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Fast Algorithms for 2-D Circular Convolutions 
and Number Theoretic Transforms Based 

on Polynomial Transforms Over Finite Rings 
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Abstract-In this paper, we develop new fast algorithms for 
2-D integer circular convolutions and 2-D number theoretic 
transforms (NTT). These new algorithms, which offer improved 
computational complexity, are constructed based on polynomial 
transforms over 2, ; these transforms are Fourier-like transforms 
over Z1,[.r], which is the integral domain of polynomial forms 
over Z,. Having defined such polynomial transforms over Z,,, 
we prove several necessary and sufficient conditions for their 
existence. We then apply the existence conditions to recognize 
two applicable polynomial transforms over Z,: One is for 1) 
equal to Mersenne numbers and the other for Fermat numbers. 
Based on these two transforms, referred to as Mersenne number 
polynomial transforms (MNW) and Fermat number polynomial 
transforms (FNPT), we develop fast algorithms for 2-D integer 
circular convolutions, 2-D Mersenne number transforms, and 2- 
D Fermat number transforms. As compared to the conventional 
row+lumn computation of 2-D "IT for 2-D integer circular 
convolutions and 2-D NTT, the new algorithms give rise to 
reduced computational complexities by saving more than 25 or 
42% in numbers of operations for multiplying 2', i 2 1; these 
percentages of savings also grow with the size of the 2-D integer 
circular convolutions or the 2-D NTT. 

I. INTRODUCTION 
N THE applications of image/video processing and cod- I ing, the computation of 2-D (linear) convolutions are of 

considerable importance [ 11, [2]. For instance, in the well- 
known subband image coding scheme, a full-band image is 
split into subbands by means of 2-D filter bank before the 
encoding operations [3]. Due to the huge number of data 
samples associated with these applications, direct-computation 
of 2-D convolutions is obviously impossible, and, thus, various 
fast algorithms are used [4], [5 ] .  A popular technique for 
computing 2-D convolution is to convert the original 2-D 
convolution into a 2-D circular convolution, and to utilize fast 
transform algorithms to compute the 2-D circular convolution 
[4]. In this paper, we will develop new transform-based fast 
algorithms for the computation of 2-D circular convolutions. 

In the digital signal processing applications, the values of 
signal samples are typically represented using a finite alphabet. 
Because of this finite resolution, the number system of finite 
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rings, e.g., 2, = (0.1 . . . . . p  - 1) (61. can be used for the 
calculations in digital signal processing. More precisely, in 
the case of a convolution': 

where h k  and 5; assume integer vdues. the output y; also 
assume integer values. Supposing the aino\ute valuis of yi are 
upper bounded by a positive number M. then if M 5 p / 2 ,  
the output, vi = C k  h k 2 i - k  mod p. of the same convolution 
operated on 2, can be translated uniquely to y;:y, = wi if 
wi 5 p / 2 ;  y; = 21; - p  if vi 2 p / 2 .  Performing the calculations 
such as convolutions on Z, rather than on the ordinary integer 
set has several advantages: 

The residue arithmetic associated with the operations 
on 2, can be implemented relatively cheaply and 
performed very efficiently. especially in parallel and 
pipeline systems (71. 

ii) There are no round-off errors. 
iii) There exist very efficient algorithms (e.g.. number 

theoretic transforms (NlT's)) [4]. [SI. [SI. and more 
efficient algorithms, such as the ones for 2-D circular 
convolutions presented in this paper. can be developed. 

In this paper, we focus on the development of polynomial 
transforms over a specific finite ring, namely. Z,. [6] whose 
definition will be stated later on, and the fast algorithms associ- 
ated with these transforms for 2-D circular convolutions. These 
polynomial transforms over Z, are Fourier-like transforms 
over Z,[a] of polynomial forms [6]. An existence theorem for 
such Fourier-like transforms over arbitrary finite commutative 
rings with unity is given by Dubois and Venetsanopoulos 
[9] with applications for 1 -D circular convolutions. However, 
the condition of the existence theorem in [9] is in general 
difficult to apply, due to the computational difficulty of various 
parameters. Maher later pointed out in [IO] that. in most 
practical cases of concern, the rings may be characterized as 
algebraic extensions of finite rings. and that in these cases 
there is an existence theorem which is much easier to apply as 
compared to that of [9]. Maher also mentioned the computation 
of 2-D circular convolutions as an application for such Fourier- 
like transforms, motivated by polynomial transforms [ 1 I ] ;  but 
the algorithm is very briefly described based on a special case. 

i) 

'The computational operations needed in a convolution are additions. 
subtractions, and multiplications. 
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and it is not clear whether or how much one can save in terms 
of computational complexity by using the new technique as 
compared with the existing algorithms such as 2-D NTT. In 
this paper, we will follow the general direction of above while 
concentrating on the application of 2-D circular convolutions. 
We will define a group of Fourier-like transforms over Zp[z] ,  
which are called polynomial transforms over Z,, and will 
give several necessary and sufficient conditions for their 
existence. These conditions will be applied in a rather straight 
forward manner to obtain two specific groups of transforms, 
namely, Mersenne number polynomial transforms (MNPT’s) 
and Fermat number polynomial transforms (FNPT’s), which 
are of direct applications to the computation of 2-D circular 
convolutions. The complete algorithms will be provided along 
with the computational complexity analysis and comparisons 
against 2-D NTT. New fast algorithms for 2-D NTT are 
also developed based on MNPT and FNPT. The results of 
the complexity analysis show that new fast algorithms offer 
reduced complexities in terms of numbers of computational 
operations. More precisely, new fast algorithms give rise to 
savings on the numbers of the operation for multiplying a 
number by 2i, i 2 1; these savings are more than 25 or 42% 
(and are growing with the size of 2-D circular convolution 
or 2-D NTT) of the numbers of such operations in the 
conventional row-column computation of 2-D NTT. These 
complexity savings of the new algorithms are also confirmed 
by a simulation experiment on the actual computing time. 

The paper is organized as follows. In Section 11, polynomial 
transforms over 2, are defined, their necessary and sufficient 
conditions of existence are stated, and then the MNPT and 
FNPT are introduced. Applications of the introduced trans- 
forms to the computations of 2-D circular convolutions and 
2-D NTT are included in Sections I11 and IV. The analysis 
and comparisons of computational complexity are presented 
in Section V. Finally, Section VI contains a summary and 
conclusions. 

11. POLYNOMIAL TRANSFORMS OVER FINITE RINGS 

In this section, we introduce the notations, define polyno- 
mial transforms over 2, and provide several necessary and 
sufficient conditions for their existence. 

We denote the set of all integers by 2, and the commu- 
tative ring: {0,1, . . . , p - 1)  with addition and multiplication 
modulo the integer p 2 2 by 2, [6]. The equality of two 
numbers a and b in Z, are denoted by a b mod p. We also 
use the notation ( a ) ,  for the modulo p arithmetic on a, for 
example, (4)3 = 1. A polynomial f ( z )  with its coefficients in 
2, is called a polynomial over 2,. The set of all polynomials 
over Z, is denoted by Z,[z] (which is an integral domain 
containing 2, [6]). The equality of two polynomials f (z)  
and g ( z )  in Z,[X] are denoted by f(z) = g ( z )  modp. If 
f ( z ) , g ( z )  E Z,[z] are congruent modulo h(z)  E Zp[z] ,  i.e., 
f ( z )  - g(z) h(z)m(z)  mod p for some m(z) E Zp[z] ,  
we write 

(2) f(z) z g ( z )  mod p ,  h(z) .  

We will use ‘‘I” to denote the divisibility, e.g., a I b means 

b 
Definition 11.1: Let M(x) ,g ( z )E  Zp[x], and { H m ( z ) } z Z A  

c Z,[z]. We call 

b = uc for integers a,  b and c; and a ( b  mod p indicates 
ac mod p for a, b and c in Z,. 

N - 1  

Hlc(z) fL(z )[g(z ) lmk  mod P ,  W z ) ,  
m = O  

lC=O, l , . . . ,N- l  (3) 

a polynomial transform over 2, (or simply, a polynomial 
transform) of { H m ( z ) } z z A  mod p ,  M ( z ) .  Its inverse trans- 
form is defined by 

N - 1  

H’(z)  N - l  H k ( ~ ) [ q ( z ) ] - ~ ’  mod p ,  M ( z ) ,  
k=O 

1 = 0,1, . . . , N - 1 (4) 

where N - l N  1 modp  and [ g ( ~ ) ] - ~ ‘ [ g ( z ) ] ~ ’  = 1 modp, 
M ( z ) .  We denote such a polynomial transform by 

The following are three necessary and sufficient conditions 
for polynomial transforms over 2,. Their proofs can be found 
in the Appendix. 

Theorem 11.2: Assuming p is prime, polynomial transform 
(N, g ( z ) ,  p ,  M ( z ) )  exists if and only if 

( N ,  d z ) ,  P ,  M ( z ) ) .  

N mod p ,  M ( z )  if q 0 mod N 
if q $ 0  mod N 0 mod p ,  M ( z )  

N - 1  

S (4)  = C[9(.)1”~ = 
m=O 

( 5 )  

and ( p , N )  = 1. Moreover, when the leading coefficient of 
M ( z )  is the unity in Z,, the above statement is also true for 
p not being prime. 

cby ( z )b t ( z )  . . . b$ (z), b;(z), 
1 5 i 5 s, be distinct irreducible polynomials with unity 
leading coefficients, and c be a nonzero constant. Then, 
( N , g ( z ) , p , M ( z ) )  exists if and only if (i) [g ( z ) IN  E 
1 mod p, M ( z ) ,  (ii) the order of g ( z )  mod p ,  b ; ( z )  is N ,  

Theorem 11.3: Let M ( z )  

for 1 5 i 5 s. 
The next theorem is also a necessary and sufficient condition 

like the above two, but only dealing with a special case of 
Theorem 11.3, when M ( z )  is a product of distinct irreducible 
polynomials mod p. 

Theorem 11.4: Let M ( z )  = b l ( z ) b z ( z ) .  . . b,(z)mod p ,  
and b; ( z )  are distinct irreducible polynomials. Then, 
( N , g ( z ) , p , M ( x ) )  exists for some g ( z ) ,  if and 
only if N divides the greatest common divisor of 
$1 - l , p 7 L 2  - 1, . ‘ .  ,p7Ls - 1, where R; is the degree 

The above necessary and sufficient conditions only tell us 
that if a given set of numbers and polynomials: N ,  g ( z ) , p  and 
M ( z ) ,  satisfies certain conditions, then polynomial transform 
( N , g ( z ) , p ,  M ( z ) )  exists; they do not describe what these 
numbers and polynomials are. In the next two subsections, 
we introduce two groups of such numbers and polynomials, 
and then use the above conditions to show that they form 
polynomial transforms over 2,. 

of b ; ( z ) ,  1 5 i 5 S. 
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A .  Mersenne Number Polynomial Transforms 
Theorem 11.5: There is ( N , x ,  M N ,  (xN - 1)/(:1; - l)), for 

each prime number N and Mersenne number M N  = 2N - 1. 
proof: Since ( z N  - I)/(x - 1) is a factor of :xN - 1, 

S(y) E cEIizmq = N mod M N .  (xN - l)/(z - l), 
when q 0 mod N .  On the other hand, when q $ 0 mod 

N - 1  . 'b - 1  N ,  { ( 7 r i q ) ~ } ~ ~ = ~  is a permutation of {m}m=O, thus S(y) G 

0 mod M N ,  ( z N  - l)/(z - 1). We have ( M N ,  N )  = 1 since 
2N - 2  0 mod N by Fermat theorem [ 131, i.e., NI(MN - 1). 
Thus, based on Theorem 11.2, we have (N . :c ,  MAT? (2;" - 

The above polynomial transforms ( N ,  2, M N ,  (:i;Av-l)/(:c- 
1)) are MNPT's whose applications will be described in the 
next two sections. 

Example I: For N = 3, we have ( 3 ,  z, 7: (x3 - 1)/(:1;- 1)). 
Given polynomial sequence HO(z) = :c + I, H~(:I;) = z - 1 
and H 2 ( 2 )  = z, the corresponding MNFT are 

l ) / (x  - 1). 0 

2 

Hk(z) E H , ( ~ ) x ~ " ~  mod 7,z2 + z + 1 (6) 

for k = 0, I ,  2. The results are BO(.) = 3:x, H ~ ( : I ; )  = 6, + 1 
and H2(x) = 2 + 2. It can be easily verified that 

m=O 

2 

a ( 2 )  3-1 ak(2: ) :I ; -k '  mod 7 , : ~ ~  4- :I: + 1 (7) 
k=O 

for 1 = 0,1,2, where 3-1  
mod 7.:x2 + z+ 1 .  

5 mod 7 and :c-l (62 + 6) 

B.  Fermat Number Polynomial Transforms 

Theorem 11.6: There are (2t-'+1,:1;,Ft, :I; + l), 0 5 i 5 
t ,  and (2t- i ,x2,Ft ,  x2'-' + l), 0 5 i 5 t - 1, for each positive 
number t and Fermat number Ft = 22t + 1 .  

Proof: We prove the case for ( Z t - 2 + l , x : ,  Ft.x:2f-z + l), 
0 5 i 5 t;  the other case can be similarly proved. When 

we have 

2' - 1 

q 0 mod 2t-i+1 since ( : I ; ~ ' - ' + ~  -1) = ( :~ ;~ ' - '+1) ( :~~ ' - '  -I), 

2 t -n+  I - 1 

qY) E lC7nq z t - i+ l  mod Ft ,xZ t - '  + 1 ( 8 )  
m=O 

' - , + I  for 0 5 i 5 t. When q 9 0 mod 2t- i+1,  S(y) q - 

l ) / ( x q  - 1). Since : c * ' - ' + ' ~  - 1 has factors :xq - 1 and 
- 1, if we can show that xq - 1 and x;2t-' + 1 are 

cdprime, then S = 0 mod Ft,x:2t-I + 1. Indeed, we have 
(y,  2t-if1) 5 2t-i in this case. Thus, (39 - 1. x:*'-'+' - 1) = 

are coprime because x2= - 1, (L 5 t - 2,  and x2'-' + 1 
are coprime (see cor. C.5 of 1211). In addition, we have 
(2t-Z+1)-1 E 22t+'-(t-i+1) mod Ft. Based on Theorem 11.2, 

0 
+ l), 

0 5 i 5 t ,  and (2t- i , i :2 ,Ft , :r;2'- '  + l), 0 5 ,i 5 t - 1 are 
called Fermat FNPT's; their applications will be investigated 
in the next two sections. 

(x2  

x2'- '+ '  

: J : ~ "  - 1 with a 5 t - i [13]. Therefore, z 4  - 1 and z2'-' + l  

( 2 t - i + 1 , x ,  F~ ,P'  + 1) exists for 0 5 i 5 t. 
2' - t 

The above polynomial transforms (2 t - '+1 ,  :c, F,, :I; 

Example 2: For t = 1 and i = 0, we have (4, 2, 5, x2 + 1). 
Given polynomial sequence HO(x) = 2 + 1, Hl(2) = 2 - 1, 
H 2 ( z )  = 2 and H ~ ( z )  = 1, the corresponding FNPT are 

3 

H k ( z )  = Hm(z)xmk mod 5,x2 + 1 (9) 
m=O 

for k = 0, I ,  2, 3. The results are HO(x) = 3x+ 1, 
H l ( x )  = 32, H2(z) = z+ 1 and H3(2) = 22+ 2. It can 
be easily verified that 

3 

Hl(z) e 4-1 e R k ( z ) ~ - ~ '  mod 5,x2 + 1 (10) 
k=O 

for 1 = 0, 1, 2, 3, where 4-1 E 4 mod 5 and 2-l 42 mod 
5 , 2 +  1. 

111. FAST ALGORITHMS FOR 2-D CIRCULAR CONVOLUTIONS 

We now use the polynomial transforms over 2, to develop 
new fast algorithms for the computation of 2-D circular 
convolutions (CC). Let us consider a 2-D N x N CC 

N-1 N - 1  

yl,U = " m , n q ( l - m ) N , ( U - n ) N ,  

m=O n=O 

l , u = O , l , . . . , N - l  (11) 

o f 2 - D d a t a { h , , , } a n d ( q , , , } , i , j = O , l , ~ ~ ~ , N - l , w h i c h  
are assumed to be integers without loss of generality in digital 
signal processing practice. Apparently, this integer 2-D CC 
can be performed on Z, if p is large enough; choices of p 
are given by 

I N-1 N-1 

N - 1  N - 1  

IqT.SItllax ~ h m , n ~ } .  (12) 

This 2-D integer CC can be also written as a I-D polynomial 
cc 

n = O  m=O 

N - 1  

x ( x )  = H7rL(x)Q(1-7 ,1)N(x:)  mod p I x N  - 1 (13) 
m = O  

where 
N- l  

H,,(x) = /1,1,nx7L, 711 = 0,1,. . . , N - 1. 
n=o 
N - 1  

QT( .c)  = qT,szs .  = ( ) , I , .  . . , N - 1, 
s=o 

N - 1  

% ( : E ) =  c?~l,~~x;~. l = O , l ; . . , N - l .  (14) 

The above conversion from 2-D CC to 1-D polynomial CC 
can be easily verified [12]. Thus, we can perform 2-D CC by 
evaluating the corresponding 1 -D polynomial CC, which, in 
tum, can be computed using polynomials transforms over 2, 
as described in the following. 

11=0 
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A. Circular Convolution Property of Polynomial N-1 

Transforms Over Finite Rings Y z , ~  HZ,mQZ,(l-m)N 
m=O 

Consider a 1-D polynomial CC as defined in (13) with = x ( x )  m o d M N , ( x - l ) ,  l = O , l , - . . , N - l  

(18) 
xN - 1 being substituted by M ( z ) :  

N-1 

K(x) E Hm(x)Q(I-m)N (x) mod P, M ( x )  (15) where 
m=O xN - 1 

Hl , , ( z )  = H m ( x )  mod M N ,  -. 
x - 1  

Qi,T(x) = QT(x) mod M N ,  ~ 2 - 1  ' 
Hm(x)  mod MN, (x - 1); 

and assume that N , g ( z ) , p  and M ( z )  form a polynomial 
transform (N, g ( z ) , p ,  M ( z ) ) .  Define the corresponding trans- 
formed polynomials of {yZ(x)}, {H;(x)} and {Qi(z)}  by 

xN-1. 

{ z ( x ) } ,  {fii(x)} and {Q; (x ) } ,  respectively. Then H z , ~  
N-1 Q2,r  Qr(x)  mod MN, (x - 1) (19) 

for m , ~  = O, l , . - . ,N  - 1. Note that { Y Z , ~ }  is simply a 
I-D integer CC of length N which can be computed using 
Mersenne Number Transform (MNT) [4]. The computation of 
{ Y l , l ( x ) }  can be done by using MNPT (NIx,M~,(xN - 
l) /(x - 1)) as follows: 

Yk(x)= X ( x ) [ g ( x ) ] l k  mod p , M ( z )  
1=0 

N - 1  N-1 

E ~ m ( ~ ) ~ ( I - m ) ~ ( ~ ) [ g ( ~ ) l ( ' - ~ ) ~  
l = O  m=O 

x [S(~C)l"'" mod P, M ( z )  
N-I 

- -  
where the fact [g(x)IN 
orem 11.2 (see (A.l)) is used to recognize the summa- N-1 

tion CI=o  Q ( I - m ) N  (x ) [g(x) l ( l -m)k  
0,1, . . . , N - 1. Thus, in this case, the 1-D polynomial CC in 
(15) can be computed by evaluating 

1 mod p , M ( x )  from The- IC = 0, I , . . .  , N  - 1, 

X N  - 1 
as Qk(x) ,  for IC = Yl,l(z) = N - l  Yk(x)x-Ik mod M N ,  ___ 2 - 1  ' 

1 = 0, 1, . . . , N - 1. (20) 

N-1 

k=O 

i, two polynomial transforms for {Hi(X)} and {Qi(x)> We {K(.)} based on a Chinese Remainder Theorem 
(CRT) on Z,[x] [21] from {Y1,1(x)}  and { Y ~ J } :  ii) N polynomial products {Hi(x)}{Qi(x)} modp, M ( x )  

iii) one inverse polynomial transform for {yZ(x)} from 

Using the above circular convolution property, we develop 
{K(.)}. 

two classes of fast algorithms for 2-D integer CC, or equiv- 
alently for 1-D polynomial CC, in the next two subsections. x N  - N-' mod M N ,  x N  - 1 + Y Z ' l X  (21) 

for 2 = 0,1, . . , N - 1. The above is summarized in Fig. 1, 
The first class is related to MNPT, and the second to FNPT. 

B. Fast Algorithms for 2 - 0  Circular where the 2-D data { q T + }  are arranged into polynomial forms 

Convolutions Based on MNPT Q T ( x )  at the beginning of the algorithm (14).'Then { Q I , ~ ( ~ ) }  
and { Q z , ~ }  are generated (19). The {Q+-} are convolved 

cc Of length and M N , x N  - as given in (l3): Polynomials {Q1 ,T(x ) }  are transformed into { Q k ( x ) }  (20) 
For a number MN* we consider a 1-D polynomial with { H z , m }  to obtain {Yz,I} using MNT as indicated above. 

N - 1  

m=O 

among which Qo(x) is the direct summation of {Ql , i (x )} ,  
and the others are computed first modulo x N  - 1, then 
modulo ( x N  - 1)/(x - 1). The inverse polynomial transform 
procedure is similar to that for direct polynomial transform. 
The products {Qk(x)Hk(x)} can be efficiently computed by 
(i) computing them modulo x - 2 j ,  for j = 1, . . . , N - 1 and 
(ii) reconstructing based on the CRT on Z,[x]. The proof and 
the details of the above procedures can be found in [21]. The 
following is an example of computing 2-D integer CC with 

*Note that the data array { h ,,, .,, } are treated as the impulse response of 
the corresponding 2-D filter: thus all the polynomials related to { h ,,, , ,, } and 
used in the algorithm are computed beforehand. 

K(x) G Hm(x)Q( l -m)N(x)  mod M N , I C ~  - 1. (17) 

Because we do not have polynomial transform for this poly- 
nomial CC, we decompose it into two I-D polynomial CC's 
as follows: 

N-1 

y l , l ( X )  Hl,m(2)Q1,(l-m)N (x) 
m=O 

x N  - 1 
2 - 1  G K ( x )  mod M N ,  -, 
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mod Mp, x-1 

I I I 

Fig. 1. 
convolution using MNPT. 

Block diagram of the algorithm for computing 2-D integer circular 

the above fast algorithm based on MNPT. Referring (1 l), the 
2-D data array are given in the following, 

0 1 0  0 1 -1 

0 0 1  -1 0 1 
{hm,n}:-l 0 0 {yr+}: 1 -1 0 (22) 

and we want to compute 

2 2  

ye,U = /lm,nY(p-m)3,(u-n)j 

for C, 71 = 0,1,2.  We choose N = 3 and M3 = 7 for the 
modulo arithmetic, which satisfy the requirement (12). Now 
we use MNPT to compute ye,u mod 7 as follows, where the 
notations are based on the those defined above. 

m=O n=O 

N-lH2,,:2 5 5 QZ,~:O 0 0 
0 1  1 2  

H 1 , m ( ~ ) : - l  0 Q1 ,v (~ ) :  1 -1 
-1 -1 -2 -1 

0 0  -2 0 

0 0  2 2  
Q 4 2 ) : 3  -1 H&): 0 1 (23) 

T(x)N- '  (-z - 2)5 = 2(x + 2) mod 7 
2 1  

-1 5 
(N- ' )2T(z)Rk(:I - ) :  4 3 

where T ( z )  = (N-*)/(x-l), and the (N-l) '  in front of 

(20) and in the CRT reconstruction (21); they are combined 
with { Hk(z)} to reduce the number of operations. 

0 0  

0 0  
( N - l ) 2 T ( z ) Y k ( x )  &k(z)(N-')2T(z)Hk(z): 1 1. 

Then, we get 

1 1  

-1 0 
N-lT(z)Yl,$(z): 0 -1 .  

Obviously, we have Y2,e: 000. Applying (21) 

&(z) = N-1T(z)Y1,p(z)(z - 1) 
+ Y~,@(x'  + z + 1) mod 7, z3 - 1 

for l = 0,1,2,  from which we obtain 

-1 0 1 

1 -1 0 
{Yf+}: 0 1 -1. 

C. Fast Algorithms for 2 - 0  Circular 
Convolutions Based on FNPT 

For a Fermat number Ft,  we consider a 1-D polynomial CC 
(13) of length N = 2t+1 and modulo F t ,xN - 1: 

N - 1  

K(.) 3 H,(z)&(~-,)~(z) mod Ft ,xN - 1. (27) 
m=O 

Define 

where 

 HI,^(^) = H m ( z )  mod Ft,z2' + 1, 

Q I , ~ ( X : )  = Qv(z) mod F t , z Z f  + 1, 

H z , ~ ( s )  5 Hm(z)  mod Ft,z2' - 1, 

Q z , ~ ( x )  = Q T ( x )  mod Ft,z2' - 1, 
r.  m = 0, 1, . . . , N - 1. (29) 

{ X ( x ) }  can be computed from {Y~,i(z)} and {Y2,~(z)} by 
the CRT: 

K(z) E Y1,1(z)22'-'(Z2f - 1) 

+ Y 2 , 1 ( ~ ) 2 ~ ' + ' - ~  (x2' + 1) mod Ft,z2'+' - 1, 
I _  

T(x)Hk(x) are the N - l s  in the inverse polynomial transform 1 = 0 , 1 , . . . , N - l  . (30) 
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We use FNPT ( 2 t + 1 , z ,  Ft,z2' + 1) to compute { Y I , ~ } :  

N - 1  

& k ( x )  Q 1 , r ( x ) ~ T k  mod Ft,zZt + 1, 
r = O  
N - 1  

nk(Z) f 

Yk(5') 

H l , m ( z ) z m k  mod Ft ,zZi  + 1, 
m=O 

Qk(Z)Hk(Z) mod Ft, 2'' + 1, 
IC = 0,1,  . . .  , N - 1, 

N - 1  

Y l , l ( Z )  E N - l  Yk(2)2-zk mod Ft,z2' + 1, 

I = 0 , 1 , - . . , N  - 1 
k=O 

(31) 

mod Ft. For { y z , ~ } ,  
we recognize that {YZ,J}:;' corresponds to an N x ( N / 2 )  
2-D integer array with each row expressed in a polynomial 
form, and is the result of an N x ( N / 2 )  2-D integer CC (see 
[21]); this N x ( N / 2 )  2-D integer CC can be also expressed 
as an ( N / 2 )  x N 2-D integer CC and, thus can be written 
as a 1-D polynomial (of degree N - 1) CC of length N / 2 ,  
denoted as follows: 

where N - 1  E (2 t+ ' ) - l  E 22'+'-(t+l) 

2'-1 

K'(z) = H L ( z ) Q i l - m ) 2 t ( z )  mod Ft,xzt+' - 1, 
m=O 

1 = 0 ,1 , .  . . , 2t - 1 (32) 

where the data array corresponding to {y'(z)}, {H&(x)} ,  
and {Qti(z)} are just the transposes of those for {YZ,J(Z)} ,  
{Hz,,(z)), and {Q2,i(z)}, respectively. Again, define 

2'-1 

Y l ' , l ( z )  E H L , m ( z ) Q i , ( l - m ) 2 t  ( x )  
m=O 

&'(z) mod Ft,z2' + 1, 
' 2 - 1  

Y i , / ( z )  H i , m ( z ) Q i , ( / - m ) 2 t  (z) 
m=O 

= q'(z) mod Ft, 2'' - 1, 
1 = 0 , 1 , . . . , 2 t - 1 .  (33) 

{Y1',[(z)} can be computed by FNPT (z2, 2 t ,  F,, zZt + 1): 

Z f - 1  

@k(x) = Q ; , ~ ( ~ ) z ~ ~ ~  mod F t , 2  + 1, 
r=O 
Z i - 1  

fiL(z) = 
YL(x)  = Qk(z)&(z)  mod Ft,xZi  + 1, 

H ; , m ( x ) z 2 m k  mod Ft,z2' + 1, 
m=O 

k = 0 , 1 , . . . , 2 t - 1 ,  
z t - 1  

Yl',l(z) = ( 2 t ) - 1  YL(z)zc-2zk mod Ft,x2' + 1, 
k=O 

1 = 0 , 1 , . . - , 2 t - 1 .  (34) 

{Y;, ,(z)}  corresponds a 2t x 2t 2-D integer CC and, thus, 
has a similar computation process as described above. The 
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length 2' 

I I 
(Y,,"J 4 

reconsmct Y, (x) 

Fig. 2. 
convolution using FNFT. 

Block diagram of the algorithm for computing 2-D integer circular 

above computation procedures are summarized in Fig. 2. The 
procedures of FNPT and its inverse are based on a decompo- 
sition process using the fact that z 1, z E -1, 
mod Ft, z2'-' + 1. The products of two polynomials modulo 
2'' + 1 are computed using FNT [4]. However, FNT can not 
be applied directly here; the polynomials in the product are 
modified by substituting z by 2"y. Then, the product of the 
modified polynomials are computed with F N T .  The details of 
these procedures are in [21] and are omitted here to reduce 
the size of the paper. 

2'-"1 2i-* 

Iv. FAST ALGORITHMS FOR 2-D 
NUMBER THEORETIC TRANSFORMS 

In this section, we develop fast algorithms for direct com- 
putation of 2-D MNT and 2-D FNT's [4], [8] by using MNFT 
and FNPT. The traditional way for computing 2-D NTT of 
a 2-D data array is to apply the corresponding 1-D NTT to 
each row and then to each column (or vice versa) of the 2- 
D data array. The computational complexity comparisons of 
the new technique presented in this section and the traditional 
row-column scheme is given in the next section. 

A. Fast Algorithm of 2 - 0  Mersenne Number 
Transforms Using MNPT 

number 
Consider a 2-D MNT of size N x N, where N is a prime 

N - 1  N - 1  

Qkl ,k2  qnl,n22k'n12kLnL mod k ! ~ ,  
nl=Onl=O 

ICl, IC2 = 0,1, .  . ' , N - 1. (35) 

-lr 7- 



RAN A N D  LIU: FAST ALGORITHMS FOR 2-D CIRCULAR CONVOLUTIONS 

Define 

then 

When IC2 = 0 

N-1 

Qlcl,o E (Qn,(x) mod M N , X  - l)27L1k1 mod M N ,  
n1 =O 

which is a 1-D MNT. 
When IC2 # 0, define 

N-1 
x N  - 1 
x - 1 '  Q'kl(x) E Qn1(2)2n'k '  mod MN,  ~ 

n1 =O 

k.1 = 0,1, . . . , N - 1 (39) 

then 

Since ( ( k ~ k 1 ) ~ )  is a permutation of {ICl} when k.2 # 0 

X N  - 1 
E Qkl(x)xnlkl mod MN, ___ 

2 - 1  ' 

N-1 

nl =O 

which is an MNPT [21]. 

B .  Computation of 2 - 0  Fermat Number 
Transforms Using FNPT 

Consider a 2-D FNT of size 2t+1 x 2t+1 

~ 

n1=0 n2=0 

575 

Define 

then 

= Q:l(x)xklnl mod F t , z Z t  + 1, 
n1=0 

IC1 = 0 , 1 , .  . . ,2t+l - 1. (45) 

When Ic2 = 2u,u  = 0 , 1 , .  . . , 2, - 1 

n l = O  n j = O  

x mod Ft ,  u,k1 = 0 , 1 , . . . , 2 t + 1  - 1. 

(46) 

Define 
2'+'-1 

Then 

In this case, for IC1 = 2v + 1, U = 0,1 , .  . . , 2, - 1, we define 

QL,(z) = &,,(x) mod Ft?:c2' + 1, 

712 =O 

'U = O,l , .  . . ,2t - 1 (49) 

where in the last equation is FNPT (2t,  x 2 ,  Ft, x2' + 1). Then 
we compute [21] 
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which is a 2-D FNT of size 2t x 2 t ,  and can be computed 
similarly. 

v. COMPUTATIONAL COMPLEXITY AND COMPARISONS 

The computational complexities for the algorithms in the 
last two sections will be described in terms of numbers of 
multiplications (M), additions ( A )  and shifts (S), where shifts 
are the operations of multiplying a number by 22 for some 
i 2 1. Note that this definition of shifts is slightly different 
from the regular one which corresponds to multiplying a 
number by 2. One shift ( ~ 2 ~ )  here is actually i consecutive 
regular shifts. Therefore, we will treat shifts and additions as 
if they are in the same category in the following for simplicity. 

Now we summarize the results of the analysis of computa- 
tional complexities as follows, whose details can be found in 
[21]. To compute an N x N 2-D integer CC using MNPT, we 
need to perform the following numbers of operations: 

M = N 2 ,  
S = 2N3 - 4 N 2  + 2 ,  
A = 4 N 3  - N 2  - 10N +8. (52) 

To compute a 2t+1 x 2 t+1 ,  t 2 1, 2-D integer CC using 
FNPT, we have the computational complexity: 

t 

M = 1 +E3 x 22q,  
q=o 

t 

s = E3 x q x 2 2 q ,  

q=o 

t 

q=o 

We compare the above computational complexities with 
those for computing the same 2-D integer CC’s using the 
corresponding NTT with row-column scheme in Tables I and 
11. In Table I, the first two columns under “Parameters” are 
the sizes N of 2-D integer CC’s and the Mersenne number 
MN = 2 N  - 1 used. The next two groups of three columns are 
the computational complexities for MNPT and 2-D MNT with 
row-column scheme, respectively. Notice that both algorithms 
need the same number of multiplications; using MNPT saves 
some numbers of shifts, listed in column “S” of the last three 
columns, and needs more numbers of additions which are 
listed as negative numbers in the last column “A”. However, 
the saving on shifts for MNPT are much larger and growing 
faster with N than the corresponding spending on additions 

TABLE I 
COMPARISON OF COMPUTATIONAL COMPLEXITY FOR 

COMPUTING 2-D INTEGER CIRCULAR CONVOLUTIONS USING 
MNFT AND 2-D MNT WITH ROW-COLUMN SCHEME 

Puamelera I MNPT I 2-D M;&:;;column Savings by using MNPT 

TABLE I1 
COMPARISON OF COMPUTATIONAL COMPLEXITY FOR 

COMPUTING 2-D INTEGER CIRCULAR CONVOLUTIONS USING 
F” AND 2-D F”T WITH ROW-COLUMN SCHEME 

I Parameters 1 FNPT I 2-D FNT (row-column Savings by 

scheme) I using FNPT 1 

in terms of numbers of operations. To get an approximate 
overall comparison between these two algorithm, we subtract 
the extra-spendings on additions from the saving on shifts for 
MNPT and enter the resulting numbers in the last column 
under “S + A” along with their percentages with respect to the 
corresponding numbers of shifts for the row-column scheme. 
With the above simplification, we conclude that using MNPT 
saves more than 42% of shifts as compared with the other 
algorithm. 

In Table 11, which is similar to Table I in style, we compare 
the computational complexities of FNPT and 2-D FNT with 
row-column scheme. The numbers of multiplications and 
additions are the same for both algorithms, whereas less 
numbers of shifts are needed for FNPT; the savings are more 
than 25% and are growing when t is increasing (see Table 11). 

The computational complexity of an N x N 2-D MNT using 
MNPT is 

S = N 3  - 2N2 + 1, 
A = 2N3 - N 2  - 4 N  + 4  (54) 

where S is half of the S in (52), and A is less than half of 
the A in (52) by an amount of 0.5N2 - N .  The Computational 
complexities3, S and A, for computing the same N x N 2- 
D MNT using row-column scheme are halves of those for 
N x N 2-D integer CC’s, and thus can be obtained directly 
from Table I. The conclusion for the computational complexity 
comparison is similar to the one for N x N 2-D integer CC’s. 

The computational complexity of a P + l  x P+l, t 2 1, 2- 
D FNT using FNPT are exactly halves of those in (53), and 
the savings of using FNPT with respect to the row-column 

”There are no multiplications for computation of NTT. 
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/ - I -  

I -  - / For p being prime, the following is the ''if' part: 
4 -  row-columry' - When (5) holds (assuming N > 1) - - - scheme ,,I - N - 1  

- I - [g(x)IN - 1 (,y(:~) - 1) [y(x)]' = 0 mod p ,  M ( x ) .  
- / - 

/ 

I 
I - k=O 

I - - / 
/ (A.1) 

3 -  
- I - 
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APPENDIX A 
PROOF OF THEOREM 11.2 

Fig. 3. 
and the row<olumn scheme. 

Computing-time comparison for calculation of 2-D FNT using FNPT 

scheme are the same as those percentages in Table 11. We 
have conducted a simulation experiment in which 2-D FNT 
are programmed in FORTRAN with the algorithm of FNPT 
and with the rowxolumn scheme. We use general integer 
multiplications in FORTRAN to realize the shift operations 
in the algorithms. Since the general integer multiplication 
are more time-consuming than addition, the difference of the 
computing times for the above two programs to complete the 
same 2-D FNT can be an indicator for the difference of shifts 
used in the two algorithms. The resulting computing-times, on 
a personal computer, as a function of the sizes of 2-D FNT 
are shown in Fig. 3 which indicates that using FNPT reduces 
computing-times by about 50%. This matches with the above 
computational complexity assessment for these cases. 

VI. SUMMARY AND CONCLUSION 

In this paper, we developed new fast algorithms for 2- 
D integer circular convolutions and 2-D NTT. These new 
algorithms are constructed based on polynomial transforms 
over Z, introduced here. Several necessary and sufficient 
conditions for the existence of polynomial transforms over Z, 
are stated and proved. By applying these existence conditions, 
we have obtained two important polynomial transforms over 
2,: MNPT and FNPT, based on which we then developed 
fast algorithms for 2-D integer CC's, 2-D MNT and 2-D FNT. 
Comparing to the conventional row-column computation of 2- 
D N I T  for 2-D integer CC's and 2-D "IT, the new algorithms 
save more than 25 or 42% of numbers of operations for 
multiplying 2 i ,  i 2 1; these percentages of savings also grow 
with the size of the 2-D integer CC's or the 2-D N'IT. These 
complexity savings of the new algorithms are also indicated 
by the computing-time results of a simulation experiment on 
computer. 

Suppose ( N , g ( z ) , p ,  M ( x ) )  exists, i.e., (A.3) holds. Then 
the second case of (5) is true. Otherwise, there is some 
t ,  1 5 t 5 N - 1, such that S ( t )  $ 0 mod p ,  M ( z ) .  Then 
(A.3) can not always hold, e.g., let H t ( z )  1 and H,(x) = 0 
for i # t ,  then (A.2) becomes 

N - 1  

&(x )  e N-' [ g ( ~ ) ] ' ( ~ - ' )  mod p ,  M ( x )  (A.4) 

for 1 = 0 , l .  . . . , N- 1. Thus, & ( : E )  G S ( t )  $ 0 mod p ,  M ( z ) ,  
and this is a contradiction. From the second case of (5) and 
(A.l), we have [g(z)]" 1 mod p ,  M ( x ) ,  i.e., the first case 
of (5) holds. Finally, since the inverse transform exists, N-' 
exists, thus (p, N) = 1, because, otherwise, ( p ,  N) = a > 1, 
i.e., p = bla and N = b2a for some bl and 6 2 ;  from 
N N - l  1 mod p, we have N N - l  - 1 = cp for some c,  
i.e., b2aN-l - 1 = cbla or (b2N-' - &)a = 1 which is 
a contradiction. 

When p is not a prime number, the whole proof is valid if 
we can carry out arithmetic modulo M ( x )  on Z,, and this is 

k=O 

guaranteed if the leading coefficient of M ( z )  is the unit of 
2,. 0 

APPENDIX B 
PROOF OF THEOREM 11.3 

The decomposition expression of M ( z )  is supported [21]. 
From i), we get S(0) N modp, M ( x ) .  We denote the degree 
of b i ( x )  by ni, for 1 5 i 5 s. Obviously, ni 2 1. From (ii), 
we have N 1 p"' - 1, i.e., pnl  - 1 = Nlci [21]. Thus, p 
does not divide N ,  for otherwise, N = pko for some lco, and 
then, p7'~ - 1 = pkik.0, which is not true. When q $ 0 mod N ,  
( [ g ( z ) ] * -  l)S(q) = [g(x)IqN - 1 3 0 mod p ,  M ( z ) .  From (ii), 
we also have ( [g (x ) ] *  - 1, M ( x ) )  = 1, mod p.  Thus, S(q)  0 
mod p ,  M ( x ) ,  if q $ 0 mod N .  Therefore, ( N , g ( x ) , p ,  M ( x ) )  
exists, from Theorem 11.2. 

On the other hand, when ( N .  g(x ) .  p ,  M ( x ) )  exists, from (5) 
and (A.I), we have [g(x) lN 1 mod p , M ( z ) ,  [g(x)]" e 1 
mod p , b i ( x ) .  and S ( q )  0 mod p , b ; ( z ) ,  for q $ 0 mod 
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N .  Thus, [ g ( z ) ] *  - 1 $ 0, mod p , b i ( x ) ,  for q $ 0 mod 
N for otherwise, p 1 N ,  and this contradicts the requirement 
( P , N )  = 1. 0 

APPENDIX C 
PROOF OF THEOREM 11.4 

Suppose ( N , g ( x ) , p ,  M ( x ) )  exists for some g(z). Then, 
from Theorems 11.3 we know N I (pnc - l), 1 5 i 5 s [21]. 
Conversely, from N divides the greatest common divisor of 

- 1, p n z  -l,~~-,pns-l,wehaveN((p”i-l),l<_i~s. 
For each i ,  there is Si(.) with order N mod p , b i ( z )  [21]. 
Thus, we have g(x), such that, g ( x )  = g i ( z ) ,  mod p , b i ( x ) ,  
from the CRT. Since [ g i ( z ) I N  1, mod p, b;(x), [ g ( z ) I N  1, 
mod p, bi(z). Thus [g(x)IN 1, mod p ,  M ( z ) .  Then based 
on Theorem 11.3, we proved this Theorem. 
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