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Abstract—This paper considers the problem of space-frequency
code design for frequency-selective multiple-input-multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM)
modulation. We show that space-time codes achieving full diver-
sity in quasistatic flat fading environment can be used to construct
space-frequency codes that can achieve the maximum diversity
available in frequency-selective MIMO fading channels. Since
the codes are constructed via a simple mapping from space-time
codes to space-frequency codes, the abundant classes of existing
space-time block and trellis codes can be used for full diversity
transmission in MIMO-OFDM systems. The proposed mapping
provides a tradeoff between the achieved diversity order and the
symbol rate. Moreover, we characterize the performance of the
space-frequency codes obtained via the mapping by finding lower
and upper bounds on their coding advantages as functions of the
coding advantages of the underlying space-time codes. This result
will allow us to investigate the effects of the delay distribution and
the power distribution of the channel impulse responses on the
performance of the resulting space-frequency codes. Extensive
simulation results are also presented to illustrate and support the
theory.

Index Terms—Frequency-selective fading channels, full diver-
sity, MIMO-OFDM systems, multiple antennas, space-frequency
coding, space-time coding.

I. INTRODUCTION

M ULTIPLE-input-multiple-output (MIMO) systems
employing multiple transmit and receive antennas will

inarguably play a significant role in the development of future
broadband wireless communications. By taking advantage of
the larger number of propagation paths between the transmit
and receive antennas, the detrimental effects of channel fading
can be significantly reduced. It has been shown that MIMO
systems offer a large potential capacity increase compared
with single antenna systems. To exploit this capacity increase,
a considerable number of MIMO modulation and coding
methods, which are known asspace-time(ST) codes, have
been proposed, for example, in [1]–[13]. The performance
criteria for such transmission scenario were first derived in [1]
and [2], characterizing the ST codes with two quantities: the
diversity advantage, which describes the asymptotic error rate
decrease as the function of the signal to noise ratio (SNR), and
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the coding advantage, which determines the vertical shift of the
error performance curve.

However, most existing ST codes were developed for
frequency nonselective (flat) fading channels. In case of
broadband wireless communication systems, the channel
exhibits frequency selectivity (delay spread), resulting in inter-
symbol interference (ISI) that can cause serious performance
degradation. Among the various ISI mitigating approaches,
orthogonal frequency division multiplexing (OFDM) is one
of the most promising techniques as it eliminates the need for
high complexity equalization and offers high spectral efficiency
[14], [15].

In order to combine the advantages of both the MIMO
systems and the OFDM,space-frequency(SF) coded MIMO-
OFDM systems have been proposed,1 where two-dimensional
coding is applied to distribute channel symbols across space
(transmit antennas) and frequency (OFDM tones). The first
SF coding scheme was proposed in [17], in which previously
existing ST codes were used by replacing the time domain
with frequency domain. Later works [18]–[21] also described
similar schemes, i.e., using ST codes directly as SF codes. The
resulting SF codes could achieve only spatial diversity and
were not guaranteed to achieve the full (spatial and frequency)
diversity available in the MIMO frequency selective fading
channels.

The performance criteria for SF-coded MIMO-OFDM sys-
tems were derived in [22]. The ultimate limits on the maximum
achievable diversity order were also established. The authors
showed that in general, existing ST codes cannot exploit the
frequency diversity available in the frequency selective MIMO
channels, and it was suggested that a completely new code
design procedure will have to be developed for MIMO-OFDM
systems. Later, in [23], a construction method for a class of
SF codes was provided by multiplying a part of the DFT-ma-
trix with the input symbol vectors. The obtained SF codes
achieve full spatial and frequency diversity at the expense
of bandwidth efficiency. For example, for a system with two
transmit antennas, eight tones, and a two-ray delay profile,
the coding rate is only 1/4. Moreover, this approach relies on
the assumption that all of the path delays are located exactly
at the sampling instances of the receiver and that the power
is distributed uniformly across the paths. However, in most
practical situations, this is not the case.

Characterizing the performance of MIMO-OFDM systems
was also considered in [24], and the maximum achievable di-

1Another coding approach is to consider ST coding directly for single-carrier
frequency-selective MIMO systems (see [27], [28], and the references therein).
In this paper, we follow the SF coding approach for MIMO-OFDM systems.
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Fig. 1. SF-coded MIMO-OFDM system withM transmit andM receive antennas.

versity order was found to be the same as in [22]. Even though
closed-form analytical expressions were derived in both [22]
and [24], they do not seem useful from the viewpoint of sys-
tematic SF code design due to their complex form.

The idea of coding across multiple OFDM blocks, resulting
in space-time-frequency(STF) codes, was first proposed in [25]
for two transmit antennas and further developed in [26] for mul-
tiple transmit antennas. The method described in [26] provided
full diversity only if the number of encoded OFDM blocks was
not smaller than the number of transmit antennas. Both works
assumed that the MIMO channel stays constant over multiple
OFDM blocks, and the proposed STF coding schemes did not
offer any additional diversity advantage compared to the SF
coding approach within a single OFDM block.

In this paper, we address the problem of SF code design for
MIMO-OFDM systems (i.e., coding within a single OFDM
block). We propose a systematic approach to design full-diver-
sity SF codes from ST codes for arbitrary power delay profiles.
We show that ST codes and SF codes are related in the sense
that ST codes achieving full (spatial) diversity in quasistatic flat
fading environment can be used to construct SF codes that can
achieve the maximum diversity available in frequency-selective
MIMO fading channels. The relationship between the ST codes
and SF codes is characterized by a simple mapping, which
is independent of the particular properties of the applied ST
code. Therefore,any ST code (block or trellis) designed for
quasistatic flat fading channels can be used for full diversity
transmission in MIMO-OFDM systems. The proposed map-
ping ensures full diversity at the price of symbol rate decrease
compared with the symbol rate of the underlying ST codes.
However, to our knowledge, the proposed SF codes have the
best-known coding rate of all SF codes that are guaranteed to
achieve full diversity.

We also characterize the performance of the SF codes ob-
tained via the mapping by finding lower and upper bounds on
their coding advantages as functions of the coding advantages of
the underlying ST codes. This result will allow us to investigate
the effects of the delay distribution and the power distribution
of the channel impulse responses on the performance of the re-
sulting SF codes.

The rest of the paper is organized as follows. In Section II,
we introduce a system model, taking into account arbitrary
delay profiles. In Section III, we provide an alternative formu-

lation of the performance criteria for SF-coded MIMO-OFDM
systems, which serves as a basis for our SF code design method.
In Section IV, we describe the main contribution of this paper.
We state and prove the main result: Using a simple repeti-
tion mapping, full-diversity SF codes can be constructed from
any ST (block or trellis) code designed for quasistatic flat
Rayleigh fading channels. In Section V, we characterize the
coding advantage of the resulting SF codes in terms of the
coding advantage of the underlying ST codes by defining and
evaluating the diversity product for SF codes. The simulation
results are presented in Section VI, and some conclusions are
drawn in Section VII.

II. SYSTEM MODEL

We consider an SF-coded MIMO-OFDM system with
transmit antennas, receive antennas, and subcarriers, as
shown in Fig. 1. Suppose that the frequency-selective fading
channels between each pair of transmit and receive antennas
have independent delay paths and the same power delay
profile. The MIMO channel is assumed to be constant over
each OFDM block period. The channel impulse response from
transmit antennato receive antennacan be modeled as

(1)

where is the delay of theth path, and is the complex
amplitude of theth path between transmit antennaand receive
antenna . The ’s are modeled as zero-mean, complex
Gaussian random variables with variances ,
where stands for the expectation. Note that the time delay
and the variance are the same for each transmit-receive link
[16], [20]. The powers of the paths are normalized such that

. From (1), the frequency response of the channel
is given by

(2)

We assume that the MIMO channel is spatially uncorrelated,
i.e., the channel taps are independent for different indices
( , ).
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The input bit stream (uncoded or coming from a channel
encoder) is divided into bit-long segments, forming -ary
source symbols. These source symbols are parsed into blocks
and mapped onto a SF codeword to be transmitted over the
transmit antennas. Each SF codeword can be expressed as an

matrix

...
...

. . .
...

(3)

where denotes the channel symbol transmitted over the
th subcarrier by transmit antenna. The SF code is assumed

to satisfy the energy constraint , where
is the Frobenius norm2 of . The OFDM transmitter applies
an -point IFFT to each column of the matrix . After ap-
pending a cyclic prefix, the OFDM symbol corresponding to the
th column of is transmitted by transmit

antenna . Note that all of the OFDM symbols are trans-
mitted simultaneously from different transmit antennas.

At the receiver, after matched filtering, removing the cyclic
prefix, and applying FFT, the received signal at theth subcar-
rier at receive antennais given by

(4)

where

(5)

is the channel frequency response at theth subcarrier between
transmit antennaand receive antenna, is the sub-
carrier separation in the frequency domain, andis the OFDM
symbol period. We assume that the channel state information

is known at the receiver but not at the transmitter. In (4),
denotes the additive complex Gaussian noise with zero

mean and unit variance at theth subcarrier at receive antenna
. The noise samples are assumed to be uncorrelated for

different and . The factor in (4) ensures that is
the average SNR at each receive antenna, independently of the
number of transmit antennas.

2The Frobenius norm ofC is defined as

kCk = tr(C C) = tr(CC ) = jc (n)j :

III. PERFORMANCECRITERIA

The problem of deriving performance criteria for SF-coded
MIMO-OFDM systems has been addressed by several authors
[22], [24]. In this section, we provide an alternative formulation
based on the results of [29]–[31]. This formulation will serve as
the starting point for the results to be discussed later.

The received signal (4) can be rewritten in vector form as

(6)

where is an matrix constructed from the SF
codeword as in (7), shown at the bottom of the page, in which

diag
(8)

Each in (8) is related to theth column of the SF codeword
. The channel vector of size is formatted as

(9)

where

(10)

The received signal vector of size is given by

(11)

and the noise vector has the same form as, i.e.,

(12)

Suppose that and are two different matrices related
to two different SF codewords and , respectively. Then,
the pairwise error probability between and can be upper
bounded as [29], [30]

(13)

where is the rank of , are
the nonzero eigenvalues of , and

is the correlation matrix of . The superscript
stands for the complex conjugate and transpose of a matrix.

Based on the upper bound on the pairwise error probability in
(13), two general SF code performance criteria can be proposed
as follows.

• Diversity (rank) criterion: The minimum rank of
over all pairs of different codewords

and should be as large as possible.

...
...

. . .
...

(7)
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• Product criterion: The minimum value of the product
over all pairs of different codewords and

should be maximized.
However, it is hard to design SF codes directly based on the

discussion on , which is related to an
correlation matrix . In case of spatially

uncorrelated MIMO channels, i.e., the channel taps are
independent for different transmit antennaand receive antenna
, the correlation matrix of size becomes

diag

(14)

where

(15)

is the correlation matrix of the channel frequency response from
transmit antennato receive antenna. Using the notation

, from (5) and (10), we have

(16)

where

...
...

.. .
...

and

Note that in general, is not a unitary matrix. If all of the
delay paths fall at the sampling instances of the receiver, then

is part of the DFT-matrix, which is unitary. Substituting (16)
into (15), in (15) can be expressed as

(17)

The third equality follows from the assumption that the path
gains are independent for different paths and different
pairs of transmit and receive antennas. Note that the correlation
matrix is independent of the transmit and receive antenna
indices and . From (14) and (17), we obtain

(18)

where denotes the tensor product, and is the identity
matrix of size . Therefore, combining (3), (7),
(8), and (18), the expression for in (13)
can be rewritten as

(19)

where denotes the Hadamard product.3 Defining the matrix
as

(20)

and substituting (19) into (13), the pairwise error probability
between and can be upper bounded as

(21)
where is the rank of , and are the
nonzero eigenvalues of . As a consequence, we can for-
mulate the performance criteria as follows.

• Diversity (rank) criterion: The minimum rank of
over all pairs of distinct signals and should be as large
as possible.

• Product criterion: The minimum value of the product
over all pairs of distinct signals and should

also be maximized.
According to a rank inequality on Hadamard products [33, p.

307], we have the relationship

rank rank rank

Since the rank of is at most , the rank of is at most ,
and the rank of is at most , we obtain

rank (22)

Thus, the maximum achievable diversity is at most
, which is in agreement with the re-

sults of [22], [24] and [25].

IV. A CHIEVING FULL DIVERSITY VIA MAPPING

In this section, we propose an approach to systematically de-
sign full diversity SF codes from ST codes. We show that using
a simple repetition mapping, full-diversity SF codes can be con-
structed fromany ST (block or trellis) code designed for qua-
sistatic flat Rayleigh fading channels.

In the sequel, the SF encoder will consist of a ST encoder
and a mapping , as shown in Fig. 2. For each output
vector from the ST encoder and a fixed number

, the mapping is defined as

(23)

where is an all one matrix of size . The resulting
matrix is actually a repetition of the vector
times. Suppose that is not greater than the number of
OFDM subcarriers , and is the largest integer such that

. Denote the output code matrix of the ST encoder
by . (For a space-time block encoder, is a concatenation
of some block codewords. For a space-time trellis encoder,
corresponds to a path of length starting and ending at the

3Suppose thatA = fa g andB = fb g are two matrices of sizem� n.
TheHadamard productof A andB is defined as

A �B =

a b � � � a b

� � � � � � � � �

a b � � � a b

:
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Fig. 2. SF encoder consisting of an ST encoder and a mapping.

zero state.) Then, the SF codeof size is constructed
as

(24)

where

(25)

In fact, the SF code is obtained by repeating each row of
times and adding some zeros. The zero padding used here en-
sures that the space-frequency codehas size . Typ-
ically, the size of the zero padding is small, and it can be used
to drive the trellis encoder to the zero state. The following the-
orem states that if the employed ST codehas full diversity for
quasistatic flat fading channels, the space-frequency code con-
structed by (24) will achieve a diversity of at least .

Theorem 1: Suppose that an MIMO-OFDM system
equipped with transmit and receive antennas has
subcarriers and that the frequency-selective channel has
independent paths, in which the maximum path delay is less
than one OFDM block period. If an ST (block or trellis) code
designed for transmit antennas achieves full diversity for
quasistatic flat fading channels, then the SF code obtained from
this ST code via the mapping defined in (25)
will achieve a diversity order of at least .

Proof: Since in typical MIMO-OFDM systems the
number of subcarriers is greater than , we provide
the proof for the case for a given mapping ,

. If , the proof is similar to the one
described below and is omitted for brevity. Assume thatis
the largest integer such that .

For two distinct SF codewords and of size , there
are two corresponding distinct ST codewordsand of size

such that

(26)

in which

(27)

Since the ST code achieves full diversity for quasistatic flat
fading channels, is of full rank for two distinct and

, i.e. the rank of is .

Using the performance criteria described in Section III, the
objective of the proof is to show that the matrix has a
rank of at least . From (20) and (26), we have

(28)

Thus, in , all entries are zero, except for a
submatrix. Denote this submatrix as

.
On the other hand, from (17), it can be verified that the entries

of the correlation matrix can be expressed
as

Therefore, from (26)–(28), we obtain

(29)

where is a matrix with
entries

(30)

The last equality in (29) follows from the identities
and

[33, p. 251].
We further partition the matrix into

submatrices as follows:

...
...

.. .
...

(31)
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where each submatrix , , is of size .
Denoting the entries of as , , , we
obtain

(32)

As a consequence, each submatrix , , , can
be expressed as

diag (33)

where is specified in (34), shown at the bottom of the page,
for . In (34), can be further decomposed
as

diag
(35)

for , where

...
...

...
...

(36)

Let us denote the matrix consisting of the firstcolumns of
by . We observe that is an Vandermonde matrix in
variables [33, p. 400]. The determinant of

can be calculated as follows:

det

Since is the inverse of the OFDM block period and the
maximum path delay is less than, we have
for any . Thus, is of full rank, and so is

. It follows that for any , the rank of
is .

We now go back to (29) to investigate the rank of . For
convenience, we use the notation

...
...

.. .
...

and diag . Then, substituting (31) and
(33) into (29), we obtain (37), shown at the bottom of the page.

Since the rank of is , there are linearly inde-
pendent rows in . Suppose that the th,

, rows of are linearly independent of
each other. Then, the matrix

...
...

.. .
...

is a submatrix of , and the rank of is .
Using the notation

diag

from (37), we can see that is an
submatrix of . Therefore, to show that the

...
...

.. .
...

(34)

...
...

. . .
...

...
...

. . .
...

(37)

where

diag
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rank of is at least , it is sufficient to show that the
submatrix has rank .

Since the rank of is and the rank of is , according
to a rank equality on tensor products [33, p. 246], we have

rank rank rank

so the matrix is of full rank. Recall that for any
, the rank of is , so the rank of is .

Therefore, the rank of is . This proves the
theorem.

In addition, from the proof of Theorem 1, we can see that
the SF code obtained from a space-time block code of square
size via the mapping will achieve a diversity
of exactly. Since the maximum achievable diversity is
upper bounded by [see (22)], we arrive
at the following result.

Corollary 1: Under the assumptions of Theorem 1, the SF
code obtained from a full diversity ST code via the mapping

defined in (25) achieves the maximum achievable diversity
.

The symbol rate of the resulting SF codes obtained via the
mapping (25) is times that of the corresponding ST
codes. However, to our knowledge, the proposed SF codes have
the best known symbol rate of all SF codes that are guaranteed
to achieve full diversity. For example, for a system with two
transmit antennas, eight subcarriers, and a two-ray delay profile,
the symbol rate of the full-diversity SF codes introduced here is
1/2, whereas the symbol rate in [23] is only 1/4. In certain prac-
tical situations, this effect can be compensated by expanding the
constellation size, maintaining the same spectral efficiency. Fur-
thermore, from a system performance point of view, there is a
tradeoff between the diversity order and the coding rate. The-
orem 1 offers a flexible choice on the diversity order.

V. CODING ADVANTAGE

In this section, we characterize the coding advantage of the re-
sulting SF codes in terms of the coding advantage of the under-
lying ST codes by defining and evaluating the diversity product
for SF codes. We also analyze the effect of the delay distribution
and the power distribution on the performance of the proposed
SF codes.

Thediversity product, which is the normalized coding advan-
tage of a full diversity ST code, has been defined for quasistatic
flat-fading channels as [8], [9], [31]

(38)

where are the nonzero eigenvalues of
for any pair of distinct ST codewords and .

Based on the upper bound on the pair-wise error probability
(21), the diversity product of a full-diversity SF code can be
defined as

(39)

where are the nonzero eigenvalues of
for any pair of distinct space-frequency codewordsand .
In the rest of this section, without loss of generality, we as-
sume that the number of subcarriersis not less than ,
i.e., .

The relationship between the diversity products of the full
diversity SF codes obtained via the repetition mapping and the
underlying ST codes is characterized by the following theorem.

Theorem 2: The diversity product of the full-diversity SF
code in Corollary 1 is bounded by that of the corresponding ST
code as follows:

(40)

where , and and are the largest and
smallest eigenvalues, respectively, of the matrix, which is
defined as

...
...

.. .
...

(41)
and the entries of are given by

Proof: In the following, we use the notation developed in
the proof of Theorem 1 by replacing the repetition factoras ,
since the full diversity is achieved in Corollary 1 by using the
mapping . For any non-negative definite matrix ,
we denote its eigenvalues in a nonincreasing order as eig
eig eig .

For two distinct SF codewords and , there are two corre-
sponding ST codewords and such that the relationship of

and in (26) and (27) holds. According to (22) and
Corollary 1, the rank of is exactly , which means
that has totally nonzero eigenvalues, which are the
same as the nonzero eigenvalues of . Thus

eig

eig

eig

(42)

where eig eig for
. In (42), the second equality follows from (37), and the
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last equality follows by Ostrowski’s theorem [32, p. 224]. Since
diag , we have

diag

As a requirement of Ostrowski’s theorem, the matrixshould
be nonsingular, which is guaranteed by the fact that each matrix

is of full rank for any . Furthermore,
from (35), we know that for any

where diag .
From (36), it is easy to verify that is the matrix de-
fined in (41). Thus, . Therefore, we can con-
clude that eig eig for any .

Since the set of nonzero eigenvalues of
can be expressed as [32, p. 246]

eig eig

(43)

substituting (43) into (42), we arrive at

eig eig

(44)

Since for any , we have the
inequalities in (40).

From Theorem 2, we can see that the larger the coding ad-
vantage of the ST code, the larger the coding advantage of the
resulting SF code, suggesting that to maximize the performance
of the SF codes, we should look for the best known ST codes
existing in the literature. Moreover, the coding advantage of the
SF code depends on the power delay profile. First, it depends on
the power distribution through the square root of the geometric
average of path powers, i.e., . Since the sum
of the powers of the paths is unity, this implies that the best per-
formance is expected in case of uniform power distribution (i.e.

). Second, the entries of the matrix defined in (41)
are functions of the path delays, and therefore, the coding ad-
vantage also depends on the delay distribution of the paths. For
example, in case of a two-ray delay profile (i.e., ), the
matrix in (41) has two eigenvalues:

Typically, the ratio of is less than 1/2; therefore,
is non-negative. Thus, the smaller the sepa-

ration of the two rays, the smaller the eigenvalue. If the two

rays are very close compared with the duration of one OFDM
symbol , the lower bound in (40) approaches zero. The sim-
ulation results seem to suggest that the behavior of the coding
advantage is close to the lower bound.

VI. SIMULATION RESULTS

To illustrate the above analytical results, we performed some
computer simulations for SF codes constructed from both ST
block codes and trellis codes. The simulated SF block codes
were obtained from orthogonal ST block codes for two and four
transmit antennas. For two transmit antennas, the used 22
orthogonal ST block code was Alamouti’s structure [3], which
is given by

(45)

The SF block code for four transmit antennas was obtained from
the 4 4 orthogonal design (see [10] and the references therein)

(46)

In both cases, the s were taken from BPSK or QPSK constel-
lations. Note that the 2 2 orthogonal design could carry one
channel symbol per subcarrier, while the 44 block code had a
symbol rate of only 3/4. For SF trellis codes, we used the two-an-
tenna, four-state, QPSK space-time code, and the three-antenna,
16-state, QPSK space-time code described in [11].

We simulated the SF block codes and trellis codes with dif-
ferent power delay profiles: a two-ray equal power delay profile
and COST207 typical urban six-ray power delay profile. The
subcarrier path gains were generated according to (5), indepen-
dently for different transmit and receive antennas. We present
average bit error rate (BER) curves as functions of the average
SNR per bit. Note that in our simulations for SF block codes,
we compare the proposed full-diversity SF block codes with the
SF codes using ST codes directly at a same spectral efficiency.

A. Simulations With Two-Ray Delay Profiles

First, we assumed a simple two-ray, equal-power delay pro-
file, with a delay of between the two rays. We simulated
two cases: i) and ii) . The simulated commu-
nication system had subcarriers, and the total band-
width was MHz. Thus, the OFDM block duration was

without the cyclic prefix. We set the length of the
cyclic prefix to for all cases. The MIMO-OFDM systems
had one receive antenna. In all simulation curves, the dashed
lines correspond to the case, and the solid lines cor-
respond to the case. The curves with squares (“”)
show the performance of the full-diversity SF codes obtained by
repeating each row of the ST codes two times. The curves with
circles (“ ”) show the results for the case of using ST codes di-
rectly as SF codes (i.e. no repetition).

Fig. 3 depicts the performance of the SF block codes obtained
from the two-antenna orthogonal design. We used BPSK modu-
lation for the nonrepeated case and QPSK for the repeated case.
Therefore, both systems had a spectral efficiency of
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Fig. 3. Performance of two-antenna SF block codes with the two-ray channel
model.

Fig. 4. Performance of four-antenna SF block codes with the two-ray channel
model.

b s s MHz b/s/Hz. The figure
shows that in case of s, the performance curve of the
full-diversity SF code has a steeper slope than that of the code
without repetition. We can observe a performance improvement
of about 4 dB at a BER of . The performance of the full-di-
versity SF code degraded significantly from the s case
to the s case, whereas the performance of the SF code
using ST code without repetition was almost the same for the
two delay profiles. This observation is consistent with the theo-
retical result in Section V that the coding advantage depends on
the delay distribution of the multiple paths. It is also in agree-
ment with the result in [22] that using ST codes directly as
SF codes can exploit only the spatial diversity and cannot ex-
ploit the frequency diversity. Fig. 4 shows the performance of
the SF block codes obtained from the orthogonal ST code for
four transmit antennas. The full-diversity SF code with repe-
tition used QPSK modulation, and the nonrepeated code used
BPSK modulation. Thus, the spectral efficiency of both codes

Fig. 5. Performance of two-antenna SF trellis codes with the two-ray channel
model.

Fig. 6. Performance of three-antenna SF trellis codes with the two-ray channel
model.

was b s s MHz b/s/Hz.
The tendencies observed in Fig. 4 are similar to those observed
in Fig. 3. In case of s, the full-diversity SF code has
a steeper performance curve than the SF code using ST without
repetition, and it has an improvement of about 1 dB at a BER
of . In the case of s, the performance of the pro-
posed SF code is a little worse than that of the SF code using
ST code without repetition. The worse performance is due to
the smaller coding advantage of the proposed SF code since, in
order to keep the same spectral efficiency of the two schemes,
we used QPSK modulation for the proposed SF code and BPSK
modulation for the nonrepeated code.

The performance of the SF trellis codes for two and three
transmit antennas are depicted in Figs. 5 and 6, respectively. We
cansee that the full-diversitySF trellis codeshave betterdiversity
order than the nonrepeated codes in case of the longer delay pro-
file (i.e., s). At a BER of , there is an improvement
of about 2 dB for the two-antenna case and an improvement of



2914 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 11, NOVEMBER 2003

about 1 dB for the three-antenna case. The modulation scheme
was QPSK for all trellis codes; therefore, the nonrepeated
codes achieved a spectral efficiency of 1.73 b/s/Hz, whereas
the repeated codes had a spectral efficiency of 0.86 b/s/Hz.
Note that Figs. 5 and 6 demonstrate that the proposed SF code
construction method can be used to produce a set of codes that
have different rates and error correction capabilities, offering
different tradeoffs between code rate and diversity order.

Based on the above simulation results, we can make some
observations. It is apparent that by repeating each row of the
space-time code matrix, we could construct codes whose error
performance curve is steeper than that of the codes without repe-
tition, i.e., the obtained codes have higher diversity order. How-
ever, the actual performance of the code depends heavily on the
underlying channel model. In all cases, both the absolute perfor-
mance and the performance improvement obtained by repetition
are considerably better in case of the longer delay profile (i.e.,

s), and the performance of the obtained full-diversity
SF codes degrade significantly in case of the delay profile with

s. These phenomena can be explained as follows.
The delay distribution of the channel has a significant effect

on the SF code performance. If the delays of the paths are large
with respect to one OFDM block period, there will be fast varia-
tions in the spectrum of the channel impulse response; therefore,
the probability of simultaneous deep fades in adjacent subchan-
nels will be smaller. This observation is in accordance with The-
orem 2. As discussed in Section V, we should expect better BER
performance when transmitting data over channels with larger
path delays. On the other hand, if the two delay paths are very
close, the channel will cause performance degradation.

B. Simulations With the COST207 Six-Ray Delay Profile

The second set of experiments were performed using a more
realistic channel model. The SF codes simulated in the pre-
vious subsection were tested over the COST207 Typical Urban
(TU) six-ray channel model [34]. The power delay profile of
the channel is shown in Fig. 7. We simulated an MIMO-OFDM
system having subcarriers with two different band-
widths: i) MHz (denoted by dashed lines), and ii)

MHz (denoted by solid lines). The cyclic prefix was
20 s long for both cases. In all of the simulations, the curves
with squares (“ ”) show the performance of the SF codes ob-
tained by repeating each row of the corresponding space-time
codes two times, and the curves with circles (“”) show the
results for the case of using ST codes as SF codes (without
repetition).

The performance of the SF block codes from the 22
orthogonal design with and without repetition are shown in
Fig. 8 for two transmit and one receive antennas. The repeated
code (using QPSK modulation) and the nonrepeated code
(using BPSK modulation) had the same spectral efficiency
of 0.86 b/s/Hz for the 1-MHz system and 0.22 b/s/Hz for the
4-MHz system, respectively. We can see from the figure that in
case of MHz, the code with repetition has a steeper
performance curve than the code without repetition. There is
a performance improvement of about 2 dB at a BER of .
In case of MHz, the maximum delay of the TU
profile (5.0 s) is “short” compared to the “long” duration of

Fig. 7. COST207 Typical Urban (TU) six-ray power delay profile.

Fig. 8. Performance of two-antenna SF block codes with the COST six-ray
channel model.

the OFDM block (128 s), which means that there is little
frequency diversity available in the fading channel. From the
figure, we observe that the performance of the repeated code
is worse than the nonrepeated code, due to the smaller coding
advantage, which is a result of the larger constellation size.

The rest of the figures show the BER curves of different SF
trellis codes. In case of the 1-MHz MIMO-OFDM system, the
spectral efficiencies of the trellis codes were 1.73 b/s/Hz (no
repetition) and 0.86 b/s/Hz (repeat twice). The 4-MHz system
yielded the spectral efficiencies 0.43 b/s/Hz (no repetition)
and 0.22 b/s/Hz (repeat twice). The performance of the QPSK
SF trellis code with and without repetition can be observed in
Fig. 9 for two transmit and one receive antennas, in Fig. 10 for
two transmit and two receive antennas, and in Fig. 11 for three
transmit and one receive antennas. We can see that in case of

MHz, all of the SF trellis codes with repetition have
higher diversity order than those without repetition. However,
in case of MHz, there is almost no diversity advantage
over the nonrepeated case.
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Fig. 9. Performance of two-antenna SF trellis codes with the COST six-ray
channel model.

Fig. 10. Performance of two-antenna SF trellis codes with two receive
antennas and the COST six-ray channel model.

Fig. 11. Performance of three-antenna SF trellis codes with the COST six-ray
channel model.

The tendencies of the performance curves obtained with the
more realistic TU profile are similar to those observed in the first
set of experiments with the two-ray profiles. As the bandwidth
increases, the delays become longer relative to the OFDM block
period, resulting in more significant performance improvement.
If the ratio of the maximum path delay and the OFDM block
duration is small, the behavior of the channel will be similar to
that of a flat fading channel.

VII. CONCLUSION

We proposed a systematic SF code design method for
MIMO-OFDM systems with arbitrary power delay profiles.
The full-diversity SF codes were constructed from ST codes
via a simple repetition mapping. This mapping is independent
of the particular properties of the applied ST codes; therefore,
all the existing ST block and trellis codes achieving full spatial
diversity in quasistatic flat fading environment can be used to
achieve the maximum diversity available in frequency-selective
MIMO fading environment. We also characterized the perfor-
mance of the SF codes obtained via the mapping by finding
the lower and upper bounds on their coding advantages as
functions of the coding advantages of the underlying ST codes.

Based on the theoretical and simulation results, we can draw
the following conclusions. First, the performance of the SF codes
designed by our method depends on the performance of the un-
derlyingSTcode.Second, theactualperformanceof theSFcodes
also depends on the delay distribution and the power distribution
of the channel impulse responses. Third, the repetition mapping
in the code construction method causes a coding rate decrease
compared with the underlying ST codes. However, to our knowl-
edge, the proposed SF codes have the best known coding rate of
all SF codes that are guaranteed to achieve full diversity.
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