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Abstract—\We develop an algorithm to reconstruct the wavelet is preserved under the Hilbert transform. Moreover (as was
coefficients of an image from the Radon transform data. The noted in [2] and [8]), the Hilbert transform of a function

proposed method uses the properties of wavelets to Iocall_ze thewith many vanishing moments should decay very rapidly.
Radon transform and can be used to reconstruct a local region of

the cross section of a body, using almost completely local data that 11iS IS related to the notion that certain singular integral
significantly reduces the amount of exposure and computations in operators are almost diagonalized by wavelets [20]. In [2], the
X-ray tomography. The property that distinguishes our algorithm  intertwining formula of [1] was used for local recovery, and

from the previous algorithms is based on the observation that for explicit error estimates on the recovered image within the ROI

some wavelet bases with sufficiently many vanishing moments, . .
the ramp-filtered version of the scaling function as well as the were obtained. It was noted that high-frequency features of an

wavelet function has extremely rapid decay. We show that the image can be recoyered |00§”Y using the wavelet transform.
variance of the elements of the null-space is negligible in the The first numerical algorithm using wavelets for local

locally reconstructed image. Also, we find an upper bound for reconstruction was implemented by DeStefano and Olson
the reconstruction error in terms of the amount of data used in i, 8] This algorithm reconstructs the local values of a
the algorithm. To reconstruct a local region 16 pixels in radius in functi directly f the 1-D let t f R
a 256 x 256 image, we require 22% of full exposure data. unction f directly from the 1-D wavelet transform i f

at each anglé. In [9], Delaney and Bresler compute the 2-
D separable wavelet transform of a function directly from
the projection data as a means to do local recovery from
local measurements. Both algorithms take advantage of the
I. INTRODUCTION observation that the Hilbert transform of a function with

T IS WELL KNOWN that in dimension two and in fact many vanishing moments has rapid decay; and both algorithms
in any even dimension, the Radon transform is not locdgcover the high-resolution parts of the image locally (that is,
that is, the recovery of an image at any fixed point requirdy exposing the ROI plus a small extra margin) and obtain the
the knowledge of all projections of the image. This mearl@W-resolution parts by global measurements at a few angles.
that a patient would have to be exposed to a relatively lar§je this sense, these algorithms cannot accurately be described
amount of X-rays even if it was desired to view only a smafs local tomography algorithms. Both of these algorithms
part of the patient’s body. Thus, searching for a means @hibit similar savings in exposure and similar quality of
reduce exposure, and at the same time to be able to perfetiil§ reconstructed image in the ROI. Recently, Olson [11]
reconstruct the region of interest (ROI), has been of grdaas improved his algorithm by replacing the usual wavelet
interest recently [6]-[11]. transform with the local trigonometric transform of Coifman
The application of wavelet theory to the inversion of th@nd Meyer [14] and has reduced the exposure still further.
Radon transforms was first proposed in [3] and [4]. An In this paper, we implement a wavelet-based algorithm to
inversion formula based on the continuous wavelet transfom@construct a good approximation of the low-resolution parts of
was proposed in [1]. This formula was based on an intertwithe image as well as the high-resolution parts using only local
ing between the one-dimensional (1-D) continuous waveleteasurements. The algorithm is based on the observation that
transform of the projection data at each angle and the twia-some cases, the Hilbert transform of a compactly supported
dimensional (2-D) wavelet transform of the original imagescaling functionalso has essentially the same support as
The fundamental observation was that the admissibility ¢ne scaling function itself. This phenomena is related to the
vanishing moment condition that is characteristic of a wavelrtimber of vanishing moments of the scaling function of an
orthonormal or biorthonormal wavelet basis. That isi(f) is
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size region and 1% maximum error, and the method in [11] ¢ It is computationally more efficiethan other algorithms,
uses 20% for the same case. Since the algorithm in [11] is not because it uses fewer projections overall to locally recon-
truly local, we believe that our algorithm is valuable even if  struct the image.
the exposure is somewhat higher. « It offers uniform exposure at all angleswvhich allows

It should be noted that the goal of the algorithm described for easier implementation in hardware. (In the algorithms
in this paper is to reconstruct the function locally from  proposed in [8]-[11], different amount of projections have
local measurementsp to the nullspacef the interior Radon to be computed with variable lengths for different angles.)
transform. That is, the problem of recovery of local values ¢ It offers theability to reconstruct off-center or even multi-
of a function from local projections only is not uniquely ple regions of interesias well as centered reconstruction.
solvable [22]-[25]. In [23], an example is given of functions e It is applicable to the cases where the wavelet basis is not
that are nonzero on a disk but whose projections on all lines separableand there exists no multiresolution approach to
intersecting that disk are zero (Fig. 7). Such a function is obtain the wavelet coefficients. (The method proposed in
said to be an element of the nullspace of the interior Radon [9] can only be used for separable wavelet bases.)
transform. Any algorithm that uses only local measurementse It allows for reconstruction of the wavelet coefficiemts
cannot reconstruct these nullspace elements. The advantagethe image with the same complexity as the conventional
is that taking only local measurements is much easier to filtered backprojection method.
implement in hardware. It has been shown that the elementsThis paper is organized as follows. In Section II, we will

of the null-space of the interior Radon transform do not vamtiefly introduce the Radon transform, discuss the nonlocality
much in the ROI [23]. In our algorithm this phenomenoiyf the Radon transform and the conventional reconstruction
appears as a constant bias in the reconstructed image. SugcBnique, i.e., the filtered backprojection method. In Section
bias is commonly observed in the local reconstruction problem after reviewing the basics of the wavelet transform, we
[23], [25]. will introduce a full-data reconstruction technique based on the
The algorithms of DeStefano/Olson [8], Delaney/Breslegavelet transform. We will discuss the locality property of the
[9], and Olson [11] are not true local tomography algorithmgroposed algorithm in Section IV. Section V then discusses

in that they use measurements far from the ROI to recovgke implementation of this method, and in Section VI the
the function exactly on the ROI. The algorithm describegimulation results will be presented.
in this paper is more closely related to the technique of
A-tomography, which is used to reconstruct the function 1
Af — uA~Lf rather than the density functiofi[5], [6]. The ) ] ] ] ) ]
function Af has the same singularities gsand is cupped In th|_s _s_ect|on, we W|_II briefly introduce t_he termlnology _
where f is constant. The addition of the cup correction fact@nd definitions required in _the subs_equent dlsc_u55|ons. In this
1A=L f results in good qualitative reconstructions fof7]. paper, we use tr_]e following notat_lons. Thle dimensional

In this paper, we will present an algorithm to reconstru&uclidean space is denoted By. Given a sets C Rdvlf;‘
the wavelet and scaling coefficients of an image directenotes the indicator function of. We define the Fourier
from its projections. This is useful in applications where th&ansform in R* by f(&) = [ga f(Z)e’>™*7dZ. The in-
wavelet coefficients of the reconstructed image are used,Vigfse Fourier transform is defined biz) = (f)¥(¥) =
that it saves the computations required to obtain the wavelet: f(&)e™7™ % di. Both continuous and discrete convo-
coefficients from the reconstructed image. We also show hdkion operators are denoted by
this reconstruction technique leads to a local tomography
algorithm that uses the projections of the image on linés Radon Transform

intersecting the local ROI plus a small number of projections, | CT, a cross section of a human body is scanned by
in the immediate vicinity, to obtain a very good approximatiog nondiffracting thin X-ray beam whose intensity loss is
of the image in the ROI. recorded by a set of detectors. The Radon transform (RT)
The main features of our algorithm are as follows. is a mathematical tool that is used to describe the recorded
* It hasreduced exposureompared to previous algorithmsintensity losses as averages of the tissue density function
(cf. [8], [9]), though the exposure is increased when conover hyperplanes which, in dimension two, are lines. Given
pared to [11]. In our algorithm there is no need to obtaifi(z), restricted to a disc of radius one, we define the Radon
a rough estimate of the global properties of the Radaransform of f by
transform by sparsely sampled full exposure projections.
We just compute a small number of projections on lines Rof(s) = / _ f(@)dr = F(s0+y)dy
passing close to the ROI to reconstruct the local values #0=s o=+
of the image up to a constant bias. Moreover, the nuUmbghare 5 — (cosf,sin6),6 € [0,27),s € R and 6+ is the
of pixels in the margin is independent of the size Oéubspace perpendicular &
the ROI and is also independent of the resolution of The interior Radon transform [24], [25]
the measurements taken. Therefore, for the same RQ) ’
a high resolution computerized tomography (CT) scal
would have a smaller region of exposure than a lower
resolution scan (see Figs. 13 and 14). Rof(s) = Rof(s)1_p,(5).

. PRELIMINARIES AND NOTATIONS

is the Radon trans-
rm restricted to lines passing through the ROI, which is a
rcle of radiusr (r < 1) about the origin. It is defined by
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Fig. 1. (a) Wavelet analysis filterbank. (b) Wavelet synthesis filterbank.

The problem of recovery of from the interior Radon trans- to multiply this operator by a smoothing windoW (w) as
form is called theinterior problem or region of interest R —
tomography The interior problem in dimension two is not Qo(w) = Ry f(w)|w|W (w). (4)

niquely solvable, i.e., there are functions that are not zero. . . . N
uniquely solvable, i.e., there are functions that are not ze OtRerefore, the reconstruction will result in an approximation

the ROI but whose projections on lines intersecting that regi '?f rather thanf itself. Normally the approximation has the
are zero. However, these functions do not vary much insi §rm ¢+ f, wheree is an approximate delta function, called

the ROI, and in fact a crude approximation to the missi . . :
projections suffices to approximafewell inside the region of r\{ﬁ/e(wp)og spread function (psf) [18]. The psfis related to

interest up to an additive constant [23].
W(w) = é(wcosf,wsin ).
B. Reconstruction
The basic formula for inverting the Radon transform i§- Nonlocality of RT Inversion
based on the fact that the Fourier transform of the Radonin (2), the Radon transform data is filtered hy|. This
transform with respect to the variablés the Fourier transform operation can be formulated in the space domain as
of the functionf along a line passing through the origin. This
property is known as the projection theorem or Fourier slice Qo(t) = HORy f (1),

theorem, as follows: where H is the Hilbert transform onk, and g is ordinary

(Ro F)(w) = f(wh), w € R. differentiation. In the above equation the derivative part is a
local operator, but the Hilbert transform
Thus, the Fourier transform of the projections at enough angles — o .
could in principle be assembled into a complete description (Hg)(w) = isign (w)g(w) ()
Pf the 2-D FOL_mer transform ,Of the image and then S'_mp%troduces a discontinuity in the derivative of the Fourier
inverted to arrive at the functioff. Using the polar Fourier transform of a function at the origin. Hence, the Hilbert

inversion formula and the Fourler.sllqe theorem, we Cqtansform of a compactly supported function can never be
reconstruct the functiorf from the projection datds f(s) by compactly supported. This means that RT inversion based

. T om0 on (1) can not be accomplished locally; that is, in order
f(@) :/ / (Rof)(w)e |w| dw d6. 1) 1o recover f exactly at a pointz, all projections of f are
0 e required and not just those on lines passing naaft has
The above formula, called the filtered backprojection formulagen noted that the above mentioned filtering will not increase
can be implemented in two steps, the filtering step, which the essential support of a function if the function’s Fourier

the Fourier domain can be written as transform vanishes to high order at the origin [2], [8]. Wavelets
R — that are in general constructed with as many zero moments as
Qo(w) = Rof(w)lw] (2) possible are good candidates for these functions.

and the backprojection step
I1l. WAVELET RECONSTRUCTION

1@ = / " Qo0 do. @3)

A. Continuous Wavelet Transform

Becausgw| is not bounded and filtering by this filter tends to The wavelet transform has been an increasingly popular tool
magnify the high-frequency noise, it is expedient in practider signal and image processing. The transform decomposes
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Fig. 2. Wavelet reconstruction from projection data; the multiresolution reconstruction filterbank (MRFB) is the wavelet synthesis filterbapk (Fig

the signal onto shifts and dilates of a function called the motheach multiresolution approximatidr,;, there exists a unique

wavelet. In two dimensions, the wavelet transform is definddnction ¢(x) € L?(R), called a scaling function. Lét(n) =

as follows. Letg(#),# € R? satisfy (pa-1(u), ¢(u — n)), the Fourier transform of(n), denoted

0o by H(w), is defined as

0< inf / r1G(r cos 8,7 sin )| dr
0

6c[0,2x i .

ez do Hwy= Y h(n)e i,
< sup / 7 Lg(r cos B, rsin )| dr <oo.  (6) n=—00

6€[0,27) J0

. The Fourier transform of(z) is given by
Let () = g(—%), € R?, and define the continuous wavelet

oo

2 ~
transform of f, on R*, by Hw) = HH(2_pw)
W00 = [ f@ugta - 7)df -
R? . and
= f % gu(u™19) Y ;
wherew € R\{0} and @ = [z ¢] € R2, and g,(¥) = $ai(w) = d(w) [ HE Pw).
ug(u®). In order to reconstruct the functighfrom its wavelet p=1

transform, we use Define the functiony(x), the mother wavelet, by)(w) =

7= YWD (g VD alub — T du dil. G(w/2)p(w/2), where G(w) = ¢ “H(w + ). It can be
10 = [ | W@ @t - 0 duds G/l
B. Multiresolution Wavelet Representation . J)(w)G(?—lw)ﬁH(?—Pw) if j>1
In practice, one prefers to writtas a discrete superposition ai(w) = p=1 ’
of wavelets, therefore we define the discrete wavelet transform H(w)G(w), if 7 =1.
by .
Letting ©(z,y) = ¢(x)p(y)
W (g: (it :/ Bgai (F— 27777 dF - »
27 (g5 f)(77) . f(_>92 ( ) { @y (z— 27,y — 2 Jm)}(n,m)EZz (8)

which is derived from (7) by setting = 2/ and% = 77, where forms an orthonormal basis fdr,;, in a multiresolution ap-
j € Zandi € Z2 proximation in L(R?), where ®,; (z,y) = 2/®(2/z,2/y) =
Below we describe a multiresolution analysis approach §; (z)¢.; (y) = 2//2¢(27z) - 2//2¢(27 ). The projection off
recovering f (&) from its discrete wavelet transform (precisento V5; can therefore be computed in this case by
definitions and further details can be found in [17]). Let
Ao; be the operator that approximates a measurable fun@-?jf(x’y)
tion (&) with finite energy(f(%¥) € L?(R?)) at resolution =
29. We consider the vector spadé; C L%*(R?) as the - Z
set of all possible approximations at the resolutidh of . h
functions in L2(R?), such thatVj € Z,Vy C Vas4r. For @i (x =277 n)pai(y — 277 m).

oo

D (fu,0), doi(w =27 n) i (v — 279m))

N=—o0 MmM=—0o
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The discrete approximation at resolutidhis defined by
Agj f(nv m) = (f(U/, U) * (;)23' (U’)J)Qﬂ' (U))(2_jn7 2_jm) (9)

where(n, m) € Z2 andé,; (1) = ¢5; (—u). The difference be-
tween the approximatior,; f(z,y) and Ay+1 f(x, y), called

the detail signal at resolutio®¥, corresponds to the projection
of f on the orthogonal complement &, in V5;::, denoted

+2 i i g(n = 2k)h(m — 20)Dg; , f(k,1)

g(n = 2k)g(m — 20)D3, , f(k,1).

(12)

by O,;. Let
Uz, y) = dla)(y), V(z,y) = ¥(x)p(y)
V() =(x)y(y)
then the set of functions
{\Iféj (z — 2_jn, Yy — 2_jm), \Ifgj (z — 2_jn, Yy — 2_jm),

\Ijgj (.’L’ - 2_jn7 Y= 2_jm)}(n,rn)€Z27

(10)

where U, (z,y) = 2/ (272, 27y) is an orthonormal basis

for Oq;. The projection off(x,y) on the vector spac€,;
is given by

D2j,1f(377y)
= 33 (), dos(u— 2 )i (v — 27 m))

<o (w = 27 g (y — 279 m)
D2j,2f(377 Y)
- Z Z (f(u,v), 2 (u— 2_jn)¢2j (v — 2_jm)>

i (& — 2790) pos (y — 279 m)
Dsi 3f(2,y)
= Z Z (f(u,v), 205 (1 — 2790 )ahas (v — 279m))

s (@ = 2 (y = 27 m).
The detail coefficients are given by
D(21j71f(n7 m)

= (f(2,9) % 277 das (@) (1)) (270, 279 m)

Dy, ,f(n,m)
= (f(2,9) % 279921 (2) 62 (1)) (270, 27T m)

Dy, 3f(n,m)
= (f(w,y) % 27999 (2)hos ())(279n, 27 m)
where (n,m) € Z2 and s (u) = s (—u)

(11)

Therefore, in order to recover the approximation at leivell,

the approximations at level are filtered byh(m)h(n), and
the detail coefficients are filtered yn)g(m), g(n)h(m), and
g(n)g(m), respectively. These wavelet reconstruction filters in
the Fourier domain are given by

Hiwi,wz) = H(w1) H(ws)
HP (w1, ws) = H(w1)G(ws)
HP (w1, w2) = G(w1)H (wy)
HP’(

wi, wz) = G(w)G(wa). (13)

Fig. 1(b) shows the block diagram of the analysis fil-
ter bank which obtains the approximation at leyelfrom
the approximations and detail at levg¢l— 1. This block
diagram can be used in a pyramidal structure to recon-
struct A¢f, the approximation at resolution 1, from the set
(A, f, D% f)—s<j<—1. In those applications that we are
interested in namely recovering a local region of the image
from the approximate and detail coefficients, we have to
calculate these coefficients for that region plus a margin for
the support of the wavelet reconstruction filters. That margin
is equal to half of the length of the filte¥s and g.

C. Wavelet Reconstruction from the Projection Data

In this section, we present an algorithm that can be used to
obtain the wavelet coefficients of a function &?* from its
Radon transform data. In those applications for which one is
interested in the wavelet coefficients of the function, it involves
fewer computations than first reconstructing the function and
then taking its wavelet transform. Also using this method, one
can obtain locally the wavelet coefficients of a function, which
will allow the local reconstruction of a function and can be
used in local tomography. This property will be explained
in Section IV. We first introduce the main formulas for the
reconstruction of the continuous wavelet transform directly
from the Radon transform data.

Given a real-valued, square integrable functipron R?2
that satisfies condition (6), lgt be given onk?, the wavelet

- Fig. 1(a) shows ansorm of functionf can be reconstructed from its 1-D

the conventional filterbank, which is usually used to Obta'ﬂrojections by

approximation and details of a signal.

The discrete approximation at resolutigftt can be ob-
tained by combining the detail and approximation at resolution

27 i.e.,

=2 h(n — 2k)h(m — 20) AS; f(k,1)
k=—o0l=—
+2 3 > h(n—2k)g(m—20)Dg; | f(k,1)
k=—o0l=—00

W (g; ))(@) = f * Gu(uD)
—/? [ (HORag  Ral)
0
((utz)cos b + (uly)sinh)do  (14)

where ¥ = [z y] € R2 In the discrete case the above
equation becomes

WP (g; )(iT) = /OW(HaRgng « Rof)
(27 ny) cos 6 + (277ny) sin 6) df  (15)
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(@
RAMPLED SCALING FUNCTION RAMPED MOTHER WAVELET

0
X

© (d)

Fig. 3. Wavelet with less dissimilar lengths, = k¥ = k& = 4. (a) Scaling function. (b) Wavelet basis. (c) Ramp-filtered scaling function. (d)
Ramp-filtered wavelet basis.

whereii = [n; n2]. The right-hand side can be evaluated imbtained by
two steps, the filtering step, 4 (2)
Ay f(n,m) =Wy (@ f)([n - m])

= 2]/2 / (HaRg(in * R@f)
0
~((277n)cos B+ (27m)sinB) df.  (17)

Qai o(t) = (Rof x HORg§o:s)(277t)

and the backprojection step

Wéf)(g; Ht) = / Q2 g(n1cos @ +nysinf)df. (16) These coefficients can be calculated using the standard filtered
0 backprojection method, while the filtering part in the Fourier

The filtering step can be implemented in Fourier domain aglomain is given by

Qur 0(w) = RoJ ()|l (w cos b, wsin )W (w) Qg () = Bof (@)l (o8 6, wsin )1V ()

whereg,, (w1, ws), Q27 4(w) andRe f(w) are the Fourier trans- where &,; (w cos 6, wsinf) = ¢y, (w cos )¢y (wsinf). The
forms of the functionsjs;, Q27 o and Ry f, respectively, and detail coefficients can be found in a similar way as
W (w) is a smoothing window. Therefore, (15) can be imple- @) )
mented using the same algorithm as the conventional filtered D if = Wo; (W55 /)([n m]) for i=1,2,3. (18)
backprojection method while the ramp filter| is replaced by
the wavelet ramp filtefw|g,; (w cos 8, w sin §).

If the wavelet basis is separable, the approximation R s ]
and detail coefficients are given by (9) and (11). These Qng&.,@(w) = Ry f(w)|w|¥y; (w cos b, w sin )W (w)
coefficients can be obtained from the projection data by for i=1.2.3.
(15), replacingg(?) by @(z,y) = $(z)p(x), ¥ (z,y) = o
d(x)p(x), U (z,y) = ¥(x)p(x), and ¥3(x,y) = ¥ (x)(x), This means that the wavelet and scaling coefficients of the
respectively. For example, the approximation coefficients araage can be obtained by filtered backprojection method while

To get the detail coefficients, the filtering step is modified as
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Fig. 4. Wavelet with extremal phase and highest number of vanishing moments with length 4. (a) Scaling function. (b) Wavelet basis. (c) Ramp-filtered
scaling function. (d) Ramp-filtered wavelet basis.

the ramp filter is replaced by IV. LOCAL RECONSTRUCTION
It has been noted [2], [8] that if a function has a large
A& . number of vanishing moments (or, equivalently, if its Fourier
He _|w|(f2’ (wcose’fsme) transform vanishes to high order at the origin), then its
= |w|g; (wcos ) Py; (wsin 6) Hilbert transform will decay very rapidly at infinity. If a

compactly supported function has this property, then the
A A essential support of its Hilbert transform (5) should not be
= |w]¢hy; (w cos B)1hy,; (w sin 6) large. This phenomenon is in part a manifestation of the
observation made in [20] that an integral operator with singular
kernel of Calderon—-Zygmund type is almost diagonalized in

21
Héjl = |w|¥y;(wcos B, wsin b)

22
Héjl =|w|Vy;(w cos b, wsin )

— ||ty (w €08 B)gboy (w i 6) a wavelet basis.
o +3 More specifically, the following holds.
Hy =|w|Vy;(wcos,wsind) Lemma 1: Suppose thatf(t) = 0 outside the interval
—lwld (weos 7 (wsind 19y [—A, A] and satisfies/ ¢ f(t)dt = 0 for n = 0,1,---, N.
ol (weost)iy (osing)  (19) LAl and sa
which are called the scaling and wavelet ramp filters. In 1 A N1
order to obtain pyramidal wavelet coefficients, tAg, f and |H f(s)] < s = A[NF2 /A |F()N T dt.

Dy, . f,i =1,2,3,—J < j < —1 are found using (18) and
17). To reconstruct the image from these coefficients, we use .
Ehe)multiresolution reconstrugction formulas (12). Fig. 2 show Proof. A_ssume thats > A. The argument fos < —A is
the block diagram of the multiresolution reconstruction syste € Same. Since

The reconstruction part uses the conventional multiresolution 1 fs—1)

reconstruction filterbank (cf. Fig. 1), which appear as black Hf(s) = lim _/ CASSRLAY)

boxes in the block diagram. SOT Jiggse  t
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Fig. 5. Normalized error (23) versus the number of remaining coefficients. (a) Biorthogonal wavelet with less dissimilar lengths ([15, Tabh. llI]). (b
Orthogonal wavelet with extermal phase and highest number of vanishing moments with length 4 ([16, Tab. 6.2]).

since f(t) = 0 outside[—A, A], and sinces > A

100 >
1 o f(s—t
PIEEY a (=P ,
T Js—A t I} 80
=
Fixing s, and expandingl/¢ in a Taylor series about = s &
gives for somet; € [s — A, s + A] Q 60y 1
o
1 s+A N s—t k s—t N+1 Ll
Hf(s) :—/ fls—1) Z( k+1) +( NJ)rQ dt 4o ]
TJs—A k=0 5 s [92] :
. Q e Method in {9] and [10]
1. 1 4 1 > < -~ Method in [11]
=2 o [ S0 o b 20
[t shtl _A 27 — Our method (average error)
A - -Our method (maximum error)
—N=2 ]\r+1 1 L L L L 1
/ T T =) (s - )T dt % 20 40 60 80 100 120 140
S_iA RADIUS OF ROI (PIXELS)
1 s ' —N—= '
= p / t, A 2f(8 —t)(s— t)]\ tat Fig. 6. Exposure percentage versus the size of the ROI.
s—A

Sincet, € [s — A, s+ Al [tV "2 < |s — A|7N"% sothat 1, and/ t/p(t)dt = 0 for j = 2,3,---, N + 1. Therefore, as

in Lemma 1, it follows that

1 4 :
< N+L| gy
|H f(s)] < s — A|N+2 /_A (&) dt |Hop(s)| < L

1 .
—_—t Ho()tN 2| dt.
7r32+7r|3—AN+3/| w(t) |

N ) ) D Even though the decay is dominated by #& term, ramp-
The significance of this observation for local tomographyjiereq scaling functions with vanishing moments  display

is the following. If (¢) is the wavelet corresponding to thegjgnificantly less relative energy leakage outside the support
scaling functiony(¢) for a multiresolution analysis, then at

) ° ) of the scaling function than those without vanishing moments.
Iea;t the zeroth moment af must vanish. It is possible to |, order to quantify this locality phenomenon, we define
design wavelets that have compact support and have magy spreadof a function f with respect to an interval under
vanishing moments. In this case, the functidi®RsV(?), | amp-filtering to be the normalized energy of the function
wherel, ¢ = 1,2, 3 are given by (10), will have very rapid (|, )}V (¢) outside!, i.e., with T denoting the complement
decay for eacl#. Numerically, even for wavelets with a few
vanishing moments, the essential SUppPOIHGIR, Ui (t) is the 12 -
same as the support &, V*(¢) for eachf. This means that by Ty BNV gy 2
(14), the discrete Wavelet(c)oeﬁicients (18) can be computesc}jread(f’l) N </7|(|w|f(w)) @l dt) /</_Oo 8
locally using essentially local projections. . 1/2

Rapid decay after ramp filtering is also observed in scaling )V (D)2 dt) .
functionsy(t) provided thatp has vanishing moments. Specif-
ically, if ¢(t) satisfiesf ¢(t)dt = 1 and [ /¢(t)dt = 0 for

The rapid decay of the ramp-filtered scaling functions is
j=1,2,--- N, thendyp satisfies] ¢(t)dt =0, [ to(t)dt =

related to the number of vanishing moments of the scaling
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Fig. 7. (a) Projection of a null-space element. (b) Reconstruction of the null-space element.

function. Orthonormal wavelets corresponding to scaling 10°
functions with vanishing moments have been called “coiflets”
by Daubechies in [6, Sec. 8.2]. For coiflets with 1 and 3 — MAXIMUM ERROR

-- AVERAGE ERROR

vanishing moments, supported on the intervals [0, 5], and [0,
11], respectively, we have measured spreads with respect to ©_ 1|
these intervals of .016 and .013, respectively. These scaling
functions correspond to scaling filters with 6 and 12 taps,
respectively. Daubechies has also observed in [6, Sec. 8.3.5],
that the symmetric biorthogonal bases constructed in [15]
are numerically very close to coiflets. For the biorthogonal
“near-coiflet” scaling functions supported on the intervals [0,
4], [0, 8], and [0, 12], we have measured spreads with respect
to these intervals of .029, .016, and .0095, respectively. These 3 . . ‘ .
scaling functions correspond to scaling filters with 5, 9, and 10, ' )
13 taps, respectively. For the purposes of this paper, it is most
desirable to minimize both the spread of the scaling functieny. 8. Maximum error and average error versus the amount of nonlocal
and the number of taps in the corresponding filter. Und@égta used in the reconstruction scheme.

these criteria, the near-coiflet filter with 5 taps is near optimal

[see Fig. 3(a) and (c) and Fig. 5(a)] and is therefore used i filters and also the wavelet reconstruction filters get
our simulations. The measured_ spreads for various c_ompaq);)wer in lower scales, we need to increase the exposure to
supported wavelet and scaling functions are given jRconstruct the low resolution coefficients in the ROI. In our

_ algorithm, we can reconstruct the scaling coefficients locally,
Table I. We have observed that ever ifs replaced by scaling 53nd we use only one level of the wavelet filterbank.
function given by (8) Hd Ry g has essentially the same support
as Ryg for eachf. Fig. 3 shows the Daubechies’ biorthogonal, g.or Analysis
wavelet and scaling function ([15, Table Ill]) as well as the ) . ) . .
ramp filtered version of these functions. Observe that the ramp/t IS mentioned in [23] that the error in the interior Radon
filtered scaling functions has almost the same essential suppE#sform is not negligible because the derivative Hilbert
as the scaling function itselfTherefore, in order to reconstructifansform (the impulse response of the filief) is not local
the wavelet and scaling coefficients for some wavelet basis, {leSPace: This means that in order to reconstruct even a small
only need the projections passing through the region of inter&§@! ROl we have to consider some data outside the region
plus a margin for the support of the wavelet and scaling ran% interest to get negligible reconstrl_Jctlon error. We will find
filters. Moreover, in order to reconstruct the image from tHd UPPer bound for the reconstruction error, in terms of the
wavelet and scaling coefficients, we have to calculate thedgount of nonlocal data that we consider in the reconstruction.
coefficients in the ROI plus a margin for the support of thive will also compare the upper bound of the error in a locally

wavelet reconstruction filters (13). Since wavelet and scaliﬁ?conStrUCted image using our algorithm to the upper bound
of the error when we use the standard filtered backprojection

1This is not the case in general, for example, in Fig. 4 we have plotggthod with local data. For simplicity of notation, we assume

another wavelet and scaling functions ([16, Tab. 6.2]) and their ramp-filter .

versions, for comparison. The scaling function in this basis does spr ROl and rgglon of expo§ure (ROE) are centered' at_the

significantly after ramp filtering. center of the image. Consider the filtered backprojection

RELATIVE ERRO

10 20 30
EXTRA MARGIN (PIXELS)
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TABLE |
SPREAD OF WAVELET AND SCALING FUNCTIONS
Filter Coefficients Support Wavelet Spread Scaling Spread
Haar 1 [0,1] .3837 .6900
1
Linear spline 0.50000000000000 [0,2] 0.09167 0.3726

1.00000000000000
0.50000000000000
Quadratic spline 0.25000000000000 [0,3] 0.01691 0.1959
0.75000000000000
0.75000000000000
0.50000000000000
0.25000000000000
Cubic spline 0.12500000000000 [0,4] 0.003767 0.1389
0.50000000000000
0.75000000000000
0.50000000000000
0.12500000000000
Degree 4 spline 0.06250000000000 [0,5] 0.0009341 0.1105
0.31250000000000
0.62500000000000
0.62500000000000
0.31250000000000
0.06250000000000
Daubechies 4 tap filter 0.68301270189222 [0,3] 0.03391 0.3449
1.18301270189222
0.31698729810778
—0.18301270189222
Daubechies 6 tap filter 0.47046720778416 [0,5] 0.005446 0.1929
1.14111691583144
0.65036500052623
—0.19093441556833
—0.12083220831040
0.04981749973688
Daubechies 8 tap filter 0.32580342805100 [0,7] 0.001058 0.1232
1.01094571509000
0.89220013842700
—0.03957026356000
—0.26450716736900
0.04650360107100
—0.01498698933040
Daubechies 10 tap filter 0.22641898258329 [0,9] 0.0002376 0.08907
0.85394354270476
1.02432694425952
0.19576696134736
—0.34265671538239
—0.04560113188406
0.10970265864207
—0.00882680010864
—0.01779187010184
0.00471742793840
Coiflet with 1 moment vanishing —0.05142972847100 [0,5] 0.0003069 0.01613
0.23892972847100
0.60285945694200
0.27214054305800
—0.05142997284700
—0.01107027152900

formula (1), while the ramp filtejw| is replaced by a generalwill be denoted by ROE. Ifis(s) is chosen to be the impulse

angle dependent filtelis(s) response of the ramp filter (2), the reconstructed function
” f~(z,y) is an approximation of the functiof; and if it is the

fr(z,y) = / (ho(s) * Ro f(s))(zcos +ysind)df. (20) impulse response of the wavelet and scaling ramp filters (19),

0 the reconstructed functiofi.(x, i) will be the approximation

We assume that for each andglec [0,27), the projection of the wavelet and scaling coefficients. The discrete version

data Ry f(s) is sampled with a radial sampling interval ofpf (20) is given by

T,, and the support off is a disk of radiusk centered at

the origin. The region of interest, a disc of raditspixels a1 B

centered at the origin, will be denoted by ROI, and the region fr(z,y) = K2- | Z Py, (n)hg, (m —n)

of exposure, a disc of radius pixels centered at the origin, k=1""n=—R
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TABLE |
SPREAD OF WAVELET AND SCALING FUNCTIONS (continued)
Filter Coefficients Support Wavelet Spread Scaling Spread
Coiflet with 3 moments vanishing 0.01158759673900 [0,11] 0.000006154 0.01307
—0.02932013798000
—0.04763959031000

0.27302104653500
0.57468239385700
0.29486719369600
—0.05408560709200
—0.04202648046100
0.01674441016300
0.00128920335600
—0.00050950539900

Near coiflet (5 taps) —0.05000000000000 [0,4] 0.001682 0.02890
0.25000000000000
0.60000000000000
0.25000000000000

—0.05000000000000

Near coiflet (9 taps) 0.01250000000000 [0,8] 0.00005151 0.01632
—0.03125000000000
—0.05000000000000
0.28125000000000
0.57500000000000
0.28125000000000
—0.05000000000000
—0.03125000000000
0.01250000000000

Near coiflet (12 taps) —0.00317382812500 [0,12] 0.000001515 0.009547
0.00585937500000
0.01904296875000

—0.04882812500000
0.04760742187500
0.29296875000000
0.56347656250000
0.29296875000000

—0.04760742187500

—0.04882812500000
0.01904296875000
0.00585937500000

—0.00317382812500

wherem = |(zcosd + ysind)/T;| € ROE,K is the total Cauchy-Schwartz inequality as
number of evenly spaced angles at which the projections are

measured,F, (n) is the projectionRy, f(n/Ts), and 6, = LT
k(r/K). We can divide the inner summation into two parts, ez, y)| = i Z & Z Py, (n)hg,(m —n)
corresponding to the ROE and its complemB@E k=1 |n|>re
K
™ 1
SE E Z |P9k(n)h9k(m_n)|
. K 1 k=1 |n|>7e
f1 (37, y) =75 o Pek (n)h’ek (m - 7’L) K 12
f(k:lR|n|§7e <121 Z |P (71)|2
Sy} =t Vi !
s = n|>re
+ 225 2 Pa(mhe (m—mn) a2

Thus, the magnitude of error using only ROE is given by

If we assume that the support ffz, %) is in the disc of radius

1, then| Py, (n)| < 2max |f(z,y)|. Hence

1 2V/2 R—r.
Py, (m)ho, (m = n)). e )| < 225 max | )]

> lhe,(m—mn)

To get an upper bound for the error we use the k=L \In|>rc

1/2

=
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(a) A sample projection with the Shepp-Logan head phantom. (b) Projection filtefled.kg) Projection when nonlocal data is set to zero. (d)

Filtered projection. (e) Projection extrapolated outside the ROI. (f) Filtered projection. (The marked area is the ROE.)

We define the relative error as|epl(z, )]
le(z,y)|/ max |f(z,y)|, then
2\/_7r VR
lever(, y)| < K R
K 1/2
Do D lre(m—n)P?
k=1 \|n|>re

(21)

In the worst case, the ROI is a single point. Thus we may
bound (21) by

1/2
2\/_7r VR — VIi—7e
|ere1($ y)| Z Z |h’0k (71)|2
k=1 \|n|>re—r;
We defineheTk, the truncated filter, as
[n| <re —1;

g, () = { hor )

0 otherwise.



1424 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 10, OCTOBER 1997

Therefore B. Interior Problem
02 VR =1 The interior problem in even dimensions is not uniquely
|lerel(w, y)| < K T solvable, since there are nonzero functions that have zero
1/2 projections on the ROE. Clearly, our algorithm will be unable
T 2 to reconstruct such a function. It has been noted that these
DI D IRUADES DI B ot
= \,r unctions, which are in the null-space of the interior problem,

do not vary much well inside the ROE [23].

The inner sum can be written in the frequency domain. That isTo illustrate this, we will reconstruct an element of the null-
space and measure the variation of this element on the ROI.

2v/2r VR—re We assume that the ROI is the interior 32 pixels of the image
K R and ROE is the ROI plus a margin of 22 pixels in each side.
1/2 This margin shows the amount of nonlocal data used in the

> < > |He (1) - Hy, (l)|2> (22) reconstruction scheme. Fig. 7(b) shows a slice of a circularly
k=1 \I=—R symmetric element of the null-space. The projection of this
element for each angle is shown in Fig. 7(a) . The projections

- .
w?ere He, and Hy, are the Fourier ransform o, and 50 ;0rq inside the ROE, which is the interior 76 pixels of the
hg, . respectively. In order to calculate the upper bound of thg e ions and one in 16 pixels at each side of the ROE. The
error in standard filtered backprojection method, we repla

. : easured maximum variation of the null-space on the ROl is
he, In (22) by the ramp filter (2). The upper bound for th‘T"ess than 1%. We consider two measure criteria for the error in

error in the reconstruction of wavelet and scaling coefficien{ﬁe local reconstruction: the maximum error and the average
can be obtained by replacingy, in (22) with (19). In our g

error. Since, in our approach, most of the error occurs in a
algorithm, the scaling and wavelet coefficients at resolution
2~1 are reconstructed directly from the projection data. ThHE maII ring at the boundary of the ROI, the average error is
recovered coefficients are then filtered by the reconstructigh order of magnitude smaller than the maximum error. The
filters (13) to obtain the original image. To consider the effe@@aximum error and the average error of the null-space element

of the wavelet reconstruction filterbank in the error uppd" the ROl versus the amount of nonlocal data (the difference
bound, we move these filters to the projection domain, i.e.,Of the radius of the ROE and ROI) is shown in Fig. 8. Based
on the upper limit on the average error or maximum error,

|erel(2,9)] we determine the size of extra margin to collect the nonlocal

1/2 data. In order to limit the maximum error to 1%, we require

2\/_7r VR =71 Z Z |E a margin of 22 pixels, and in order to limit the average error
% to 1%, we require a margin of 12 pixels.

lerel(m, y)| <

I=—R
In Section V, we will present a method to reduce the error

1/2 1/2
|2> / n < Z |E£2 (l)|2> / at the boundaries of the ROI. In consequence, the amount of
'S k error is much smaller than the upper bound predicted by the
1/2 null space element energy in the ROI. In Section VI, we will
|2> (23) show that the reconstruction of the ROI using only 12 pixels of
extra margin results in a reconstruction with negligible error
in the ROL.
where In the sequel, we calculate the amount of exposure versus
- the size of ROI in our method and previous methods. Let
Ep(h)=Fa () - Fgt () the support of reconstruction filters in the wavelet filterbank
i oD T L be 2r, samples. And also consider an extra margin2ef,
Bo, () =Fo ()= Fo (), =123 samples in the projection domain, and denote the radius of the
region of interest by-;. The radius of the region of exposure
is re = r; + rm + 7, pixels. The amount of exposure in our

algorithm normalized to the full exposure is given by
HD being the ramped scaling and wavelet filters (19),

H;,*,H,{3 ,HD® and HP" the wavelet reconstruction filters et Tm 70

(13), anngiT,FgT,i =1, 2,3 the truncated versions of the R

filters Fé’i and Féfﬂi = 1,2,3. The normalized upper boundThe amount of exposure in our algorithm with, + r, = 12

of the relative error in the reconstructed image, versus tpixels andr,, + 7, = 22 pixels is plotted in Fig. 6. In the
amount of nonlocal datér. — ;) is depicted in Fig. 5. These Delaney and Bresler’s algorithm [9] the exposure is given by
bounds are given by (22) and (23) for the standard filtered

backprojection method and our algorithm, respectively. The . L oo T

horizontal axis in Fig. 5 shows the amount of nonlocal data 277+ 22_q+1< R )

that is collected in order to reconstruct the ROI. g=1

= ;Mm

Eg ()
|Ea, ()

(g
{

—R

where Fgt = HgH(lcos6,lsind) and Feki =
HP HP (Icos6,1sin0),  with  H HE' HE'  and

T
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Fig. 10. (a) Complexity of filtering part. (b) Total complexity.
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Fig. 11. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients.

where L is the number of levels in the wavelet filterbankROE to zero [see Fig. 9(c)] and apply the filtering part of the
Similar exposure is required in DeStefano and Olson’s algfitered backprojection formula (2) to the remaining projec-
rithm [8]. Fig. 6 shows the relative amount of exposure verstgns. Fig. 9(d) shows the artifacts that appear at the borders
the size of the region of interest in a 256 256 image for of the region of exposure. When the backprojection formula
m + 7, = 12 pixels for these methods. Also the amounfs applied to the filtered projections, these artifacts cause

of exposure for [11] is plotted for comparison. All of thehe errors at the borders of the ROE in the reconstructed
exposures in Fig. 6 are divided by two if we use |nterlacq%age

sampling. : .
pling In order to avoid the artifacts, we have extrapolated the

projections continuously to be constant on the missing pro-
jections. The extrapolation scheme is the same even when
A. Practical Considerations the ROE is not centered. Let the ROE’s, which is the sub-
. . set of projections on whichR, f is given, be a circle of

In local reconstruction, artifacts are common close to the . . .
boundary of the ROE. To illustrate this, we consider th,read'usn whose center is located at polar coordinatesh),
Shepp-Logan head phantom and an ROE of diameter 32 piie?s

at the center of the image. We set the projections outside tHROE: {s: s € [rcos (6 —68p) —7rc,7cos (0 —8o)+7.]}. (24)

V. IMPLEMENTATION
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(@ (b)

() (d)

Fig. 12. Local wavelet reconstruction. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients; blowup of the region of interest. (c)
Reconstruction using wavelet method (local data). (d) Reconstruction using standard filtered backprojection method (global data).

We use the constant extrapolation bias difference compared to the one using global data. This
R is natural in local tomography and, after backprojection of

(R )1ocal(s) _ all projections, appears as a constant bias in the locally
Re(s)  ifs€ROE reconstructed image [23], [25]. In [23], it is suggested to

Reo(rcos (0 = o) +7e) extrapolate the data outside the ROl using a minimum norm
= if 5 € [rcos (6 — b) + 7, +00) approach, which has the same effect on the artifacts (cf., [23],

Ro(rcos (8 — o) —7e) Fig. V1.8).
if s € (—o0,rcos(8—6y) —re].
(25)

Fig. 9(e) and (f) shows an extrapolated projection and its Algorithm

ramp-filtered version (2), respectively. When we apply the We assume the support of image is a disc of radiusnd
ramp filter to the extrapolated projection, there is no spikée radius of the ROl is;. A region of radius’, = 7; +7,, +7»

at the edge of the region of exposure. The comparison with exposed, where,,, and r,. are the extra margin due to
the ramp-filtered version of the projection using global dathe support of the decomposition filters in the projection
[see Fig. 9(b)] shows that the filtered projection has a constaltmain and the reconstruction filters in the image domain,
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(@) (b)

Fig. 13. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients.

respectively. Suppose the projections are sampléd atenly which is almost the same in all of the above methods. Fig.
spaced angles. In the following we summarize the algorithrO(b) shows the total complexity of different methods. If, in

1) The region of exposure of each projection is filtered Bji€ backprojection step, we use another method like the nearest
modified wavelet filters (2), a¥ angles. The complexity neighbor, the total complexity mostly depends on the filtering
of this part, using FFT, i% Nrelogre. part and our algorithm can reduce the complexity compared

2) The bandwidth of the projections is reduced by half the method in [9].
after filtering with modified scaling filters. Hence, we
use N/2 of the projections at evenly spaced angles. VI. SIMULATION RESULTS

These projections are extrapolated@g plxel§, using We have obtained the wavelet and scaling coefficients of the
(25), and are then filtered by modified scaling f|lters2

. L ) 256 x 256 pixel image of the Shepp—Logan head phantom
;I'he ?Ompli)gt%/ Q;weilrlglpr?\;t)usmg the fast I:Our'erusing global data (Fig. 11). In this decomposition, we used
ransform (FFT) is3N(4r) log dr.. the Daubechies’ biorthogonal basis [15, Tab. lll]. The quality

3) Filtered projections are obtained in step 1 and 2 aI¥ the reconstructed image is the same as with the filtered

backproject.ed tp every other point_, using (16)’. tp Obtail@ackprojection method. Fig. 12 shows an example in which
the approximation (17) and detail (18) coefficients

_ 1 - ) A centered disk of radius 16 pixels is reconstructed using the
resolution 2 N The remaining pomt.s are.set to Z€10\4ca] reconstruction method proposed in this paper. Fig. 12(c)
The complexity of t2h|s part, using linear interpolationy (4 shows the blow up of the ROI using both standard fil-
IS (7]_\7 / 2)(”_ +2r)% tered backprojection using global data and local reconstruction
4) The image is reconstructed from the wavelet and scgh; comparison. In this example the projections are collected
ing coefficients by (12). The complexity of filtering iSfrom a disk of radius 28 pixels, therefore the amount of
4(2r:)*(3ry). exposure is 22% of the conventional filtered backprojection
We have compared the complexity of the filtering pafhethod. We have observed a constant bias in the reconstructed
of our algorithm with the filtered backprojection methodmage, which is natural in the interior reconstruction problem
and the algorithm presented in [9]. Fig. 10(a) shows tHe3], [25]. In the above example, the mean square error (MSE)
complexity of each method as a function of the radius dfetween the original image and the locally reconstructed image
the region of interest. The complexity of our algorithm andfter removing bias is computed over the region of intefest.
the algorithm proposed in [9] is less than the standard filter@the error energy in the reconstructed image is the same as
backprojection method when the size of the ROI is small. Bfittered backprojection method using full exposure data.
as the radius of the ROI is increased, the complexity of both
algorithms exceeds that of filtered backprojection, since in bottf The MSE is calculated using this equation
methods we have to apply filtering for different resolutions. 1 ‘ R ,
However, the complexity of our algorithm is smaller than ~ > (f(n,m) = f(n,m))
Bresler/Delaney’s algorithm because of smaller length of (rm): () RO

projections. If we use ”_near interpolation at the baqkprpjecn%eref is the original imagef‘ is the reconstructed image with the constant
part, the total complexity depends on the backprojection pastas removed, andV is the number of pixels in the ROI.
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Fig. 14. Local wavelet reconstruction. (a) Wavelet coefficients. (b) Reconstruction from wavelet coefficients; blowup of the ROI. (c) Recongtingtio
wavelet method (local data). (d) Reconstruction using standard filtered backprojection method (global data).

The proposed method is applied to the real data obtainedn order to make an accurate comparison with other meth-
from a CT scanner. In the local reconstruction even with 1I&ds, most notably those described in [8], [9], and [11], we
pixels extra margin, the reconstructed image has the same qaahsider two measure criteria for the error in local reconstruc-
ity as the filtered backprojection method. Fig. 13 shows a 1084n, the maximum relative error (21), and the average relative
x 1024 scan of heart reconstructed from projections sampledor. Since most of the error in our reconstructions occurs in
at 720 angles over 180with each projection consisting ofa small ring at the boundary of the ROI, the average error is
1024 samples covering a recon diameter of 47.5 cm. Usiag order of magnitude smaller than the maximum error. This
our algorithm, a local centered region of radius 128 pixelfetermination is based on the examination of a typical element
of this scan has been reconstructed by using only 27% affthe nullspace of the interior Radon transform. Based on the
exposure (see Fig. 14). The reconstruction in the region éfamination of this element, and on other considerations, we
interest is as good as what can be obtained using the filtefedthe size of the margin outside of the region of interest,
backprojection method, which involves global data and 10086 which we collect data. In order to limit the maximum
exposure. The blow-up of the ROI reconstructed by our locatror to 1%, we require a margin of 22 pixels, and in order
method and global standard filter backprojection is shown ia limit the average error to 1%, we require a margin of
Fig. 14(c) and (d), respectively. 12 pixels (see Fig. 8). Since we are doing extrapolation in
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addition to collecting nonlocal data, the actual error is mudh3] F. Peyrin, M. Zaim, and G. Goutte, “Multiscale reconstruction of

smaller than the values predicted by examining the nullspace tomographic images,” irProc. IEEE-SP Int. Symp. Time-Frequency
| H beli that the 1% iteri Time-Scale Analysisl992.
element. Hence, we believe that the 1% average error Criteri@@) r. r. Coifman and Y. Meyer, “Remarques sur'l analyze de Fourier ‘a

is the most reasonable in light of the nature of our algorithm. ferétre,”série I. C.R. Acad. Sci. Paris/ol. 312, pp. 259-261, 1991.

Therefore. the 12-pixe| margin is used in our simulations bl[}ls] M. Antonini, M. Barlaud, P. Mathieu, and |. Daubechies, “Image coding
! ! using wavelet transform,JEEE Trans. Image Processingol. 1, pp.

we also report comparisons based on the 22-pixel margin. 205-220, Apr. 1992.
[16] I. Daubechies,Ten Lectures on WaveletsPhiladelphia, PA: SIAM,
1992.
[17] S. Mallat, “A theory for multiresolution signal decomposition: The
VIl. CONCLUSION wavelet representation|EEE Trans. Pattern Anal. Machine Intgllol.

. 11, pp. 674-693, July 1989.
We have developed an algorithm to reconstruct the wavelgg) k. T. smith and F. Keinert, “Mathematical foundation of computed

and scaling coefficients of a function from its Radon transform. tomography,”Appl. Opt, vol. 24, pp. 3950-3957, Dec. 1985.

. : Y. Zhang, M. Coplan, J. Moore, and C. A. Berenstein, “Computerized
Based on the observation that for some wavelet bases With tomographic imaging for space plasma physidsAppl. Phys.vol. 68,

sufficiently many zero moments, the scaling and wavelet func- pp. 5883-5892, 1990.

tions have essentially the same support after ramp filtering, ¥l G-dBeylkin’_ RI- ?Oiffqﬁ”' "g‘d V. RO';“"”';FaISt&N%\:e'eIt gi”SfOFmS
have developed a local reconstruction scheme to reconstruct izl_gggeggglégon ms,-ommun. FUTe AppL Mathvol. 44, pp.

a local region of a cross section of a body with essentiallg1] J. Guedon and M. Unser, “Least square and spline filtered backprojec-
local data. An upper bound for the local reconstruction err% tion,” preprint, Mar. 1994.

. . . . [22] C. Hamaker, K. T. Smith, D. C. Solomon, and S. L. Wagner, “The
is obtained in terms of the amount of nonlocal data which ™ givergent beam X-ray transformRocky Mountain J. Math.vol. 10,

is used in the reconstruction scheme. Nonuniqueness of the pp. 253-283, 1980.

interior problem appears as a constant bias in the reconstrudted 55r|'3a\t/tv?|fyr' Tlg‘éeMathema“cs of Computerized Tomographiew

image. The measured error between the original image and thg P. Maass, “The interior Radon transforn§tAM J. Appl. Mathvol. 52,
reconstructed image after removing this bias is negligible. This  pp. 710-724, June 1992.

. _ 25] A. K. Louis and A. Rieder, “Incomplete data problem in x-ray comput-
fact shows that if we use a sufficient amount of nonlocal dat& erized tomography,Numer. Math, vol. 56, pp. 371383, 1989.

in the reconstruction, this bias is reasonably constant on tf26] A. I. Katsevich and A. G. Ramm, “New methods for finding values
ROI. of the jumps of a function from its local tomography dat#Verse
Problems vol. 11, pp. 1005-1024, 1995.
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