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Abstract—The potential for capacity increase in multiple-antenna
wireless communication systems has drawn considerable attention to
space–time codes. However, most of the existing space–time code con-
struction methods have assumed ideal channel models: either quasi-static
fading or fast fading. In this work, we propose a systematic space–time
trellis code construction method for correlated fading channels. We derive
the performance criteria that take into account both spatial and temporal
channel correlation, assuming that the space–time correlation matrix is of
full rank. Moreover, we introduce a new design criterion and analyze the
properties of the space–time trellis codes satisfying the proposed criterion.
Using the design criterion, we develop a code construction procedure
that jointly considers diversity advantage and coding advantage for an
arbitrary number of transmit antennas and any memoryless modulation.
The flexibility of the proposed code construction method is demonstrated
by designing space–time trellis codes for two, three, and four transmit
antennas with quaternary phase-shift keying (QPSK), 8PSK (phase-shift
keying), and 4ASK (amplitude-shift keying) modulations. The simulation
results demonstrate that not only can our method generate new codes
for an arbitrary number of antennas, but in some special cases, where
previously proposed codes exist, our codes also perform very well.

Index Terms—Diversity, space–time codes, space–time correlation, trellis
codes, wireless communications.

I. INTRODUCTION

In wireless communications, diversity techniques have been used
extensively to improve the quality of transmission at high data rates.
Spatial diversity corresponds to adding redundancy in the spatial do-
main: building a system with multiple transmit and/or receive antennas
can improve the performance and throughput of the wireless link by
making use of the large number of propagation paths between the trans-
mitter and the receiver.

Space–time (ST) trellis codes represent a combination of forward
error correction, transmit diversity, and modulation. The performance
criteria for both quasi-static channels (the channel stays constant over
one frame period) and fast fading channels (the channel changes in-
dependently from channel symbol period to channel symbol period)
were derived in [1], characterizing the ST codes with two quantities:
the diversity advantage, which describes the asymptotic error rate de-
crease as a function of the signal-to-noise ratio (SNR), and the coding
advantage, which determines the vertical shift of the error performance
curve.

Most of the existing ST trellis code construction methods have
assumed ideal channel models: either quasi-static fading or fast
fading, without considering the effect of spatial correlation. For the
quasi-static channel model, the authors of [1] proposed design rules for
two transmit antennas to achieve the maximum achievable diversity
advantage. Later works [2], [3], [12] described systematic code design
methods for an arbitrary number of transmit antennas.
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The first ST trellis code construction method for the fast-fading
channel model was described in [4]. ST codes for two transmit an-
tennas and quaternary phase-shift keying (QPSK) modulation were
designed using the idea of signal set partitioning. In [5], the design of
ST codes for fast-fading channels was also considered. The authors
found ST codes for two transmit antennas and QPSK and 8PSK
(phase-shift keying) modulations through computer search.

For the quasi-static channel model, the authors of [6] investigated
the achievable diversity order as a function of spatial correlation,
taking into account some physical propagation parameters. The
problem of code design for correlated fading channels was addressed
in [7], and general performance criteria were derived for ST-correlated
Rayleigh-fading channels. In [8], it was assumed that the channel
stays constant for a number of channel symbol periods equal to the
number of transmit antennas. The performance criteria were obtained
for this channel model, and hand-crafted trellis codes were proposed
combining multiple trellis-coded modulation with Alamouti’s scheme
[9].

In [11], characterizing the performance of ST codes over ST-cor-
related Rayleigh-fading channels was also considered. The minimum
diversity order achievable over all ST correlation matrices of a given
rank was defined as the measure of robustness. The relationship
between the robustness (diversity) and the rank of the ST correla-
tion matrix was investigated, and upper and lower bounds on the
achievable diversity were derived. However, exact results on the
achievable diversity advantage and results on the coding advantage
were not presented.

In this correspondence, we consider the problem of ST trellis code
design, taking into account both spatial and temporal channel correla-
tion. As ad hoc code design methods and computer search methods can
only provide point solutions in the design space, and the computational
complexity of exhaustive search becomes prohibitive as the number of
transmit antennas and the constellation size increase, we focus our at-
tention on the development of systematic ST code design methods that
are flexible and scalable.

First, we derive the performance criteria for a channel model in
which the channel changes from channel symbol period to channel
symbol period in a correlated manner, assuming that the ST correlation
matrix is of full rank. We show that for this transmission scenario, the
effect of the channel correlation and the ST code on the performance
can be separated, resulting in channel-independent performance
criteria. Our result implies that as long as the correlation matrix is of
full rank, it does not matter what the correlation matrix actually is
from the viewpoint of code design, and the ST code design problem
for correlated channels can be reduced to the code design problem for
fast-fading channels. We characterize the performance of the ST codes
by finding exact expressions for the achieved diversity advantage and
coding advantage.

Then, we propose a new design criterion and analyze the properties
of the ST trellis codes satisfying the proposed criterion. Finally, we de-
velop a systematic code construction procedure that jointly considers
diversity advantage and coding advantage for an arbitrary number of
transmit antennas and any memoryless modulation. The proposed de-
sign method has extremely low complexity: we provide a closed-form
solution to the code design problem. To our knowledge, our method
is the first systematic ST trellis code design method proposed for non-
quasi-static channel models.

II. SYSTEM MODEL AND NOTATION

Consider a wireless communication system with K transmit and
L receive antennas. The input bit stream is divided into bs-bit-long
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blocks, forming B-ary (B = 2b ) source symbols. At discrete time
t (t = 0; 1; . . . ; T�1), the ST encoder takes the current source symbol
bt (bt 2 f0; 1; . . . ; B � 1g) as input and outputs K B-ary labels,
one for each transmit antenna. We denote the label for antenna k at
time t by ikt (ikt 2 f0; 1; . . . ; B � 1g), and the label vector at time
t is given by iiit = [i0t ; i

1

t ; . . . ; i
K�1

t ]T . The labels are mapped onto
channel symbols, or constellation points, by the modulators and trans-
mitted through the transmit antennas. In the sequel, c(i) will represent
the constellation point corresponding to label i (for example, in case of
B-ary PSK, c(i) = exp(j2�i=B), where j =

p�1). All the constel-
lations are assumed to be normalized so that the average energy of the
constellation is unity (if the channel symbols are equally likely). The
channel symbol transmitted by antenna k at time t will be denoted by
ckt = c ikt , and the vector of channel symbols at time t is defined as
ccct = [c0t ; c

1

t ; . . . ; c
K�1

t ]T .
The transmission medium is assumed to be a flat (frequency-non-

selective), ST-correlated Rayleigh-fading channel. The channel coeffi-
cient between transmit antenna k and receive antenna l at time t will
be denoted by �k;l(t). These channel coefficients are modeled as com-
plex, zero-mean, Gaussian random variables with unit variance and are
assumed to be known by the receiver. Based on the above assump-
tions, after down-conversion, matched filtering, and sampling, rlt, the
received signal at receive antenna l at discrete time t, can be expressed
as

rlt =

K�1

k=0

E0

K
�k;l(t)c

k
t + zlt (1)

where E0 is the average transmission energy per source symbol (each
transmit antenna transmits with E0=K average transmit energy). The
receiver noise, denoted by zlt, is taken from samples of independent,
complex, zero mean, Gaussian random variables with varianceN0. The
average SNR per source symbol at receive antenna l will be defined
as SNRl = E0=N0. To express the received signal in matrix–vector
notation, we define the matrix

���k = diag ck0 ; c
k
1 ; . . . ; c

k
T�1

and the row vectors

rrrl = rl0; r
l
1; . . . ; r

l
T�1

�k;l = [�k;l(0); �k;l(1); . . . ; �k;l(T � 1)]

and

zzzl = zl0; z
l
1; . . . ; z

l
T�1 :

Using these quantities, the LT by 1 received signal vector
rrr = [rrr0; rrr1; . . . ; rrrL�1]T is given by

rrr =
E0

K
����+ zzz (2)

with the LT by KLT channel symbol matrix

��� = IIIL 
 [���0;���1; . . . ;���K�1]

the LT by 1 noise vector

zzz = [zzz0; zzz1; . . . ; zzzL�1]T

and the KLT by 1 channel coefficient vector

� = [�0;0; �1;0; . . . ; �K�1;0; �0;1; . . . ; �K�1;L�1]
T :

The symbol 
 denotes the tensor product, and IIIL is the L by L iden-
tity matrix. The correlation matrix RRR = E(��H) has KLT rows and
KLT columns and is assumed to be of full rank (i.e., its eigenvalues
are real and positive).

Due to decoding errors, the receiver may decode a different se-
quence of channel symbols. The erroneously decoded channel symbol
for transmit antenna k at time t will be denoted by ĉkt , and the vector
of decoded channel symbols at time t will be given by

ĉcct = ĉ0t ; ĉ
1

t ; . . . ; ĉ
K�1

t

T

:

Defining the matrix

�̂��
k
= diag ĉk0 ; ĉ

k
1 ; . . . ; ĉ

k
T�1

the erroneously decoded channel symbol matrix �̂�� can be expressed
similarly to ���.

III. PERFORMANCE CRITERIA

In this section, we derive the performance criteria for ST-correlated
Rayleigh-fading channels with full-rank correlation matrix, based on
an upper bound on the pairwise error probability [7], derived for a
general transmission scenario. It was shown in [7] that the probability
that the maximum-likelihood decoder erroneously decodes the channel
symbol matrix �̂�� if ��� was sent can be upper-bounded as

P (�̂��j���) �
2r�1

r�1

E

KN

�r

�r
i=1
i

(3)

where r and 
i’s are the rank and the nonzero eigenvalues of the matrix
���RRR���H , respectively, and ��� is the channel symbol difference matrix,
defined as ��� = ���� �̂��. The performance criteria are obtained by sim-
plifying (3) when the received signal is described by (2).

Assume that for � time instants t0; t1; . . . ; t��1, the sent and the
erroneously decoded channel symbol vectors are different, i.e., ccct �
ĉcct 6= 0 for t 2 ft0; t1; . . . ; t��1g, and for the rest of the time in-
stants, they are the same. Therefore, the sent and decoded channel
symbol vectors corresponding to the times t 62 ft0; t1; . . . ; t��1g will
produce all-zero rows and columns in the channel symbol difference
matrix ���. These rows and columns can be eliminated from the anal-
ysis in the following way. For each t 62 ft0; t1; . . . ; t��1g, rows t;
t + T; t + 2T; . . . ; t + (L� 1)T and columns t; t + T; t + 2T; . . . ;
t+ (KL� 1)T are removed from the matrix ���, producing a new L�
by KL� channel symbol difference matrix ���0. The matrix ���0 has a
structure similar to ���, but the matrices ���k are replaced with

���0k = diag ckt � ĉkt ; ckt � ĉkt ; . . . ; ckt � ĉkt :

Note that ���0 has full row rank.
In addition, for each t 62 ft0; t1; . . . ; t��1g, rows and columns t;

t + T; t + 2T; . . . ; t + (KL � 1)T must also be removed from RRR,
resulting in the KL� by KL� matrixRRR0. Since only all-zero rows and
columns have been deleted from���, the nonzero eigenvalues of���RRR���H

and���0RRR0���0H are the same. It is shown in Appendix A that the relation

r

i=1


i = det(���0RRR0���0H) � det(���min(L�))det(���
0�0H) (4)

holds, where ���min(L�) is a L� by L� diagonal matrix with the L�
smallest eigenvalues of RRR along the diagonal. Since RRR is positive def-
inite, det(���min(L�)) is strictly positive. Moreover, ���0 has full row
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rank, so det(���0�0H) is also strictly positive. Consequently, the ma-
trices���RRR���H and���0

RRR
0���0H are both of rank L� . Combining (3) with

(4), and recognizing that

det(���0���0H) =

��1

i=0

kccct � ĉcct k2L

where kxxxk =
p
xxxHxxx, we arrive at the upper bound

P (�̂��j���) � E0

KN0

�L�
2L� � 1

L� � 1

� 1

det(���min(L�))

��1

i=0

kccct � ĉcct k�2L: (5)

The performance criteria now can be formulated to minimize the
maximum value of P (�̂��j���).

1) Design for diversity advantage (distance criterion): The min-
imum number of time instants when the correct and the decoded
channel symbol vectors are different (the minimum value of � ) taken
over all possible correct and erroneously decoded channel symbol
vector sequences must be maximized.

2) Design for coding advantage (product criterion): The minimum
of the norm products, defined as

� =

��1

i=0

kccct � ĉcct k2

taken over all possible correct and erroneously decoded channel
symbol vector sequences must be maximized.

Note that the these performance criteria are the same as the perfor-
mance criteria proposed for fast (independently) fading channels [1]. In
case of independent fading, the matricesRRR,RRR0, and���min(L�) become
identity matrices, and (5) simplifies to a form similar to the upper bound
derived in [1], the only difference being a multiplicative constant.

In the above derivation, the matrixRRR was assumed to have full rank.
This corresponds to the condition that the magnitude of the channel
correlation decay fast enough as the transmit and receive antenna sepa-
ration and the time separation increase. If this condition holds, the code
design problem for ST-correlated channels can be reduced to the code
design problem for fast fading channels. Moreover, the correlation only
causes coding advantage loss compared to the fast (independent) fading
case.

IV. A DESIGN CRITERION FOR TRELLIS CODES

This section proposes a new design criterion that is based on the
distance criterion described in the previous section. Since the design
criterion is specific to trellis codes, it is necessary to extend the notation
to explicitly show the dependence of the channel symbols on the state
transitions.

The ST trellis encoder works as a finite-state machine withN states:
at discrete time t, it takes the current source symbol bt, and governed by
this input and the current state, St (St 2 f0; 1; . . . ; N � 1g), it moves
to the next state St+1. The label for transmit antenna k produced by
the encoder during the state transition from St through the branch cor-
responding to bt will be denoted by ik(St; bt) = ikt . The label vector
iiit will become

iii(St; bt) = i
0(St; bt); . . . ; i

K�1(St; bt)
T

and the channel symbol vector ccct will be written as

ccc(St; bt) = c i
0(St; bt) ; . . . ; c i

K�1(St; bt)
T

:

Similarly, ccc(Ŝt; b̂t) = ĉcct will be the erroneously decoded channel
symbol vector at time t. This notation emphasizes that, in general,
the state sequences corresponding to the correct and the erroneously
decoded paths (i.e., fStg and fŜtg) are different, and so are the en-
coded source symbol sequence fbtg and the decoded source symbol
sequence fb̂tg. The design criterion was developed for encoders having
Nmin = BK�1 states, so from now on it will be assumed that the en-
coder has Nmin states.

The proposed design criterion (uniqueness criterion) is: Every label
vector must be unique. This means that a) the label vectors assigned
to different branches emanating from the same state must be different,
and b) any label vector assigned to any branch emanating from any
state must be different from any label vector assigned to any branch
emanating from any other state.

Each label vector containsK B-ary labels, so there areBK different
label vectors. Since there areB branches emanating from each state and
the encoder is assumed to have Nmin states, we need exactly BK dif-
ferent label vectors. Therefore, it is possible to assign label vectors to
state transitions according to the uniqueness criterion. Sections IV-A
and -B will analyze the properties of the ST codes that satisfy the pro-
posed uniqueness criterion.

A. Diversity Advantage

Assume that the first decoding error occurs at t = t0, so the correct
and decoded paths diverge at this point (i.e., St = Ŝt and bt 6= b̂t ).
The two paths are assumed to merge later at time t = t0 + � , re-
sulting in a � -length error event. As a consequence of criterion a), the
channel symbol vectors corresponding to the two paths diverging at
St will be different. Moreover, as a result of criterion b), the channel
symbol vectors corresponding to the correct and the decoded paths
going through different states will be different. Therefore, for t =
t0; t0 + 1; . . . ; t0 + � � 1, we have ccc(St; bt) � ccc(Ŝt; b̂t) 6= 0, so
an error event of length � will always achieve a Hamming distance � .
(Here we define the Hamming distance between the sent and decoded
codewords as the number of discrete time instants, or positions, where
the sent and the decoded channel symbol vectors differ in at least one
coordinate.)

From the performance criteria described in Section III, one can con-
clude that any � -length error event will achieve a diversity advantage of
�L. In case of multiple error events, the total diversity advantage will be
the sum of the diversity advantages of the individual error events. Con-
sequently, the minimum diversity advantage of the ST code is deter-
mined by the shortest error event. For ST encoders havingNmin states,
the shortest error event is K state transitions long [12], so the ST code
is guaranteed to achieve a diversity advantage of KL.

B. Error Event Probability

In this section, we will derive an upper bound on the � -length error
event probability, i.e., the probability that at a given discrete time in-
stant, a decoding error occurs, resulting in an error event that is � state
transitions long.

Using the union bound, the � -length error event probability, which is
the probability of the union of the � -length error events, can be upper-
bounded as

P� �
��� �̂��

P (�̂��� j���)P (���): (6)



2858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 11, NOVEMBER 2004

In (6), the first summation is over all possible sent channel symbol ma-
trices ���, and the second summation is over all possible erroneously
decoded channel symbol matrices �̂��� corresponding to � -length error
events for a particular ���. Assuming that the decoding error occurs at
time t0, for t = t0; t0 + 1; . . . ; t0 + � � 1, at least one coordinate
of the channel symbol vectors ccc(St; bt) and ccc(Ŝt; b̂t) will be different.
Therefore, if we denote the minimum distance of the chosen constella-
tion by d, the squared norms of their differences can be lower-bounded
as

kccc(St; bt)� ccc(Ŝt; b̂t)k2 � d
2 (7)

for t = t0; t0 + 1; . . . ; t0 + � � 1. Combining (5) with (7) and using
the inequality

2n� 1

n� 1
< 4n

we obtain an upper bound on the pairwise error probability

P (�̂��� j���) < 1

det(���min(L�))

E0

4KN0

�L�

d
�2L�

: (8)

Defining 
min, the minimum determinant taken over all possible �

values, as


min = min
1���T�1

det(�min(L�)) (9)

the pairwise error probability can be further upper-bounded as

P (�̂��� j���) < 1


min

E0

4KN0

�L�

d
�2L�

: (10)

Since the upper bound (10) does not depend on �̂��� , (6) can be rewritten
as

P� <
1


min
���

N(�̂��� )
E0d

2

4KN0

�L�

P (���) (11)

where N(�̂��� ) is the number of � -length error paths for a given correct
path.N(�̂���) can be strictly upper-bounded by B� , so the upper bound
simplifies to

P� <
1


min
���

B
� E0d

2

4KN0

�L�

P (���): (12)

Finally, recognizing that P (���) is the only term that depends on ���, and
that the probability mass function of ��� sums to unity, the final ex-
pression for the upper bound on the � -length error event probability
becomes

P� <
1


min

E0d
2

4KN0

p
B

�L�

: (13)

From (13), one can see that the probability that an error event of a
given length occurs decreases at least exponentially with its length.
Consequently, at high SNR, the shortest error events will dominate; the
longer error paths will have negligible contribution to the error event
probability. (Note that we assumed that the trellis is finite, so the range
of the � values is constrained by the length of the trellis, the time when
the decoding error occurs, and the length of the shortest error event.)

Fig. 1. Example ST code for three antennas, 4-ary modulation.

V. THE DESIGN METHOD

In the ST encoder, B label vectors are assigned to each state,
according to the branches emanating from that state. The current
source symbol selects one of them, and the kth (k = 0; 1; . . . ; K�1)
coordinate of the chosen vector determines the constellation point for
antenna k. Fig. 1 depicts an example ST code for three antennas and
any 4-ary constellation (K = 3, B = 4, N = 16). In this case, if the
current state is state 2 and the value of the current source symbol is 3,
the ST encoder selects the third label vector [1; 3; 1]T and moves to
state 11. The zeroth, first, and second antennas will transmit the channel
symbols corresponding to the labels 1, 3, and 1, respectively. Note that
the ST encoder is assumed to haveNmin = BK�1 states, so any stateS
(S2f0; 1; . . . ; BK�1�1g) can be uniquely represented as a (K�1)-
digitB-ary number with digits l1; l2; . . . ; lK�1 (lk2f0; 1; . . . ; B�1g)

S = B
K�2

lK�1 +B
K�3

lK�2 + � � �+Bl2 + l1: (14)

This section addresses the problem of assigning label vectors to
state transitions. As we have seen in Section IV, the ST codes
satisfying the uniqueness criterion posses some very advantageous
properties: they can deliver the maximum diversity available in the
channel model for the given number of encoder states, and the error
event probability decays exponentially with the the length of the
error event. Thus, we require that the designed ST codes satisfy
the uniqueness criterion. However, this design criterion does not
specify the ST codes uniquely (the available BK label vectors can
be arranged in (BK)! different ways), so the remaining freedom
can be used to increase the value of the minimum norm product (�).
Now we present a method that provides a closed-form solution to
the code design problem. The basic idea behind the method is that
it attempts to maximize the minimum norm product corresponding
to the shortest error events by maximizing the number of nonzero
coordinates in the channel symbol difference vectors. Consequently,
the code design method is modulation independent, so it can be
used with any memoryless modulation.

The proposed design rules for ST trellis codes for K transmit an-
tennas and Nmin encoder states are as follows.
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1) The 0th coordinate of the label vector (the label for the 0th
transmit antenna) corresponding to branch b (b 2 f0; 1; . . . ; B � 1g)
emanating from state S (S 2 f0; 1; . . . ; BK�1 � 1g) is determined
as

i
0(S; b) = (b+ lK�1 + lK�2 + � � �+ l1) mod B (15)

where lK�1; lK�2; . . . ; l1 are the digits of the B-ary representation of
state S in (14).

2) For k = 1; 2; . . . ; K�1, the kth coordinate of the label vector (the
label for the kth transmit antenna) corresponding to branch b emanating
from state S is calculated as

i
k(S; b) = (i0(S; b) + lk) mod B: (16)

By making use of the identity

n

i=1

�i mod � mod � =

n

i=1

�i mod � (17)

the second design rule can be put in the alternative form

i
k(S; b) = (b+ lK�1 + lK�2 + � � �+ l1 + lk) mod B: (18)

As an example, consider the ST code shown in Fig. 1. Since B = 4,
stateS = 6 can be represented asS = Bl2+l1 with l2 = 1 and l1 = 2.
The labels corresponding to the second branch (b = 2) emanating from
state 6 are determined as

i
0(S; b) = (b+ l2 + l1) mod B = 1

i
1(S; b) = (i0(S; b) + l1) mod B = 3

and

i
2(S; b) = (i0(S; b) + l2) mod B = 2:

Therefore, the label vector assigned to this state transition will be
[1; 3; 2]T .

From the above design rules, it is not apparent that the resulting ST
codes satisfy the uniqueness criterion. The following result will estab-
lish that the uniqueness criterion is indeed satisfied.

Theorem 1: The ST trellis codes produced by the above described
construction method for K transmit antennas and Nmin states satisfy
the uniqueness criterion with any B-ary constellation.

Proof: The proof is given in two steps.
1) From (15), it can be seen that for a given state S (given

l1; l2; . . . ; lK�1 values) and different b input values, the value of
i0(S; b) will be different. Therefore, the label vectors assigned to the
same state are different in at least one (the 0th) coordinate.

2) Let us pick two arbitrary states, S1 and S2 (S1 6= S2), and one
label vector assigned to a branch emanating from each state. If the
0th coordinates of the label vectors are different, then the statement
is proven. If they are the same, then we have i0(S1; b1) = i0(S2; b2)
for some b1; b2 2 f0; 1; . . . ; B � 1g. The states S1 and S2 can be
uniquely expressed as

S1 =B
K�2

lK�1 +B
K�3

lK�2 + � � �+Bl2 + l1

S2 =B
K�2

mK�1 +B
K�3

mK�2 + � � �+Bm2 +m1

with lk;mk 2 f0; 1; . . . ; B � 1g. S1 6= S2, so lk 6= mk must hold
for at least one k value. Since the kth (k = 1; 2; . . . ; K � 1) coor-
dinates of the label vectors are determined according to (16), we will
have ik(S1; b1) 6= ik(S2; b2) for at least one k value. Therefore, the
label vectors assigned to different states are different in at least one co-
ordinate. Both conditions a) and b) of Section IV are satisfied, so the
code is guaranteed to satisfy the uniqueness criterion.

As it is well known from the literature [1], [8], an ST code designed
for a particular channel model may suffer considerable performance
loss in case of a different channel model. Therefore, it is of interest
to investigate how the performance of the proposed ST codes is af-
fected when transmitting them over very slowly fading channels. The
following theorem characterizes the performance of the two-antenna
PSK ST trellis codes designed by the proposed code construction pro-
cedure in the case of the quasi-static fading channel model. It states that
these codes also achieve full (spatial) diversity in quasi-static fading
environment.

Theorem 2: The ST trellis codes designed by the proposed method
for two transmit antennas and B-ary PSK modulation satisfy the rank
criterion [1] derived for quasi-static fading channels.

Proof: Assume that the correct and the decoded paths diverge at
stateS0 (i.e.,S0 = Ŝ0 and b0 6= b̂0). Since the shortest error event isK
state transitions long, the two paths can only merge at state SK or later.
Assuming that the two paths merge at state ST+K for some T � 0 and
considering the K = 2 case, we have ST+2 = ŜT+2. The basic idea
behind the proof is to show that the channel symbol difference vectors
corresponding to t = 0 (when the two paths diverge) and t = T + 2
(when the two paths merge) form a linearly independent set. We will
do this by proving that the code difference matrix DDD2, defined as

DDD2 =
d00 d0T+2

d10 d1T+2
(19)

where dkt = c(ik(St; bt)) � c(ik(Ŝt; b̂t)), is of full rank for all
possible (T + 2)-length correct and erroneously decoded paths.
The first column of D2D2D2 can be determined easily, recognizing that
the two-antenna ST encoder has B states and expressing the first
erroneously decoded source symbol b̂0 as b̂0 = (b0 +�b) mod B

for some �b 2 f1; 2; . . . ; B�1g. Using design rules (15), (18), and
the identity (17), and assuming B-ary PSK modulation, we obtain

d
0
0 = e

j (S +b ) 1� e
j �

d
1
0 = e

j (2S +b ) 1� e
j �

: (20)

Note that the modulo operation can be omitted because of the period-
icity of the complex exponentiation. The second column ofDDD2 is deter-
mined as follows. It is shown in Appendix B that for encoders having
Nmin states, the state transition ST+K , T � 0, can be expressed as

ST+K =

T+K�1

m=T+1

B
T+K�1�m

bm: (21)

ForK = 2, (21) simplifies to ST+2 = bT+1. Since the correct and the
erroneous paths merge at ST+2, we have

ST+2 = bT+1 = ŜT+2 = b̂T+1:

Moreover, the two paths do not merge before time T +2, so state ŜT+1
can be written as ŜT+1 = (ST+1 + �S) mod B for some �S 2
f1; 2; . . . ; B � 1g. As a result, applying design rules (15), (18), and
the identity (17), and assuming B-ary PSK modulation, we arrive at

d
0
T+2 = e

j (S +b ) 1� e
j �

d
1
T+2 = e

j (2S +b ) 1� e
j 2�

: (22)

The matrixDDD2 is rank deficient if and only if its determinant is zero,
i.e.,

d
0
0d

1
T+2 = d

1
0d

0
T+2: (23)
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TABLE I
MINIMUM DETERMINANT VALUES

Substituting (20) and (22) into (23) and simplifying the expression, the
zero determinant condition becomes

e
j S 1� e

j 2� = e
j S 1� e

j �
: (24)

After taking squared magnitudes of both sides of (24) and simplifica-
tion, we obtain

cos
2�

B
2�S = cos

2�

B
�S : (25)

Since B is a power of 2 and �S takes on values from the set
f1; 2; . . . ; B � 1g, the two sides of (25) cannot be equal. Therefore,
the determinant of DDD2 cannot be zero, and the ST code satisfies the
rank criterion.

We have not been able to prove this property for an arbitrary number
of transmit antennas and any memoryless modulation, but we have ver-
ified it using computer simulations for some ST codes constructed by
our method. Table I shows the minimum determinant values of the ST
codes designed for two, three, and four transmit antennas, and BPSK,
QPSK, 8PSK, 16PSK, and 4ASK constellations. Since the values of the
minimum determinants decay fast with the constellation size, the ST
codes designed by previously existing methods [1]–[3], [10], [12] will
outperform the proposed ST codes in quasi-static fading environment.
However, Theorem 2 and Table I suggest that if a temporally evolving
channel becomes constant for a short time period (for example, a ve-
hicle stops at a red light), the proposed ST codes are still able to deliver
the available (in this case only spatial) diversity.

VI. DISCUSSION

In order to achieve a diversity advantage of KL, there must be at
least K time instants when the sent and the decoded channel symbol
vectors are different. Thus, the shortest error event must be at least
K state transitions long. This means that for a B-ary modulation (B
branches emanating from each state), the encoder must have at least
Nmin = BK�1 states. Consequently, our ST codes achieve the desired
diversity level with the minimum possible trellis complexity.

Since the diversity does not depend on the dimensionality of the
channel symbol vectors, it is possible to design ST codes that can
achieve a diversity advantage of KL with encoders having less than
K transmit antennas. However, our design criterion provides extra
performance gain in addition to the achieved minimum diversity level.
The uniqueness criterion guarantees that the probability of the error
events decreases exponentially with their lengths. For an ST code that
does not satisfy this criterion, it is possible that the probability of a
very long error event (many bit errors) and a very short error event
(a few bit errors) are in the same order of magnitude, causing serious
performance loss. On the other hand, the uniqueness criterion ensures
that the probability of the long error events decays much faster than
the probability of the short error events, as the SNR increases. From
Section IV, it can be seen that for encoders having Nmin states, in
order to satisfy the uniqueness criterion, the channel symbol vectors

Fig. 2. Geometric model for correlated fading simulations.

must have at least K coordinates, so the encoder must have at least K
transmit antennas.

VII. SIMULATION RESULTS

To illustrate the performance of the codes obtained by the proposed
method, we present some simulation results. The source symbols were
transmitted in frames of length 130, and the Viterbi algorithm with
decoding depth of 20 state transitions was used to decode the received
signals. For the fast-fading channel model, the path gains between the
transmit and the receive antennas were independent, complex, zero-
mean, Gaussian random variables with unit variance at each discrete
time instant.

In the correlated fading case, the path gains were generated ac-
cording to the statistical model described in [13]. The base station (BS)
was the transmitter and the mobile terminal (MT) was the receiver.
Both the BS and the MT were assumed to have a uniform, linear
array of isotropic antennas, and the MT was surrounded by a ring of
scatterers. The model parameters were dB—BS antenna separation,
dM—MT antenna separation, D—distance between the BS and
the MT, R—radius of the scatterer ring, Ns—number of scatterers,
�—direction of the BS antenna array, 
—direction of the MT antenna
array, �—direction of the MT movement, v—the magnitude of the
MT speed, fc—the carrier frequency (or �c—the carrier wavelength),
and Ts—the channel symbol period. The geometry of the model is
shown in Fig. 2 for two adjacent BS antennas (BS0;BS1) and two
adjacent MT antennas (MT0;MT1). The ith (i = 0; 1; . . . ; Ns � 1)
scatterer Si was at an angle �i from the middle point of the MT
antenna array, and the scatterer angles were uniformly distributed
in the range [��; �]. During the simulations, we used the following
parameter values: D = 1 km, R = 20 m, Ns = 20, � = 3�

4
radians,


 = �

4
radians, � = 3�

4
radians, and v = 70 km/h. Three cases

were considered: a) high correlation (Ts = 50 �s, fc = 900 MHz,
dB = 5�c, dM = 0:6�c); b) low correlation (Ts = 500 �s, fc =
2 GHz, dB = 25�c, dM = 5�c); and c) no correlation (fast fading).

We present probability of bit error curves as functions of the av-
erage SNR per source symbol at the receive antennas. Fig. 3 depicts the
performance of the ST code designed by our method for two transmit
antennas and QPSK constellation (K = 2, B = 4, N = 4) with
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Fig. 3. ST code for two antennas, QPSK.

one receive antenna. The bit-error rate curves for the same code with
two receive antennas are shown in Fig. 4. Both curves demonstrate that
the spatio-temporal correlation has a significant impact on the perfor-
mance. Moreover, it can be observed that in the low-correlation case,
the bit-error probability curve becomes approximately parallel to the
fast-fading bit-error probability curve at high SNR. Therefore, they
achieve the same diversity level, validating our analysis.

Since we are not aware of any other code construction method for ST
correlated channels, we compare our method with the ST codes of [4],
[5] designed for fast-fading channels, and the ST code of [10] designed
for quasi-static fading channels. These ST codes represent point solu-
tions in the design space, and they are used to verify the performance
of the codes obtained via the proposed systematic construction method
in the special cases where previously known solutions exist.

Fig. 5 shows the performance of the ST codes constructed for a
two-transmit-antenna system and QPSK modulation (K = 2, B = 4,
N = 4) with one receive antenna. All of these codes satisfy the unique-
ness criterion. It is observed that all codes have essentially the same
performance, with the ST code from [10] being a little better in the
high-correlation case and being a little worse in the fast-fading case.
Note that our systematic design method resulted in an ST code that
achieves the same performance as the ST code of [5], which was found
by computer search. The theoretical performance of the above codes
was also compared. Table II shows the minimum norm product values
�� corresponding to the � -length error events. The entries in the second
row of the table show the �� values for the ST codes of [4], [5] and our
method, while the third row contains the �� values for the ST code of
[10]. The table entries were obtained by performing computer search.
These �� values predict similar performance of the methods described
in [4], [5], and the proposed approach, along with the slightly worse
performance of the ST code of [10] at high SNR.

TABLE II
MINIMUM NORM PRODUCTS FOR TWO ANTENNAS, QPSK

TABLE III
MINIMUM NORM PRODUCTS FOR THREE ANTENNAS, QPSK

The bit-error rate curves for three transmit antennas and QPSK
modulation (K = 3, B = 4, N = 16) with one receive antenna
are depicted in Fig. 6. Our code (the ST code shown in Fig. 1)
is compared to the ST code described in [10]. These codes also
satisfy the uniqueness criterion. The performance of the two codes is
almost identical, and the bit-error curves for the fast fading channel
model and for the low correlation channel model are approximately
parallel at high SNR. The ST code of [10], also found by computer
search, performs slightly better in the high correlation case, which
is expected since this code was designed for quasi-static channels.
The minimum norm product values for the proposed method are
given in the second row of Table III, and the third row contains the
values for the ST code given in [10]. The theoretical norm product
values confirm the tendencies observed in Fig. 6.

The performance of our ST code constructed for three transmit an-
tennas and 8PSK modulation (K = 3, B = 8, N = 64) with two
receive antennas is shown in Fig. 7. The bit-error rate curves of our
four-antenna 4ASK ST code (K = 4, B = 4, N = 64) with one
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Fig. 4. ST code for two antennas, QPSK.

Fig. 5. ST codes for two antennas, QPSK.
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Fig. 6. ST codes for three antennas, QPSK.

Fig. 7. ST codes for three antennas, 8PSK.
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Fig. 8. ST codes for four antennas, 4ASK.

receive antenna can be observed in Fig. 8. The behavior of the curves
are similar to that of the two- and three-transmit-antenna cases. To our
knowledge, no ST codes have been published that we could compare
these codes against.

VIII. CONCLUSION

We derived the performance criteria for ST correlated flat Rayleigh-
fading channels with full-rank correlation matrix, and we developed a
systematic ST trellis code design method for an arbitrary number of
transmit antennas and any memoryless modulation. Based on the theo-
retical and experimental results, we can draw the following conclusion.

If the ST channel is not heavily correlated (i.e., the ST correlation
matrix is of full rank), the ST code design problem for correlated chan-
nels can be reduced to the code design problem for fast fading chan-
nels, and it is possible to achieve the diversity level available in fast
fading environment. Moreover, for communication systems having K
transmit andL receive antennas, the ST-correlated channel model does
not limit the maximum achievable diversity level: by increasing the
number of encoder and decoder states (increasing the length of the
shortest error event), arbitrarily high diversity order can be achieved.

The ST trellis codes constructed by the proposed method were
also compared to existing ST codes that represent point solutions
in our design space. The simulations showed that our systematic
design procedure results in codes that have the same performance
as the codes previously found by computer search, so our codes are
expected to perform very well in cases where exhaustive computer
search is not feasible. We also constructed ST trellis codes for three
and four transmit antennas and 8PSK and 4ASK modulations. For
these design parameters and non-quasi-static channel models, no
other ST trellis codes exist in the literature.

APPENDIX A

For simplicity, we assume that RRR is p by p, RRR0 is m by m, and ���0

is n by m, with p � m � n. In our case, p = KLT , m = KL� ,
and n = L� . Let us denote the positive and real eigenvalues of RRR by
�1 � �2 � � � � � �p. Using the singular value decomposition, ���0

can be expressed as ���0 = XXX[��� 0]YYY H , where XXX is an n by n unitary
matrix, YYY is anm bym unitary matrix,��� is an n by n diagonal matrix
with the singular values along the diagonal, and 0 is an n by (m� n)
zero matrix. The matrix RRR0 admits the spectral decomposition RRR0 =
UUU���0

UUU
H , with an m by m unitary matrix UUU , and a diagonal matrix

���0 = diag(�0

1; �
0

2; . . . ; �
0

m). The quantities �0

1 � �0

2 � � � � � �0

m

are the real eigenvalues of RRR0. We can define ZZZ , the m by m unitary
matrix, as ZZZ = YYY

H
UUU and partition ZZZ into an n by m matrix ZZZ1, and

an (m � n) by m matrix ZZZ2 as

ZZZ =
ZZZ1

ZZZ2

:

The matrix QQQ = ZZZ���0

ZZZ
H will have the same eigenvalues as RRR0. If QQQ

is partitioned as

QQQ =
QQQ11 QQQ12

QQQ21 QQQ22

where QQQ11 = ZZZ1���
0

ZZZ
H
1 is an n by n principal submatrix of QQQ,

���0

RRR
0���0H can be expressed as

���0

RRR
0���0H = XXX���QQQ11���

H
XXX
H
: (26)

Since ���0 has full row rank, the matrix ��� has full rank. Using Fisher’s
inequality [14], it can be easily verified that QQQ11 also has full rank.
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Moreover, all matrices on the right-hand side of (26) are n by n. As a
consequence, we have the relationship

det(���0

RRR
0���0H) = det(QQQ11) det(������

H) det(XXXXXXH)

= det(QQQ11) det(���
0���0H): (27)

To obtain a lower bound on det(QQQ11), we use Cauchy’s interlacing
theorem [15] (also known as the inclusion principle [14]), stated as
follows: Let QQQ be an m by m Hermitian matrix with real eigenvalues
�0

1��
0

2�� � ���0

m. Furthermore, letQQQ11 be an n by n (m�n) prin-
cipal submatrix ofQQQ, with real eigenvalues �1��2�� � ���n. Then
we have �0

i��i��
0

m�n+i, for i=1; 2; . . . ; n. Moreover, sinceRRR0 is
a principal submatrix ofRRR, we can apply Cauchy’s interlacing theorem
again to obtain �i � �0i � �p�m+i, for i= 1; 2; . . . ;m. Therefore, if
we form the diagonal matrix���min(n) from the n smallest eigenvalues
ofRRR (i.e.,���min(n)=diag(�p�n+1; �p�n+2; . . . ; �p)), we obtain the
bound

det(QQQ11) � det(���min(n)): (28)

Note that (28) also shows that QQQ11 has full rank. Finally, combining
(27) with (28) yields (4).

APPENDIX B

We will prove (21) by induction. In [12], closed-form expressions
that relate the state sequence fStg to the starting state S0 and input
source symbol sequence fbtg up to the length of the shortest error event
were derived. In case of encoders havingNmin states, the expression for
SK becomes SK = K�1

m=1
BK�1�mbm, showing that the statement

is true for T = 0. Assume that the formula holds for T � 1, i.e.,

ST+K�1 =

T+K�2

m=T

B
T+K�2�m

bm: (29)

The state transition at time t can also be expressed recursively as a
function of the previous state St�1, and the previous source symbol
bt�1 [12] as

St = B St�1 mod (BK�2) + bt�1: (30)

Using (30) with t = T +K , and combining it with (29), we arrive at
(21), proving that the formula also holds for T .
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On the Performance Analysis of Space–Time Codes in
Quasi-Static Rayleigh-Fading Channels
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Byeong Gi Lee, Fellow, IEEE

Abstract—In this correspondence, we analyze the performance of
space–time codes by deriving a new approximation of the frame error
probabilities for space–time trellis-coded modulations over quasi-static
Rayleigh-fading channels. We take advantage of two techniques, the
modified bounding technique and the limiting-before-averaging technique,
to tighten the upper bound. In addition, we establish a theorem that
enables us to reduce the computation and memory needed to calculate the
frame error rate (FER) approximation. The newly derived approximation
is very tight, requires only the distance spectrum of the space–time code,
and can be computed through single numerical integration. Numerical
results exhibit that the new approximation is much closer to the simulation
results than other existing bounds are, especially in the case of one receive
antenna.

Index Terms—Distance spectrum, fading channels, frame error rate
(FER), performance analysis, space–time codes.

I. INTRODUCTION

High data-rate transmission is strictly limited in wireless communi-
cations due to physical limitations, such as limited bandwidth, prop-
agation loss, time variance, noise, interference, and multipath fading.
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