaling of propagation delay
corresponding to one input pixel within 328 ns. In general, f¢1.3] with technology, then it is enough to obtain a critical path
an image with dimensiof rows andC' columns at a frame rate of 8 x 0.8/0.5 = 12.8 ns. In reality, the scaling will be less
F, the time available to compute the output pixels in the regiorthan linear so that the requirements using@tsg: library will
around one input pixel can be written as be tighter. In the following, we assume that the target was to

10° achieve the throughput requirementsd&tm. Therefore, all

=— (10) synthesis timing requirements were scaled uf.gam. A Ver-

FxRxC ilog description was specified for each computational block. In
wheret is in ns. addition, a controller was designed that handled all interaction

We first estimate the number of clock cycles required by eabletween blocks. Besides, the controller also maintained a count
unit to complete the computation corresponding to one inpot the rows/columns and handled image boundary conditions.
pixel. This will tell us whether or not we need pipelining be- The synthesis results suggested that the final adder of 22 bits
tween units [like that shown in Fig. 11(b)] to obtain the rein the filtering block be separated into two 11-bit additions per-
quired throughput. Based on the architecture shown in Fig. I6rmed in consecutive clock cycles. This enabled a clock period
at least 17 clocks are needed to complete the filtering compulass than 12.8 ns. A total of 20 clocks were needed to complete
tion. Similarly, the folded histogram architecture requires abotite filtering (assuming that the histogram output was available).
ten clock cycles to complete the histogram computation. TheArchitectures were specified in Verilog for the other blocks
angle computation requires about seven clock cycles while the that the required clock speed can be matched. The Sobel
folded Sobel computation requires about three clock cycles. \M@mputation was implemented using the carry save technique in
estimate that the architecture takes about 37 clock cycles to cdfig. 12. This was required in order to meet the clock speed re-
plete the output pixels corresponding to one input pixel. Takirgyirements. A total of three clock cycles were required to com-
into account the interface between these units and the outpléte the computation.
synchronization delay lines, a total of 42 clock cycles are re- Some optimizations were required in the folded CORDIC-
quired. This means that for real-time conversion of CIF to 4Clfased angle computation unit in order to match the clock speed

t
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Fig. 18. Overall system architecture for scaling-by-four in each dimension.

TABLE |

CELL AREA AND TIMING FROM SYNTHESIS

Name of Unit | Standard Cell Count | Standard Cell Area | No. of Clock Cycles | Synthesis Timing
Sobel 702 911601.00 3 10.76ns
Angle 815 769414.50 7 10.81ns

Histogram 410 393295.50 10 8.04ns
Filter 841 815625.00 20 9.80ns

501

requirements. The critical path was governed by the 15-bit adder TABLE I
that was used to perform the CORDIC shift and add operation. ORIENTATION AS A FUNCTION OF SIGNS OFy/—1, &1, 41, Ys AND Y5
The implementation of the 15-bit adder was modified into a

carry select adder [14] with three blocks of 5 bits each in order Sgn(i— L) 8975‘”) Sg”_iy“”) 897.195) 080
to meet the clock speed requirements. The complete angle com- -1 -1 -1 +1  [o001
putation requires seven clock cycles. . -1 -1 +1 -1 001
The histogram was implemented as shown in Fig. 15. Again, -1 -1 +1 +1 [010
optimizations were required to meet the throughput require- -1 +1 -1 1 010
ments. The critical path consists of the 4-bit equality compara- = +l -1 +1 ol
. -1 +1 +1 -1 011

tors, the (16, 4) compressor followed by the 4-bit comparator. In ) ] 1 T 100
order to meet the throughput requirements, the unit was inter- 1 3 1 1 000
nally pipelined. The (16, 4) compressor was split into four (4, 1 1 1 T1 111
3) compressor circuits followed by an adder that sums up the +1 -1 +1 -1 111
four results from the four (4, 3) compressors. The first pipeline +1 -1 +1 +1 | 110
stage consists of the 4-bit equality comparators and the four (4, +1 +1 -1 -1 110
3) compressors. The second pipeline stage consists of the adder +1 +1 -1 +1 101
that sums up the results and the 4-bit comparator. This allowed E Ii ﬁ ;11 igé

a clock speed less than 12.5 ns.

Table | summarizes some of the synthesis results using Ca-
dence’s Synergy tool. Note that three such copies of the filtgr
are required to compute all three interpolated output pixels in
parallel. The computation and control parts required an area ofThe architecture we have proposed in the previous section can
35.3 mn? at0.8m. The delay lines required an estimated ardze extended to handle the scaling of larger input image sizes.
(based on [11]) ok43 mm? at 0.8 pm. This implies a total This will require increasing the throughput by applying a com-
area of~78.3 mm? at0.8 pm. Assuming that the areas scaldination of pipelining and parallelism as suggested in Section II.
by (5/8)2, an area of about 30.6 nfnat 0.5 um. The results In particular, by using two multipliers per output pixel (instead
indicate that without pipelining between units we can achiewd the one multiplier we used in Fig. 16), we can complete
the throughput required to scale a QCIF image to a 4CIF imate filter computation irc12 cycles. Let us introduce pipeline
at 30 frames/s using@5um technology. latches after the Sobel and angle units (at Cutset 1 in Fig. 11)

Extension to Larger Image Dimensions
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and after the histogram unit (at Cutset 2 in Fig. 11). The pipelingl5] A. Raghupathy, “Low Power and High Speed Algorithms and VLSI
stage that takes the largest number of clock cycles is the filter ~ Architectures for Error Control Coding and Adaptive Video Scaling,”,
. : Ph.D. dissertation, Univ. Maryland, College Park, Dec. 1998.

stage. This means that we have managed to raise the throughput

by a factor 0f42/12 ~ 3.5. This means that at.5,m we can
expect to handle an image of size abagg x /3.5 rows by
352 x /3.5 or nearly538 x 658. If we had access t0.25 um
technology, we can increase the throughput by a further fac
of two. In other words, we can handle input image sizes of up
760x 930. This suggests that our architecture could find app
cation in conversion from SDTV to HDTV (see [9] for summary
of HDTV standard).
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