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The problem of weight extraction for systolic 
adaptive beamforming systems has been the subject 
of intense research since the first well-known work 
of Gentleman and Kung on recursive least squares 
(RLS) systolic arrays [l, 21. Their approach is based 
on the QR decomposition (QRD) which is numerically 
stable. Although the QRD updates proposed in [l] are 
pipelined on a triangular array, their fully pipelined 
weight extraction by using the RLS systolic array 
consists of the two separate steps of QR-updates 
and backward substitution and has been shown to be 
unrealizable [3]. 

A major challenge in implementing the RLS 
algorithm for the multiple sidelobe cancellation 
adaptive beamforming system using systolic array 
processors (SAPS) is to design a single fully pipelined 
structure. A critical obstruction appears because the 
process of the QR-updates runs from the upper-left 
corner to lower-right corner of the array, while the 
process of the backward substitution runs in exactly 
the opposite direction as pointed out in [3]. Much 
research has been done on this subject recently 
[U]. In [4], Hudson and Shepherd have proposed a 
Kalman closed-loop system for the RLS parallel weight 
extraction problem that consists of a systolic QRD 
postprocessor to compute the least squares weighting 
vector. However, the parallel RLS weight extraction 
system proposed is not efficient for very large scale 
integration (VLSI) hardware implementation. The 
major hurdles are that this system, which requires two 
modes to update the data and to freeze the updated 
data for computing the weight vector error at the 
same time, is inefficient in obtaining the instant 
weight vector recursively, and that the feedback 
configuration may create serious routing problems in 
VLSI implementation and roundoff noise accumulation 

In [5], McWhirter introduced a fixed parallelogram 
structure for the parallel weight extraction in the RLS 
problem. However, McWhirter's RLS weight extraction 
system does not efficiently update the weight vector 
since the array must be frozen at each snapshot to 
compute the weights. 

In a recent paper [A, a numerically stable and 
computationally efficient algorithm for weight 
extraction for a constrained recursive least squares 
(CRLS) problem has been described by Schreiber. 
Although the algorithm shown in [7] has robust 
numerical properties, it is difficult to arrange the 
whole algorithm into a single fully pipelined structure 
as pointed out in [8, 91. The difficulty, which is the 
same as that in the RLS case, arises because the 
CLRS algorithm consists of several steps particularly 
involving the backward substitution step. Many 
minimum variance distortionless response (MVDR) 
adaptive beamformers with CRLS systolic array 

[41. 
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structures proposed in [%lo] are designed to avoid the 
extra backward substitution processor for computing 
the residual. Unfortunately, for the problem of 
paralleVpipelined weight extraction, very little has 
been done in implementing the CRLS algorithm 
into a single fully pipelined systolic array structure 
without requiring the backward substitution processors. 
Recently, Owsley developed an adaptive MVDR 
beamformer with a systolic array implementation using 
Schreiber’s CRLS algorithm for weight extraction 
[ l l ,  121. Nevertheless, Owsley’s CRLS systolic array 
structure which consists of several block processors 
including the forward and backward substitution 
processors has been shown to be unpipelinable. 
Subsequently, ring, Liu, and Tretter [6, 131 presented 
systolic architectures for MSC and MVDR adaptive 
array systems. During the preparation of this work, the 
authors discovered a paper by Shepherd, et al. [14] in 
which they independently proposed a similar concept 
for RLS and CRLS algorithms. 

In this paper, fully paralleVpipelined systolic 
arrays for the multiple sidelobe canceler (MSC) and 
MVDR adaptive weight extraction systems without 
the need for forward or backward substitution are 
described. The proposed MSC and MVDR systolic 
adaptive array systems have five advantages: 1) they 
are simple, modular, and expandable so as to be 
very suitable for VLSI hardward implementation, 2) 
the square-root-free Givens method can be easily 
incorporated into the architectures, 3) they are fully 
pipelined since the backward substitution is avoided, 
4) they are open-loop systems without any feedback 
arrangement, and 5) they function recursively to 
update the instantaneous optimal weight vector 
since only one mode is required in the recursive 
updating. 

two types of adaptive beamformers are introduced. 
They are the MSC formulated as a RLS problem 
and the MVDR beamformer formulated as a CRLS 
problem. In Section 111, the background and the new 
techniques to replace the forward and backward 
substitutions by the parallel multiplication and 
accumulation operation using systolic arrays are 
considered. In Section IV, the QR-based RLS 
algorithm for the MSC adaptive beamforming system 
without the need for backward substitution is described 
and its paralleVpipelined MSC weight extraction 
system with SAP is also presented. In Section V, 
the QR-based CRLS algorithm for the MVDR 
adaptive beamforming without the need for forward 
and backward substitutions is described and the 
paralleVpipelined MVDR weight extraction system 
with SAP implementation is also considered. In 
Section VI, the fast, square-root-free Givens method 
is employed for the MSC and MVDR adaptive array 
systems. 

This paper is organized as follows. In Section 11, 

II. ADAPTIVE BEAMFORMING SYSTEMS 

In this section, two popular adaptive beamforming 
systems are described. We first describe the MSC 
which consists of a main antenna and several auxiliary 
antennas. The multiple sidelobe cancellation technique 
is employed to suppress the sidelobe interferences and 
noises. The interferences and noises are estimated by 
multiplying the observed input data received through 
the auxiliary antennas by the adaptive weights and 
then summing them together. The interferences and 
noises are suppressed from the main radar channel 
by subtracting the estimates from radar main channel 
output. Second, an MVDR beamformer is considered. 
The MVDR beamforming technique is used to 
suppress the interferences and noises by constraining 
the response of the beamformer to specific directions 
and then minimizing the output power subject to the 
response constraints. 

A. Multiple Sidelobe Canceler (MSC) 

The block diagram of a MSC is shown in Fig. 1. It 
is easy to see that the output at the ith snapshot can be 
expressed as 

N 

y(ti> = Cxl(ti)~ -z(ti>* (1) 
1 =1 

A set of n successive snapshots can be represented in 
the vector form 

where y(n) is an n by 1 output vector matrix 

z(n) is an n by 1 desired input data vector matrix 

(4) 
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Fig. 1. Multiple Sidelobe Canceller. 

B. Minimum Variance Distortionless Response 
(MVDR) Beamformer 

The MVDR adaptive beamforming system can be 
formulated as a CRLS problem. The block diagram of 

I 

1 I *  t -  

L 

output 

Fig. 2. MVDR adaptive beamformer. 

the MVDR adaptive beamformer is shown in Fig. 2. 
The output y at the kth snapshot of the adaptive 
beamformer is 

N 

Y ( t k )  = C X l ( t k ) W l .  (9) 
1 =I 

If n snapshots of input data are available, the output 
can be written in the vector form 

Y(n> = X(n)w(n) (10) 

where y ( n ) ,  X ( n ) ,  and w(n) are as defined in (3), (9, 
and (6), respectively. 

called a beamformer response ri and is given by 
A signal received from the direction of interest t9i is 

Ti  = CiHW (11) 

where ciH is the N by 1 mainbeam steering direction 
vector given by 

CiH = [1 e j ( 2 r / ~ ) D ~ i n ( @ ; )  e j ( 2 r / ~ ) m s i n ( ~ ; )  

I ej(2r/X)(N -1)D sin(@;) 

with D being the distance between two sensors in the 
array, and X being the wavelength. Taking expectation 
of yH(n)y (n)  yields 

E[yH(n)y(n)l  = E[wH(n>XH(n)X(n)w(n>l 

= wH(n)Mw (n) (12) 

where M is the n by n covariance matrix of X(n) .  
In general, designing a MVDR beamformer 

requires solving a constrained least squares 
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optimization problem. The problem is 

minwHit4w 
W 

subject to 
.H 

c' w = r', for i = 1,2 ,..., K 
where K is the number of look directions. Using the 
method of Lagrange multipliers, the optimal weight 
vector wLpt is found to be [15] 

In practice, M ( n )  used in (8) and (13) is the sample 
covariance matrix of the observed data X(n) ,  

M ( n )  = XH(n)X(n)  (14) 

rather than covariance matrix of X ( n )  used in (12). 

Ill. SYSTOLIC ARRAY LINEAR ALGEBRA 
PROCESSING 

In the emerging field of algorithmic engineering 
introduced by McWhirter [5], the hybrid disciplines 
of designing numerically stable parallel algorithms 
suitable for parallel computation and mapping them 
onto VLSI systolic architectures to achieve high 
throughput rates and VLSI hardward implementation 
are demanded for sophisticated, high performance 
real-time modern signal processing. In real-time 
modern signal processing applications numerically 
reliable and computationally efficient algorithms and 
architectures for techniques such as RLS estimation, 
CRLS, solving linear systems, and performing singular 
value decomposition are required. Furthermore, in 
these applications it is also necessary to design a highly 
paralleVpipelined structure for the use in parallel 
supercomputers and for implementation by using VLSI 
systolic processors. 

In this section some key processors are developed 
as the basic tools for designing sophisticated adaptive 
array systems. Moreover, the parallellpipelined 
techniques considered here make it possible to 
design more advanced adaptive array systems such 
as the MSC and MVDR adaptive beamforming 
systems studied here. A brief description of the key 
linear-algebra-based parallel algorithms with SAPs is 
provided in the following subsections. 

A. Systolic Array for Preventing Forward Substitution 

The computation of RHF = X is usually called 
the forward substitution where F is n x m matrix, 
R is n x n upper triangular matrix, and X is n x m 
matrix. In [16] it is carried out in two steps to 
obtain F by the Comon-Robert's algorithm when 
the matrices R and X are given. In the first step, 

TABLE I 
Parallel/Pipelined Algorithm for Preventing Forward Substitution 

for  i = 1 to n 

begin 

Y,l  = +I 

in parallel for  j = 2 to m 

begin 

21) = 5;> 

in  parallel for k = 1 to j - 

Ti> = z i j  - ytkrjl 

Y i j  = 

end 

end 

1 

Fig. 3. SAPs for forward substitution. 

the matrix R-' is computed when the matrix R is fed 
into the systolic array. In the second step, the vector 
XH is given as input to compute X H R - l .  As a result, 
the complex conjugate of XHR- l  is taken to obtain F. 
Similar to [8, 171, the systolic algorithm (SA) shown in 
n b l e  I requires only one step to generate F with the 
matrix R prestored in the systolic array and the matrix 
X as input fed into the array. 

to obtain F is illustrated in Fig. 3. The systolic 
parallelogram array processor is operated by sending 
X into the upper triangular systolic processor in 
parallel to obtain F [6]. 

The systolic parallelogram array processor designed 

B. Systolic Array for Preventing Backward 
Substitution 

Backward substitution is required in many adaptive 
array algorithms. Assume the vector z and the lower 
triangular matrix R-H are the given data. The question 
now is how to design a systolic structure to compute 
b = R-lz ,  by using the given vector z and lower 
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W L E  I1 
ParallelF’ipelined Algorithm for Preventing Backward Substitution 

in  parallel for i = 1 to  m, j = 1 to  m 

begin 

temp(; ,  j )  = z ( j )  * z*(i, j )  

end in parallel 

in parallel for  i = 1 to m 

begin 

w ( i )  = 0 

in parallel for j = 1 to m 

begin 

w ( i )  = w ( i )  + temp(i ,  j) 

end in parallel 

end in parallel 

R’, 

Fig. 4. SAPs for backward substitution. 

triangular matrix KH. Fortunately, this can be 
easily carried out on a systolic array efficiently. The 
technique introduced in this subsection shows that 
instead of solving Rb = z ,  the backward substitution, 
the forward substitution using matrix R-H is employed. 

In Table 11, the systolic algorithm for the parallel 
multiplication and accumulation operation of a 
given vector z and matrix to prevent computing 
backward substitution is described. The systolic array 
shown in Fig. 4 is designed by concurrently sending 
each element of the vector z to multiply the complex 
conjugate of each element of the matrix R-H and then 
by summing them together to obtain the vector b. It is 
clear that the vector b can be obtained by the parallel 
multiplication and accumulation operation of the 
data stored in the lower triangular part of the systolic 
array processor without performing the backward 
substitution [6]. 

IV. QRD-MSC ADAPTIVE BEAMFORMER 

Pipelined data-parallel algorithms that can be 
implemented on SAPs are called systolic algorithms 

(SAS). possess. The SAPS have additional 
nice properties such as simplicity, modularity, 
and expandability which are very suitable for 
implementations of adaptive beamforming systems 
onto VLSI. Conventional SMI methods generally lead 
to some undesirable numerical properties. In order to 
alleviate this difficulty, the QRD can then be used. 

The QR-based MSC adaptive beamforming system 
is described in this section while the QR-based MVDR 
adaptive beamformer is considered in the next section. 
In this section we introduce a single and fully pipelined 
systolic parallelogram array processor for optimal 
weight extraction in the MSC adaptive beamforming 
system. The adaptive beamforming system requires 
two modes for initialization and only one mode for 
recursive updating to obtain the optimal weights. 
By using a QRD, we avoid computing the sample 
covariance matrix inversion as needed in (8) and (13). 

A. QR-Based RLS Algorithm for MSC 

The N-snapshot input data matrix X ( N )  is received 
during the initialization period 0 5 n 5 N .  Applying 
the QRD to the data matrix X ( N ) ,  we have 

R ( N )  = Q ( N ) X ( N )  (15) 

where R ( N )  is an N x N upper triangular matrix and 
Q ( N )  is a unitary matrix with QH(N)Q(N) = I. Then 
by applying the unitary matrix Q ( N )  to the desired 
data z (N) ,  the orthogonalized desired vector u(N) is 
given by 

where u(N) is an N x 1 vector. 

have 

u(N) = Q ( N ) z ( N )  (16) 

Combining (15) and (16), that use the QRD, we 

[R(N)  u(N)1= Q ( N ) [ X ( N )  z(N)I. (17) 

Let us call this the mode 1 operation. Finally, using 
systolic parallelogram array processor described in 
Subsection IIIA, the initial lower triangular matrix 
F H ( N )  can be generated as in Table I and Fig. 3. 
This operation is called the mode 2 operation. 

For n greater than N ,  it is known [18] that, in 
recursive updating, the unitary matrix Q(n) consists 
of two factors given by 

Q(n) = Q(n)Q(n - 1) (18) 

where Q(n) is an n by n unitary matrix obtained from 
a sequence of Givens rotations that updates the new 
data row xT(n), and G ( n  - 1) is an n by n unitary 
matrix given by 

Q(n-1) ! 0 
- Q(n - 1) = [ . o  .;. .l]. 
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Thus, when the unitary matrix Q(n) is applied to we have 

QW 

update the current data matrix X ( n ) ,  we have 

X ( n  - 1) 

XT(tn) 
Q(n)x(n> = Q<n> [ . . .  ] 

. 1  
PR(n-1) i Pu(n- 1) : -R-H(n-l) 

P 
0 : Pv(n-1) : # 

(20) 

where u(n - 1) is an N x 1 vector, v(n - 1) is an 
(n - N - 1) x 1 vector, and # denotes an arbitrary 
value of no interest in mathematical and physical 
concept. Equations (19) and (20) update R(n - 1) and 
u(n - 1) once the data row xT(t,) and new desired data 
z(tn) are available. 

It is also necessary to update the lower triangular 
matrix F H ( n  - 1) for computing the instantaneous 
optimal RLS weighting vector. It can be seen that the 
same unitary matrix Q(n) can also be used to update 
the lower triangular matrix R-H(n - 1) as given by 

I = RH(n)R-H(n) 

= RH(n - l)R-H(n - 1) 

= [PRH(n - 1) 0 x*(t , ) ]  

Therefore, from (21), we obtain 

-R-H(n 1 - 1) R-H(n) 

Q W [ P  ; ] = [  ; I .  (22) 

Combining the updating for the upper triangular 
matrix R(n - l),  the orthogonalized desired vector 
u(n - l), and the lower triangular matrix R-H(n - l), 

(8) to give 

Equation (24) shows how to compute the optimal 
weight vector using QRD. However, the problem 
of designing a fully pipelined processor due to the 
backward substitution still remains. Since u(n) and 
R-H(n) are available, the technique described in 
Subsection IIIB can be used to realize the backward 
substitution. Equation (24) is then computed as 
follows: 

wu(n) = R-l(n)u(n) .  (24) 

wL(n) = uT(n)R-H* (n )  (25) 

where wL(n) is a 1 by N vector and T denotes 
transpose. 

B. Systolic MSC Weight Extraction System 

The systolic RLS weight extraction algorithm 
is summarized in Bble  111. The paralleypipelined 
weight vector obtained by this algorithm is defined 
only during the recursive updating for n 2 N when 
the observed data matrix is of full rank. We start 
with initializing the algorithm by setting the upper 
triangular matrix, the orthogonalized desired vector, 
and the lower triangular matrix to zero, i.e., R(0) = 0, 
u(0) = 0, and KH(0)  = 0. In the initialization, mode 
1 and mode 2 are required while only mode 1 is 
needed in recursive updating. When the observed 
input data matrix X ( N )  is available, N is the number 
of sensors. Then, the initial upper triangular matrix 
R ( N )  and the orthogonalized initial desired vector 
u ( N )  are generated by using the mode 1 operation, 
the QRD, and the lower triangular matrix R-H(N) 
are obtained by employing the mode 2 operation, the 
parallel multiplication and accumulation operation, as 
described in Subsection IIIA. Finally, for n 2 N, the 
optimal parallel weights are obtained by using only 
the mode 1 operation to update parameters and to 
carry out the parallel multiplication and accumulation 
instead of backward substitution. 

In Fig. 5, the MSC systolic parallelogram array 
processor is illustrated for the case of four sensors 
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TABLE 111 
Summary of Parallel/Pipelined QRD-RLS Algorithm 

1. Initialize Conditions a t  n = 0 by setting 

R(0) = 0 ~ ( 0 )  = 0 K H ( 0 )  = 0 

2. Initialization Procedure for 0 5 n 5 N: 

(a) [ R(N) j g ( N )  ] is generated by using mode 1 operation, QR decompo- 

sition 

(b) K H ( N )  is obtained by mode 2 operation, the parallel multiplication and 

accumulation operation 

3. Recursive Procedure for n > N (Mode 1 only): 

Note: Underlined symbols here correspond to boldface symbols in text. 

X 
M I  X 

X 0 
I X  

X 

- 0  I 
0 0 

2 1  X 
- x  X 

7 ;  X 

z 
X z 
X z 
X 0 
1 0 
0 0 
0 2 
X 2 
X z 
X 

0 
0 0 
0 0 
0 I 
0 0 
I 0 
0 0 
0 0 
0 0 
0 

t 
v 

1 

- 

PE4 

P E 4  

P E 4  P E 4  P E 4  

J " J * I '  optimal weight vector 

Fig. 5. Parallel weight extraction for MSC. 

to receive the observed input data and the desired 
input data, and to instantaneously generate the 
optimal updated weights in parallel. The system needs 
two procedures which are the initialization and the 
recursive updating. The initialization is further divided 

into two parts. First, under the mode 1 operation, 
the 3 x 3 observed input data X, the 3 x 1 desired 
input data z, and the 3 x 3 zero matrix are fed into 
the MSC systolic array to compute the 3 x 3 upper 
triangular matrix R and the 3 x 1 orthogonalized 
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the processor element 1 generates the rotation 
coefficients c and s when zeroing out the observed 
input data. The processor elements 2 and 3 perform 
the rotation of the received input data according to 
the rotation coefficients. The processor element 4 
not only perform the rotation but also carries out the 
parallel multiplication and accumulation operation to 

is employed to generate the lower triangular matrix 
R-H(n). The processor element 1 of the mode 2 

5 

V compute the optimal weights. The mode 2 operation 
Xin 

I 
Xin W i n  

I 

Fig. 6. Processor elements of MSC SAP. 

desired vector U stored in the upper left part of the 
systolic parallelogram array processor. Secondly, under 
the mode 2 operation, the 3 x 3 identity matrix, 1 x 3 
matrix of Is, and zeroes are sent into the processor 
to generate the 3 x 3 lower triangular matrix R-H 
which is stored in the lower right triangular part 
of the array processor. The upper left triangular 
processors perform the parallel multiplication and 
accumulation operation instead of forward substitution 
to generate the lower triangular matrix R-H when 
3 x 3 identity matrix is received, and the lower right 
triangular processors function as the loading operation 
when 1 x 3 matrix of 1s is received. Finally, during 
recursive updating, the optimal weight vector is 
obtained in parallel under the mode 1 operation. 
When the 1 x 3 observed input data vector, the desired 
input data, and 1 x 3 zero vector are fed into the 
processor, the 1 x 3 updated optimal weight vector 
is obtained instantaneously at the bottom of the 
array. 

The four processor elements of the systolic array 
are given in Fig. 6. The mode 1 operation for the MSC 
systolic array for each processor element is described 
in n b l e  IV, and the mode 2 operation is presented in 
Dble V. The mode 1 operation is used to carry out the 
QRD and parallel multiplication in both initialization 
and recursive updating. Under mode 1 operation, 

operation is used to generate parameters while the 
processor 2 and 3 are employed to carry out the 
parallel multiplication and accumulation operation. 
The processor element 4 is simply used to store the 
lower triangular matrix. It is illustrated in Fig. 5 
that the two different modes described in Table IV 
and V are used in the initialization. The recursive 
updating for the paralleVpipelined weight extraction 
used for n > N only requires mode 1 operation. Since 
the optimal weight vector obtained in the recursive 
updating only one mode, the parallel MSC systolic 
parallelogram array processor proposed is fully 
pipelined. 

V. QRD-MVDR ADAPTIVE BEAMFORMER 

Since weight extraction in the conventional 
QR-based constrained recursive least squares 
(QRD-CRLS) algorithms requires both recursive 
orthogonalization and backward substitution [7, 11, 121, 
it is impossible to update the whole system in a fully 
pipelined manner. The new QRD-CRLS technique 
proposed is able to obtain the optimal weights without 
performing backward substitution. 

A. QR-Based CRLS Algorithm for MVDR Beamformer 

In this subsection, a parallel and fully pipelined 
algorithm is introduced for weight extraction in a 
systolic MVDR beamformer. When the N-snapshot 
observed input data matrix X ( N )  is available, by 
applying the QRD to the observed data X ( N ) ,  the 
initial upper triangular matrix R ( N )  is given by 

W N )  = Q ( N ) X ( N )  (26) 

TABLE IV 
Mode 1 Operation of MSC 

I PE1 PE2 PE3  PE4 I 
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TABLE V 
Mode 2 Operation of MSC 

I PE1 PE2  PE3  PE4 I 
s c y c cz - sr y + cx - sr xoul c xin 

if Xi" c 1 

then r c s *  

where X ( N )  is an N by N observed data matrix 
consisting of N row vectors and each row vector is a 
snapshot of N sensors, and Q is an N by N unitary 
matrix. The initial parameter vector s' (N) is defined by 

s'(N) = R-H(N)c' (27) 

where c' is the steering vector defined in (11). The 
initial lower triangular matrix KH(N) is obtained 
by replacing the steering vector in (27) by an identity 
matrix. It is shown in Subsection IIIA that the initial 
parameter vector s'(N) and the initial lower triangular 
matrix R - H ( N )  can be computed by using the systolic 
parallelogram array processor. 

When n is greater than N, the number of sensors, 
it has been shown in Subsection IVA that a QRD 
can be carried out recursively to update the optimal 
weights. The upper triangular matrix can be updated as 
before, i.e. 

PR(n - 1) 

Q(n>x(n)  = Q(n) [ .o. 1 
X T ( t n  ) 

p < n > 1  

To update a parameter vector s'(n - l), notice that 

ci = RH(n)s'(n) 

= ~ ~ ( n  - l)s'(n - 1) 

= [PRH(n - 1) 0 X*(f . ) ]  

Therefore, 

As described in the MSC system, the same unitary 
matrix used to update the upper triangular matrix 
R(n - 1) can also be employed to update the lower 
triangular matrix K H ( n  - l ) ,  that is 

-R-H(n 1 - 1) R-H(n) 

Qi.)[P ; ] = [  ; 1 .  (31) 

Updating for the upper triangular matrix R(n - l ) ,  the 
parameter vector s'(n - l ) ,  and the lower triangular 
matrix R-H(n - 1) can be described by the combined 
equation 

1 * 1 .  - 1  PR(n - 1) : -s'(n - 1) : -R-H(n - 1) 
P P 

R(n) i s'(n) i R-H(n) 

O : # :  # 

For convenience, let 

WiT(n) = s'l(n)R-H*(n). (33) 

On substituting (B), (29), and (33) into (13), the 
MVDR weight vector w(',(n) becomes 

(34) 

B. Systolic MVDR Weight Extraction System 

A single fully pipelined structure is shown in Fig. 7 
for the case of three sensors with one constraint. 
Another single fully pipelined structure is shown in 
Fig. 8 for three sensors with multiple constraints. 
There are five processor elements as shown in Fig. 9 
for our proposed fully pipelined structure. Both 
parallel weight extraction MVDR systems require 
two procedures: the initialization and recursive 
updating. The initialization can be further divided 
into two modes. Under the mode 1 operation, the 
3 x 3 upper triangular matrix B is generated and 
stored in processor elements 1 and 2, when the 3 x 3 
input observed matrix and the 4 x 3 zero matrix 
are received. Then, under the mode 2 operation 
described in Subsection IIIA functioned as the parallel 
multiplication and accumulation operation instead 
of forward substitution, the 3 x 1 initial parameter 
vector s and the 3 x 3 lower triangular matrix R-H 
are obtained and stored in processor elements 3 and 
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Fig. 9. Processor elements of MVDR SAP. 

To demonstrate how the paralleVpipelined weight 
extraction system functions, the summary of the 
whole system to obtain the optimal weight vector for 
MVDR adaptive beamforming is described in Tmble 
VI. The mode 1 operation and the mode 2 operation 
for each processor element are given in Table VI1 
and Table VIII. Under the mode 1 operation, the 
processor element 1 generates the rotation coefficients 
c and s, while processor elements 2, 3, and 4 rotate 
the received data. The processor elements 3 and 4 
also performs the multiplication-and-accumulation 
operation to compute the normalization coefficient 
and optimal weight vector before normalization. The 
processor element 5 performs the normalization for 
the optimal weights. Under mode 2 operation, the 
processor elements 1 and 2 perform the parallel 
multiplication and accumulation operation without 
exactly computing the forward substitution while the 
remaining processor elements operate as temporary 
storage for the parameter vector and the lower 
triangular matrix. The system is started by setting 
the whole parallelogram array processor to zero, i.e., 
R(0) = 0, s(0) = 0, and R-H(0) = 0 at time n = 0. The 
initialization is then performed during time 0 5 n 5 N 
to obtain the initial upper triangular matrix R(N) ,  
the initial parameter vector s ( N ) ,  and the initial 
lower triangular matrix R P H ( N ) .  Two different modes 
described are employed in the initialization. The upper 
triangular matrix R ( N )  is generated by using mode 1 
operation while the initial parameter vector s ( N )  and 
the initial lower triangular matrix K H ( N )  are 

obtained by using mode 2 operation described in 
Subsection IIIA. In recursive updating, the systolic 
parallelogram array processor uses mode 1 operation 
to update and compute the optimal weights in parallel 
during time n > N .  

VI. FAST GIVENS-BASED ADAPTIVE BEAMFORMING 
SYSTEMS 

It is important in implementing the QR 
decomposition by VLSI to avoid the square root 
[8, 181. Since computation of the square root is 
complicated, it limits the through-put of the VLSI 
processors. To speed up the system, a square-root-free 
version of the Givens method is essential and is 
referred to as the fast Givens method by Gentleman 
[19] and Hammarling [20]. 

A. Fast Givens-Based RLS Algorithm for MSC 

The upper triangular matrix R(n) can be rewritten 
as 

R(n) = D'/2(n)B(n) = Q(n)X(n )  (35) 

where D(n)  is an N by N diagonal matrix with the 
form 

d l ( tn )  0 . . .  

0 dz(tn) " '  
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TABLE VI 
Summary of ParallelPipelined QRD-CRLS Algorithm 

-1 r l2( tn)  r13(tn) " '  TlN(tn)'  

0 1 r23(&) " '  r 2 N ( t n )  

0 0  1 . . .  r3N(tn)  . 

-0 0 0 . . .  1 ,  

1. Initialize Conditions at n = 0 by setting 

R(0) = 0 ~ ( 0 )  = 0 R-H(0) = 0 

2. Initialization Procedure for 0 5 n 5 N: 

(a) R ( N )  is generated by using mode 1 operation, QR decomposition 

(b)  $ ( N )  and K H ( N )  are obtained by mode 2 operation, the parallel multipli- 

cation and accumulation operation 

3.  Recursive Procedure for n > N (Mode 1 only): 

Note: Underlined symbols here correspond to boldface symbols in text. 

TABLE VI1 
Mode 1 Operation of MVDR 

I PE1 PE2  PE3  PE4 I 

?'ABLE VI11 
Mode 2 Operation of MVDR 

1 PE1 PE2  PE3  PE4 PE5 1 

s t f y t cx - sr xout +- I,, xoyt t 2," wDut + W,n 

c t l  if 2," t 1 if I,, t 1 

then r t s* then r t s+ 
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TABLE IX 
Summary of Fast Givens RLS Algorithm 

1. Initialize Conditions at n = 0 by setting 

item D ~ ( O ) Z ( O )  = o Q(O) = o P'(o) = o 
2. Initialization Procedure for 0 5 n 5 N :  

(a) Q ( N )  [ x(N) i z(iv) ] = D ~ ( N )  [ i giv) ]  ode 1) 

(b) R ' - H ( N )  is generated by Mode 2 operation 

3. Recursive Procedure for n > N (Mode 1 only): 

(4 Q(n) 

- l )n (n  - 1) 

(b) Q(n) 

(c) Q(n)  

_ I  - H' 
(d)  UT(.) = ET(n)D(n)R (n) 

Note: Underlined symbols here correspond to boldface symbols in text. 

lower triangular matrix E H ( n )  as follows generated without explicitly computing 

u(n) = D'/2(n)ii(n) (36) 

R-H(n) = D' /2 (n )PH(n)  (37) 

and 

--H 
where R'-H(n) = D-'(n)R 
be readily seen that the LS weight vector can be 
computed without a square root as 

(n). Then, it can 

w(n) = X- l (n ) i i (n )  (38) 

where D'12 is never explicitly computed. 
In the initialization the upper triangular matrix 

R ( N ) ,  and orthogonalized desired vector ri(N) can be 
- 

Q ( N ) [ X ( N )  ! y ( N ) ]  = D'/2(N)[R(N)  ! ii(i(N)]. 

(39) 

Similar to the last two sections, the initial lower 
triangular matrix R-H(N) can also be obtained 
easily. 

In order to update the optimal weight vector 
recursively, an upper triangular matrix K ( n  - I), 
a vector ri(n - l), and a lower triangular matrix 
R (n - 1) must be updated at each new data sample. 
The following equation shows how to update all of the 
parameters together 

-- H 

a 1  
[PD112(n - l ) z ( n  - 1) ! PD1/2(n - l)ii(n - 1) : -D'/2(n - l)R'-H(n - 1) 

P 
# 

0 
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Fig. 11. Processor elements of fast MSC SAP. 

where # denotes an arbitrary matrix or  vector with no 
special interest. Finally, the optimal weight vector is 
then computed by 

-/-H* 
d ( n )  = IIT(n)X-H*(n) = ii?'(n)D(n)R (n). 

(41) 

The square-root-free algorithm and its SAP are 
described in Table IX and Fig. 10. The proposed 
fast MSC weight extraction system consists of 
four processor elements as given in Fig. 11. In 
Tmble X, the mode 1 operation performs the fast 
Givens rotations and parallel multiplication without 
computing backward substitution. In addition, under 
the mode 1 operation, the PE 1 is used to generate 
parameters without computing the square root, the 
PE 2 and 3 are operated to transform the input 

TABLE X 
Mode 1 Operation of Fast MSC 

I PE1 PE2  PE3  PE4 I 

C t X  

s t *  

l r + k  

Note: Underlined symbols here correspond to boldface symbols in text. 
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TABLE XI 
Mode 2 Operation of Fast MSC 

PE1 PE2 PE3 PE4 

s t x y t cx - sr xOu1 t x,, foul t I,, 

c t l  zf x,, t 1 Zf x,, + 1 

then r t  5 then r t s* 

data by those parameters, and the PE 4 is employed 
not only to transform input data but also to carry 
out the accumulation and addition operation for 
obtaining the optimal weights. In Table XI, the mode 
2 operation functions as the parallel multiplication and 
accumulation operation without the need for forward 
substitution. The functions of the four processor 
elements in the fast MSC SAP are performed in 
the same way as in the MSC systolic array processor 
described in Section IVB. 

B. Fast Givens-Based CRLS Algorithm for MVDR 

Similarly, for MVDR beamforming we can factor 
D'12 out as follows R(n)  = D1/2(n)R(n),  s (n )  = 
D'/2(n)s(n), and K H ( n )  = D'/2(n)R'-H(n), where 
R'-H(n) = D-1(n)3-H(n) .  All the parameters must 
also be updated for computing the optimal weight 
vector. The following equation shows how all the 
parameters can be updated together 

- 

The fast Givens CRLS algorithm and SAP are 
described in Table XI1 and Figs. 12 and 13. There are 
five processor elements in the systolic array. Processor 
elements are illustrated in Fig. 14 and the functions of 
each processor element under the two modes are also 
described in Tables XI11 and XIV. 

VII. CONCLUSION 

In this paper, we consider the QRD-based RLS 
and CRLS problems for MSC and MVDR weight 
extraction systems. Both weight extraction systems 
require two modes for initialization and one mode 
for recursive updating. Since the optimal weight 
vectors obtained for MSC and MVDR beamformers 
are defined solely in recursive updatings with only 
one mode, it is shown that the weight extraction 
systems proposed are fully pipelined to compute the 
optimal weights instantaneously. Compared with the 
conventional weight extraction system involving the 
forward and backward substitutions which may lead to 
significant obstruction in designing a fully pipelined 
systolic architecture to update the optimal weights 
instantaneously, our proposed systolic parallelogram 
structure is very promising for VLSI implementation. 
Furthermore, the fast Givens method without square 
root operation is employed to improve the throughput 
for parallel weight extraction systems and to increase 
the operational speed for MSC and MVDR adaptive 
array systems. 

-D'/2(n 1 - l)R/-H(n - 1)  
P 

0 # # 

XT (tn ) 0 0 

Finally, 
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TABLE XI1 
Summary of Fast Givens CRLS Algorithm 

1. Initialize Conditions a t  n = 0 by setting 

item D~(o)w(o) = o ~ ( 0 )  = o ~ ~ ~ ( 0 )  = o 
2. Initialization Procedure for 0 5 n 5 ,V: 

(a) Q ( N ) X ( N )  = Df(N)R(iV) 

(b) S ( N )  and x - H ( N )  are obtained by sending the steericg vector c and a unit 

under mode 1 operation 

matrix into systolic array under mode 2 operation 

3. Recursive Procedure for n > N (Mode 1 only): 

D )  (n)Z( n )  

# 
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X 

I X  X 

X 0 
I 
0 0 
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Fig. 12. Fast MVDR SAP with one constraint. 
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TABLE XI11 
Mode 1 Operation of Fast MVDR 

I PE1 P E 2  PE3 PE4 i 

0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 
0 0 

0 
0 0 

optimal weight vector 

Fig. 13. Fast MVDR SAP with multiple constraints. 

TABLE XIV 
Mode 2 Operation of Fast MVDR 

PE1 PE2 PE3 PE4 PES 

s t I y t cx - sr xout + I , ,  x,,t c I , ,  wout + w,, 

c c l  if I , ,  t 1 if I , ,  t 1 

then r c f then r t s+ 
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