
134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

Resource-Aware Conference Key Establishment
for Heterogeneous Networks

Wade Trappe, Member, IEEE, Yuke Wang, and K. J. Ray Liu, Fellow, IEEE

Abstract—The Diffie–Hellman problem is often the basis for
establishing conference keys. In heterogeneous networks, many
conferences have participants of varying resources, yet most
conference keying schemes do not address this concern and place
the same burden upon less powerful clients as more powerful
ones. The establishment of conference keys should minimize the
burden placed on resource-limited users while ensuring that the
entire group can establish the key. In this paper, we present a
hierarchical conference keying scheme that forms subgroup keys
for successively larger subgroups en route to establishing the
group key. A tree, called the conference tree, governs the order in
which subgroup keys are formed. Key establishment schemes that
consider users with varying costs or budgets are built by appropri-
ately designing the conference tree. We then examine the scenario
where users have both varying costs and budget constraints. A
greedy algorithm is presented that achieves near-optimal perfor-
mance, and requires significantly less computational effort than
finding the optimal solution. We provide a comparison of the
total cost of tree-based conference keying schemes against several
existing schemes, and introduce a new performance criterion, the
probability of establishing the session key (PESKY), to study the
likelihood that a conference key can be established in the presence
of budget constraints. Simulations show that the likelihood of
forming a group key using a tree-based conference keying scheme
is higher than the GDH schemes of Steiner et al.. Finally, we
study the effect that greedy users have upon the Huffman-based
conference keying scheme, and present a method to mitigate the
detrimental effects of the greedy users upon the total cost.

Index Terms—Conference key agreement, Diffie-Hellman,
Huffman algorithm.

I. INTRODUCTION

THE advancement of communication technology is leading
to a future where group-based applications will become

a reality. Many applications will require that group communi-
cation is protected from unwanted eavesdroppers. In order to
protect the communication traffic, the information must be en-
crypted, requiring that the privileged parties share an encryption
and decryption key. There are two basic approaches to estab-
lishing the group key: first, is to employ a key distribution pro-
tocol, where the formation of the key is performed by a single,
centralized entity; or second, by employing a contributory key

Manuscript received January 14, 2002; revised May 9, 2003; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Paul.

W. Trappe is with WINLAB, Rutgers, The State University of New Jersey,
Piscataway, NJ 08852 USA (e-mail: trappe@winlab.rutgers.edu).

Y. Wang is with the Department of Computer Science, The University
of Texas at Dallas, Richardson, TX 75083-0688 USA (e-mail: yuke@ut-
dallas.edu).

K. J. R. Liu is with the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, MD USA 20742 (e-mail:
kjrliu@eng.umd.edu).

Digital Object Identifier 10.1109/TNET.2004.842236

agreement protocol, where legitimate members exchange infor-
mation that they use to agree upon a key.

In key distribution, the entity responsible for generating
and distributing the group key is either an outside entity, such
as a trusted third party (TTP), or an appropriately elected
group member. The use of a single entity for key distribution
is well-suited for applications where it is natural to have a
single entity responsible for the group service. For example,
one-to-many services involving large multicast groups, such as
media services, are appropriate for centralized key distribution.
The problem of centralized group key distribution has seen
considerable attention recently in the literature [1]–[8]. A
decentralized approach to key distribution was described in [8],
where group participants generate group keys and distribute
them amongst themselves.

The are many scenarios, however, where using key distribu-
tion is not appropriate. The use a TTP for distributing keys can
be problematic as a TTP can act a single point of failure for
the group’s security. Further, in many cases it is not possible to
have a third party administer the group key as there might not be
a single entity that is trusted by all participants, or that has suf-
ficient resources to maintain the intermediate key material for
the entire group. An example might occur in ad hoc sensor net-
works where no single device has the storage resources needed
to maintain intermediate keying material for the entire group.
In such a case, contributory approaches are needed, where the
group members each make independent contributions to the for-
mation of the group key.

The classic example of a contributory scheme is the
Diffie–Hellman (DH) key establishment scheme [9], in which
two parties exchange messages that allow them to securely
agree upon a key. Several researchers have studied the problem
of establishing a Diffie–Hellman-like conference key [10]–[14].
Typically, these conference key establishment schemes seek to
minimize either the amount of rounds needed in establishing
the group key, or the size of the message. Many applications,
however, will involve a heterogeneous clientele consisting
of group members with different computational capabilities,
pricing plans, and bandwidth resources. For these applications,
minimizing the total bandwidth or amount of rounds might
not be the most suitable metric. Instead, one should aim to
minimize a cost function that incorporates the different costs or
resource constraints of each user. The key generation scheme
must therefore decide whether it is feasible to generate a key
and if so determine a cost-aware procedure for generating the
group key.

In this paper, we develop methods for establishing a
Diffie–Hellman-like conference key for heterogeneous net-

1063-6692/$20.00 © 2005 IEEE

TRAPPE et al.: RESOURCE-AWARE CONFERENCE KEY ESTABLISHMENT FOR HETEROGENEOUS NETWORKS 135

works. We start by reviewing the Diffie–Hellman protocol,
and presenting several conference keying schemes that employ
the Diffie–Hellman problem. In Section III, we present the
butterfly scheme which builds the group key using the approach
of [10], and show that an underlying tree, which we call the
conference tree, governs the process by which subgroup keys
are formed en route to establishing the group key. In Section IV,
we consider the problem of designing a conference tree when
the users have different capabilities. We first examine the case
when the users have different costs. In this case, the optimal
conference tree can be constructed using the Huffman algo-
rithm. We then examine the problem of choosing a conference
tree when the users have the same cost, but are subject to
varying budget constraints. Next, we consider the more general
case where the users have different costs as well as different
budgets. A computationally efficient near-optimal algorithm
is presented that determines a conference tree whose total
cost is very close to the optimal performance achieved by
conference trees determined using either full-search or integer
programming techniques. In Section V, we present simulation
results comparing the cost and likelihood of forming a group
key using tree-based schemes and several existent schemes.
From these simulations we conclude that the tree formulation
for establishing a group key allows for great flexibility, and can
efficiently establish group keys in resource-limited scenarios.
Finally, in Section VI, we study the effects that the quantization
and clipping of user costs have upon the total cost, and then
investigate the effect that untrustworthy users can have upon the
total cost of forming the group key using the Huffman-based
conference tree. By choosing an appropriate clipping threshold
level, the effects of miscoding are ameliorated. In Section VII,
we summarize our results and present conclusions.

II. GROUP DH OVERVIEW

In the basic DH scheme, the operations typically take place
in (the integers mod a prime), or using the points on an el-
liptic curve [15]. For consistency of notation, we shall develop
our results for the group . An element is chosen such that

generates a suitably large subgroup of . Both party A and
party B choose a private secret where
and denotes the nonzero elements of . They each calcu-
late and exchange with each other. Party A then
calculates the key via and similarly
for party B.

The problem of establishing a Diffie–Hellman-like confer-
ence key has been investigated by several others [10]–[12]. One
of the first Diffie–Hellman-like conference key establishment
schemes was proposed by Ingemarsson et al. [10]. In the In-
gemarsson (ING) scheme, the group members are arranged in
a logical ring (e.g.). In a given round,
every participant receives a message from its left-hand neighbor,
raises that to their exponent, and passes it to their right-hand
neighbor. For example, in the first round of a three person group
exchange, we have , and

. Then, in the second round ,
, and . Finally, the shared

key is , which they each can calculate by raising the

final received message to their private exponent. For users this
scheme requires rounds.

Another notable scheme is the Burmester-Desmedt (BD)
conference key scheme [11]. This scheme consists of three
rounds. During the first round, each user generates a
random exponent and broadcasts . The second
round consists of each user receiving and broadcasts
the quantity . In the final round, each user

calculates the shared key .
It can be shown that the shared key is actually the quantity

. Although the BD scheme requires
only three rounds to establish the group key, the actual commu-
nication efficiency is typically less. In general, it is impractical
to support simultaneous transmission of messages by several
users, or reception of several simultaneous messages by an in-
dividual user. In particular, for traditional networks employing
a shared medium, such as Ethernet LAN’s or 802.11 wireless
networks, it is necessary to modify BD to use sequential broad-
casts, which makes the amount of rounds needed linear in the
amount of users.

In [12], the GDH.1, GDH.2 and GDH.3 protocols are
described that extend the two-party DH scheme to the

-party case. The GDH.1/2 protocols consist of two stages:
an upflow and a downflow stage. In the upflow stage of
protocol GDH.1 user receives a message of the form

and computes by
taking the last element of the received message and raising
it to the power. User then sends to user the
message . During the
downflow stage, user takes the output of the upflow stage,
treats as the key, calculates and raises the first

elements of the output of the upflow stage to the
power. Then user sends user a message of the form

. User performs likewise,
calculating the key using the last term of the received
message, and forward to a message formed by taking the
first terms of the received message and raising them to
the th power. The GDH.3 scheme is a centralized scheme
that differs from GDH.1/2 in that one user gathers contributions
from all users, performs the majority of the computation for
the group, and sends messages to each user that can be used to
calculate the group secret. The centralized nature of the GDH.3
scheme is a drawback in environments where there is no single
entity with significantly greater capabilities than the others
users.

The amount of messages sent and received, as well as the
amount of bandwidth consumed are important measures of a
protocol’s efficiency [12], [13]. Another important measure is
the amount of rounds that a protocol takes to establish a group
secret. A protocol that takes more rounds to establish a shared
key is less favorable in environments where time is a precious
resource and synchronization is difficult to maintain. In [13],
the communication complexity involved in establishing a group
key is studied. In this work, lower bounds for the total number
of messages exchanged, as well as the amount of rounds needed
to establish the group key, were determined.

The hypercube approach in [13] involves pairs of nodes
performing the Diffie–Hellman protocol to establish a series

136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

of successive intermediate keys on the way to establishing the
group key. A similar method has been proposed recently by
several researchers to create a group Diffie–Hellman key using
a tree structure [16]–[19]. For example, the TGDH scheme
[16] establishes a group Diffie–Hellman key for dynamic peer
groups by using a binary key tree. Every internal node on the
key tree corresponds to the two children nodes performing
Diffie–Hellman to establish an intermediate key. The amount of
rounds required by TGDH is , where is the number
of users. A different perspective was presented in [18], [19] in
which the problem of group key establishment was examined
in terms of signal flow graphs. The basic approach, called the
butterfly scheme, had communication flow that was reminiscent
of the butterfly diagrams of fast Fourier transform (FFT) calcu-
lations. Due to the relationship between the FFT and tree-based
algorithms, the butterfly scheme may considered a tree-based
group Diffie–Hellman scheme. However, unlike the methods
of [16], [17], the butterfly scheme used the ING scheme as the
basic building block, and provided a broader and more general
family of approaches in which the amount of rounds needed to
establish the group key is logarithmic in the group size.

III. CONFERENCE TREES AND THE BUTTERFLY SCHEME

The general butterfly scheme is built using the ING scheme.
However, since the two-party DH protocol is a special case of
the ING scheme, we shall use the two-party DH protocol to in-
troduce the basic ideas involved and then extend to using more
general ING schemes. We refer to butterfly schemes built using
two-party DH as radix-2 butterfly schemes. The term radix and
butterfly is borrowed from the signal processing community, and
their usage is motivated by the resemblance between the com-
munication flow of our butterfly scheme, and the butterfly signal
flow diagrams associated with FFT computations [20]. In our
work, the usage of radix refers to the size of the initial subgroups
used in the butterfly scheme.

We explain the basic idea behind the radix-2 butterfly
scheme, by supposing that the number of users is a power of
2. The users are paired up with each other to form two-person
subgroups, and a key is established for each of these two-person
subgroups using the conventional DH protocol. These sub-
groups are paired up with each other to form larger 4 member
subgroups, and the two-party DH protocol is used to establish a
group key for the 4 member subgroups. We successively group
subgroups to form larger subgroups and use two-party DH to
ultimately achieve a shared group key.

A formal description of the butterfly scheme for mem-
bers is as follows. Initially, suppose each user has a random
secret integer . The users are broken into pairs of
users . Here we have used the superscript in
the notation to denote which round of pairings we are dealing
with, while the subscript references the pair. We also refer to
the initial secrets that each user possesses as . In the

first round, the members of a pair exchange . For example,
sends to , and sends to . Then, the users

and each calculate
(mod). Since , and both members of a pair have es-
tablished a conventional DH key, we may now group the pairs

Fig. 1. The radix-2 butterfly scheme for establishing a group key for eight
users. (a) Without broadcasts, (b) using broadcasts, and (c) the associated
conference tree.

into a second level of pairs, e.g. , and more
generally so that the second level of pair-
ings consists of 4 users in a pair. Each user from has

an associated member of to whom they send and

similarly receive from. Every member in can calcu-

late (mod). A third pairing, consisting of
eight users may be formed and a similar procedure carried out if
needed. In general, and
(mod). The procedure continues until there are only two in-
termediate values that can be combined to get the group secret.
We note that, although we shall refer to the final group secret as
the group key, in practice this shared secret is actually used as
input into a cryptographic one-way hash function to derive the
actual group key.

A trellis diagram depicting the communication flows be-
tween users is depicted in Fig. 1(a). It is not necessary that
each user communicate during each round. In fact, such an
operation might use more power since many users are trans-
mitting identical information. In networks, where multicasting
is available, alternative trellis diagrams can be constructed
where one user multicasts an intermediate message to multiple
users. An example of such a trellis is depicted in Fig. 1(b).
An alternative way to view the butterfly scheme is provided in
Fig. 1(c), which depicts the tree associated with the butterfly
scheme. This tree, which we refer to as the conference tree,
describes the successive subgroups and subgroup keys that are
formed en route to establishing the key for the entire group.
For example, there is a node on the conference tree that is the
grandparent of and hence there is a subgroup
key that can allow to communicate securely
amongst themselves if so desired.

When is not a power of 2, a group key still can be estab-
lished easily. In this case, we form a subgroup with an amount
of users equal to the largest power of 2 less than or equal to .

TRAPPE et al.: RESOURCE-AWARE CONFERENCE KEY ESTABLISHMENT FOR HETEROGENEOUS NETWORKS 137

Fig. 2. The trellis for n = 9 users using two levels of three-party ING scheme.

We now extend the approach used above to employ the more
general ING scheme as the basic building block. Since the re-
sulting schemes are not built using a two-party protocol, they
are termed nonradix-2 butterfly schemes. Suppose that

is the number of users, and the are not necessarily
prime. The general ING butterfly scheme starts by breaking the
group into subgroups of size and uses the ING scheme to es-
tablish a shared key for each of the subgroups.
The subgroups are further broken down into subgroups con-
sisting of subgroups, and the ING protocol is used to es-
tablish subgroup keys for these larger subgroups. The process
continues until a key is established for the entire group. An ex-
ample is depicted for the case of users in Fig. 2. The total
amount of rounds is , and the amount of messages
is 36. The direct use of the ING scheme for 9 users requires 8
rounds and 72 messages. The divide and conquer strategy in the
butterfly approach improves the efficiency of the ING scheme.
Additionally, the logarithmic amount of rounds needed by the
butterfly scheme to establish the group key is an improvement
over the linear amount of rounds required by the GDH schemes
of [12]. We further note that the hypercube approach of [13] also
requires a logarithmic amount of rounds to establish the confer-
ence key. However, the hypercube approach does not address
the issue of using a general subgroup size as the building block
for designing a scalable conference key establishment scheme.
By using the ING scheme as the basic module in the butterfly
scheme, we have generalized their approach. Further, the but-
terfly scheme allows for the use of multicast channels to im-
prove communication efficiency.

It is not necessary to use a factorization of in designing the
nonradix-2 butterfly scheme. In fact, for prime , this factor-
ization would necessitate using an -party ING scheme, and re-
quire a large amount of rounds in forming the group key. Rather,
what is required is that the degrees of the ING schemes used
satisfy . In this case, some positions are left unused.
For example, when and one position of a
three-party ING scheme is empty, in which case that computa-
tion simply uses the 2-party DH scheme instead. If we require
that all of the computations on one level of a conference tree are
completed prior to the formation of the keys in the next level
up the conference tree, then using the two-party DH scheme as

the building block leads to trees with the least amount of rounds
needed to establish the group key. The proof for this claim is pro-
vided in Appendix I. Since using two-party DH leads to binary
trees that require the least amount of time rounds, we shall re-
strict our attention to binary trees for the remainder of the paper.

In the butterfly schemes described above, the conference trees
were almost balanced and full. For example, the conference tree
for users involves three levels of internal nodes, and all
eight users are placed at the same depth in the tree. For more
arbitrary amounts of users, the users are all roughly placed at
the same depth. In the next section, we shall exploit the extra
freedom provided by more general binary conference trees by
placing users at different depths to reduce the total group cost
needed to form the group key.

IV. CONFERENCE TREE OPTIMIZATION

It is important to study the problem of efficiently establishing
a conference key while considering the varying user costs. To
accomplish the efficient establishment of a conference key in a
heterogeneous environment, we introduce a new entity, called
the Conference Keying Assistant (CKA). The CKA is respon-
sible for collecting the users’ costs or budgets, determining the
appropriate conference keying tree, and conveying the confer-
ence tree to the conference members if it is feasible to estab-
lish the group key. The CKA is not responsible for performing
any service beyond the calculation and distribution of the appro-
priate conference tree, and therefore only needs to be a semi-
trusted entity who will accurately convey the conference tree
to the conference members. We note that the CKA may be a
member of the conference.

In this section, we present methods that the CKA can employ
to design the conference tree that used by the group members
to establish the group secret. In particular, we study two prob-
lems: minimizing the total cost in establishing a group key, and
the feasibility of establishing the group key in the presence of
budget constraints. We present algorithms to efficiently deter-
mine the conference keys for each of these problems separately,
and then together.

A. Minimizing Total Cost

First, assume that we have users, and that each user
has a cost associated with performing one two-party
Diffie–Hellman protocol. There are several possible candidates
for costs :

• Energy Consumption: When the lifetime of the network is
a concern, it is desirable to reduce the amount of energy
used in forming the group key. There are two primary fac-
tors that contribute to the amount of energy used: computa-
tion and communication. The Diffie–Hellman protocol in-
volves modular exponentiation, typically requiring several
magnitudes more computation than cryptographic opera-
tions based upon symmetric ciphers, and hence requires
considerable computational effort. Communication also
plays an important role in many networks as both transmis-
sion and reception of messages requires significant energy
[21].

138 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

• Storage Resources: Many networks might involve small
devices with limited storage. It might therefore be natural
to impose a cost associated with utilizing the storage re-
source as that storage might be important for other appli-
cations running on the device.

• Pricing: In many networks, each user might have different
costs associated with using the network. For example,
a group of users might have different pricing plans de-
scribing the monetary cost to transmit a message.

Suppose we place the users on a conference tree with
terminal nodes in such a manner that each user has a length

from his terminal node to the root of the conference tree. Our
goal is to minimize the total cost of this tree.

We first address the question of what is the minimum total
cost necessary for establishing the group key for users. This
problem can be addressed using coding theory. If we define
as , then is just a scaling of
by . Let us define to be a random variable with a
probability mass function given by , then minimizing
is equivalent to finding a code for with lengths that mini-
mizes the average code length. We thus infer the following lower
bound on the total cost for establishing a group key, which fol-
lows from the lower bound for the expected codelength of an
instantaneous binary code for [22]:

Lemma 1: Suppose that users wish to establish a group
secret and each user has a cost associated with performing
one two-party Diffie–Hellman protocol. Then the total cost of
establishing the group secret satisfies
where .

The observation that efficiently establishing a group key is re-
lated to coding allows the CKA to use procedures from coding
theory to determine desirable conference trees. In particular,
Huffman coding [23] is computationally efficient and yields the
optimal conference tree that minimizes the total weighted cost.
That is, if is the cost of forming the group key using the
Huffman tree with lengths , then the cost of using a dif-
ferent conference tree assignment will satisfy . Since
Huffman coding produces an optimal code, we know that the ex-
pected cost satisfies the following bound

, where is the entropy of the dis-
tribution . Thus, the Huffman construction of the conference
key tree has a total cost that is within of the lower bound.

The following example demonstrates the advantage of using
the Huffman algorithm for forming the conference tree when
compared to using the full balanced tree of the radix-2 butterfly
scheme.

Example 1: Consider a group of eight users with costs
, , , , , ,

, and . The corresponding length vector is
, and the total cost is 351. The total

cost for a full balanced tree with , which
corresponds to the Butterfly scheme, is 372.

We now quantify the improvement that is available when
using the Huffman code compared to the cost of using an
arbitrary conference tree. For an arbitrary conference tree, we
suppose that the length assigned to user is . The expected

length under the probability of the code with lengths
satisfies [22]

(1)

where is the probability distribution with , and
is the Kullback–Leibler divergence between the two

probability distributions and . The cost for using this tree
is . We can combine the bound of (1) with the
bound for the cost of the optimal code to
get . When , this bound
is an improvement over the trivial bound .

B. Budget Constraints

The parties wishing to establish a conference key might have
a limited budget to spend. In these cases, rather than minimize
the total cost, we should ensure that one can first establish the
group key, and then reduce the total amount of resources as a
secondary issue.

Suppose that user publishes a budget that describes the
amount of two-party Diffie–Hellman key establishment proto-
cols he is willing to participate in when establishing the group
key. Without loss of generality, we assume that the users’ bud-
gets satisfy for . We define the budget vector
as . The length vector
describes the lengths from each user’s node to the root of the
conference tree. The necessary conditions on the budget vector

for the existence of a conference key tree with lengths
is provided by the Kraft Inequality [22]:

Lemma 2: Suppose that the budget vector
. Then a conference key tree with

lengths exists that satisfies the budget constraint for
all if .

A budget vector that satisfies the Kraft Inequality is said to
be feasible. Using a feasible budget vector as the length vector
does not always lead to a full conference tree in which every
node has two children. To get a full tree, we must trim the
budget vector to produce a length vector that achieves the Kraft
Equality. The length vector is formed by reducing elements of
the budget vector by amounts that do not violate the Kraft In-
equality. The following lemma provides a useful approach to
trimming the length vector assignment while still satisfying the
Kraft Inequality.

Lemma 3: Suppose , with
for , satisfies the strict Kraft Inequality,

, then the modified budget vector defined by
satisfies the Kraft Inequality,

.
The proof of this lemma is provided in Appendix II. A con-

sequence of this lemma is that if we subtract 1 from one of the
, then choosing the largest least affects . Using

this idea, Algorithm 1 starts with an admissible budget vector
, initializes the length vector , and produces a length

assignment satisfying such that
and is minimized over all length vectors

TRAPPE et al.: RESOURCE-AWARE CONFERENCE KEY ESTABLISHMENT FOR HETEROGENEOUS NETWORKS 139

Algorithm 1. Algorithm for calculating the optimal length vector l.

satisfying . The optimality of this algorithm is
discussed in Appendix II.

Example 2: Consider a group of users with a budget
vector . Then Algorithm 1 produces the fol-
lowing intermediate values for on the way to calculating the
final length vector :

C. Combined Budget and Cost Optimization

We now address the more realistic scenario where users have
different costs as well as budget constraints. We are therefore in-
terested in the problem of minimizing the total cost of the length
assignments for the weights given the budget constraint

. This problem is formally stated as:

where denotes the nonnegative integers. Once a length
vector has been determined, it can be sorted in ascending order
to describe a conference tree.

This problem is more difficult than either the minimum cost
problem or the budget-constrained problem. If the budget vector
is constant, i.e. for every , then the methods of length-
constrained Huffman codes may be applied. One efficient algo-
rithm for finding the optimal code under the maximum code-
word length constraint is presented in [24], which is based on
the algorithm of [25]. A near optimal solution can be found
using Lagrange relaxation, and an efficient implementation is
described in [26]. However, in the more general case where the
budgets vary from user to user, it is difficult to find the optimal
solution since the ordering does not imply .

Two suboptimal approaches that employ a greedy strategy
were developed to tackle the general problem where the budgets
vary from user to user. The first algorithm, described in Algo-
rithm 2, is a variant of Algorithm 1, which starts with a length
assignment and chooses to decrease the element of the
length vector that most reduces the total cost at that step
while maintaining the Kraft Inequality. This greedy algorithm is
not optimal, as can be seen by the example with
costs . In this example, the algorithm produces
the length vector (which has a total cost of 60),
whereas the optimal length vector is (which has
a total cost of 58).

Algorithm 2. Algorithm for calculating the length vector l, given budget b and
costs w .

Algorithm 3. Improved algorithm for calculating the length vector l, given
budget b and costs w .

Algorithm 2 is a naive greedy algorithm. By slightly altering
this algorithm, another greedy algorithm may be developed with
better performance. Instead of decreasing the element that best
decreases the total cost, Algorithm 3 chooses to decrease the ele-
ment with the largest value . This corresponds to choosing
the element that would have the largest change in the cost func-
tion per change in the Kraft Inequality. A similar strategy is
often used in designing incremental resource allocation schemes
in operations research [27]. Algorithm 3 is also suboptimal, but
exhibits better performance than Algorithm 2 with a negligible
increase in the amount of computation needed. The optimal so-
lution to the combined budget and cost optimization problem
can be obtained by performing either full-search, or using the
methods of integer programming. One useful approach is to
apply the branch and bound method to the problem [28].

To compare the performance of Algorithm 2 and Algorithm 3,
we performed a simulation for users, where each user’s budget

was chosen uniformly from [1,], and weights were
chosen uniformly from [1,100]. We compared the performance
between the length vectors found using Algorithm 2, which we
denote , and Algorithm 3, which we denote , by looking
at the relative cost difference .
The quantity was calculated and averaged over 100 realizations.
For a group size of the relative improvement was 0.7202,

140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

for a group size of the relative improvement was mea-
sured to be 0.8971, and for a group size of the rela-
tive improvement was measured to be 0.9439. Similar simula-
tions for different group sizes and different user budgets were
performed, and Algorithm 3 consistently performed better than
Algorithm 2.

A similar simulation was performed to compare the perfor-
mance of Algorithm 3 with the optimal solution. Due to the
computational complexity of finding the optimal solution, we
compared the relative difference between the cost for using Al-
gorithm 3 and the optimal solution for group sizes of 5, 6,
7, 8, 9, 10, and 11. In all cases we saw that Algorithm 3 produces
the group key with cost that is within 0.5% of the optimal cost.

Since determining the optimal solution is very computation-
ally intensive for large group sizes, it is unreasonable for the
CKA to find the optimal conference tree when users have both
budget constraints and varying costs. Instead, Algorithm 3, al-
though not optimal, has very competitive performance and its
computational requirements are small compared to full-search
or the branch and bound method, and is a reasonable candidate
for the CKA to use in determining the conference tree.

D. Updating Keys Due to Membership Dynamics

Although this paper primarily focuses on the problem of ef-
ficient initial key agreement, there are many group scenarios
where the group membership will change during the lifetime
of the group communication. When a member joins or leaves
the group, it is often necessary to change the keys in order to
provide forward and backward integrity of keying material [2].

The problem of rekeying contributory key agreement
schemes has been examined recently, [14], [16], [17], [29].
Both [16] and [17] addressed the issue of designing auxiliary
protocols to handle the need to rekey a tree-based contributory
key agreement scheme during member join and departure
operations. The member join and departure protocols described
in these two papers are essentially the same and can be applied
with slight modification to rekey the conference key trees
described in this paper.

For brevity, we will not repeat the member join and departure
protocols here and instead refer the reader to the discussion of
the rekeying protocols in [16], [17]. During a member departure
operation, there is no control over who is leaving the group,
and hence no control over where that departing user is located
on the tree at that time. During member departure, all of the
intermediate keys on the path from the departing user to the root
of the tree must be changed. Since the neighbors to this path,
as well as their costs, are already fixed, the total cost needed
to rekey those adjacent intermediate keys is also fixed. Hence,
the member departure operations described in [16], [17] do not
require modification to rekey the conference trees described in
this paper.

Although it is not possible to control the position of the
departing member, we do have control over where we place
a joining user in the tree. Consider a group of users with
costs who have already established a group key according
to a conference tree. In order for the group to establish a
new group key using the least amount of cost possible, we
simply add the new user to the top of the existing conference

tree and form a new group key by performing one round of
Diffie–Hellman. That is, the rekeying protocol would have the
new user perform a single Diffie–Hellman key exchange
with users . Since each user incurs their cost
for participating in the Diffie–Hellman key establishment, the
total cost incurred is . It is easy to see that placing
the new user anywhere else on the tree would lead to a larger
member join cost.

Thus, it is a simple task to minimize the cost for adding a
new member to the group. However, by increasing the height of
the tree by one for every user, we have now increased the cost
needed for any future member departure. On the otherhand, if
we had added a member to any terminal node of the tree and
then performed a member departure operation according to [16],
[17], we would have had a higher member join cost, but the
member departure cost would have been less since there would
have been users whose cost to handle a member departure would
have been the same as if no user had joined.

To handle these conflicting issues, it is possible to search for a
position on the existing tree for the new user to join that jointly
considers the cost of joining and the additional leave cost the
new user would impose on existing users. Suppose we label
the terminal nodes of the existing conference tree as , and
that users are equally likely to depart. One possible method for
jointly addressing join and additional user departure costs is to
place the joining user at a position that minimizes the joint cost
function , where

is the cost incurred for the new user to join at
node , and is the average additional leave cost in-
curred by user joining at node . We take to be
a factor that weights the importance of the cost of member join
compared to the cost of potential member leaves. Minimizing

involves searching the terminal nodes of the existing
conference tree. Rekeying then involves splitting node and
following the member join procedure described in [16], [17].

V. EFFICIENCY AND FEASIBILITY EVALUATION

We compare our tree-based conference key establishment
schemes with other schemes in the literature. We assume that no
broadcast channels are available, and that if one user desires to
communicate amongst many, he must establish many separate
connections. There are two evaluations that we present: first, we
consider the total cost needed to establish a group key when the
users have different costs; second, we examine the feasibility
of establishing a conference key when group members have
different budget constraints.

A. Comparison of Total Cost

We simulated a scenario in which there were three classes of
users: powerful users who have a low user cost, medium-pow-
ered users with moderate user costs, and low-powered users
with a high user costs. In order to represent this distinction,
the users were assumed to have weights drawn according to
three different distributions. For every 10 users, 2 users have
weights drawn according to the first distribution, 5 according to
the second distribution, and 3 according to the third distribution.
The first weight distribution was a discrete uniform distribution

TRAPPE et al.: RESOURCE-AWARE CONFERENCE KEY ESTABLISHMENT FOR HETEROGENEOUS NETWORKS 141

Fig. 3. Cost comparison of establishing a conference key using the
Huffman-based conference tree, the ING scheme, GDH.1/2, the butterfly
scheme, and the GDH.3 scheme.

with integer values from [1,50], while the second was a discrete
uniform distribution over [501,550], and the third was a discrete
uniform distribution over [951,1000].

We compared the total cost for the Huffman scheme with
the cost of the butterfly scheme, the ING scheme, the GDH.1/2
scheme, and the GDH.3 scheme. We have chosen to focus our
simulations on reducing the usage of computational resources
associated with forming the group key. Similar simulations can
be done to focus on reducing the usage of communication re-
sources by simply considering the amount or size of messages
exchanged in each scheme.

Since there are differences between the communication and
computational procedures of the different schemes, we assume
that the user costs are associated with the cost to perform the
two modular exponentiations needed in a two-party DH scheme.
This means, for example, that if a user has a cost of to per-
form one round of two-party DH, then he has a cost of
to perform a three-party ING scheme since there are three mod-
ular exponentiations involved. We also assume that every user
in a DH scheme performs the two modular exponentiations. For
example, if the subgroup share a secret and the sub-
group share a secret , and use DH to establish a shared
key for the 4 members, then both and calculate and

. Similarly, both and calculate and . In actuality,
however, only one member from each subgroup must calculate
and transmit the message or . The costs for the Huffman
and butterfly schemes that we report do not reflect this possible
savings, and are therefore overestimates of the actual costs.

The total cost required to establish the conference key was
calculated for different group sizes and averaged over 500 re-
alizations. The average costs are depicted in Fig. 3. Examining
Fig. 3 we see that the ING and GDH.1/2 schemes have higher
total cost than the Huffman, butterfly, and GDH.3 schemes. In
this example, the Huffman scheme performs better than the but-
terfly scheme by an average of 6.7%. GDH.3 has the best perfor-
mance in terms of total cost. However, GDH.3 is a centralized
scheme and cannot be categorized as a completely distributed

conference keying scheme since one user performs the majority
of the computations for the group. In contrast, the Huffman
scheme and the butterfly scheme are contributory and do not
make any single user responsible for the majority of the com-
putation (although they do allot more load to some users than
others). In scenarios where it is appropriate to have one user or
entity do nearly all of the work for the remaining users the use of
centralized multicast key distribution schemes [2], [3], [6] will
lead to more efficient distribution of keying information than
conference keying schemes.

B. Feasibility Comparison

When the users have different budgets, it might not be pos-
sible for different schemes to establish a conference key. We
shall quantify the likelihood that a conference key can be es-
tablished in a scenario where the users’ budgets are drawn ac-
cording to a distribution by introducing the PESKY (Probability
of Establishing the Session KeY) measure.

Suppose that denotes the set of all possible budget vec-
tors for users, and that is a probability distribution over
describing the likelihood of the users having a certain budget
vector. Let a conference key scheme be denoted by , and
the set of all budget vectors which are feasible for . Then
formally, the PESKY measure is defined as:

(2)

For example, if we let refer to a conference tree scheme built
using Algorithm 1, Algorithm 2, or Algorithm 3, then a budget
vector is feasible if it satisfies the Kraft Inequality, and therefore

. In general, it is difficult to find
closed form expressions for PESKY, and simulations may be
used to estimate of PESKY.

We used PESKY to study the likelihood that different
schemes could produce a group key when the user’s budgets
were drawn according to different distributions. We assumed
that the budgets correspond to the amount of two-party DH
schemes that a user is willing to participate in, and that the
two modular exponentiations are the most significant expense
for the user. Therefore, each value of the budget allows for 2
modular exponentiations to be performed. We do not assume
broadcasting, and instead assume that every user in a subgroup
performs both of the modular exponentiations in a DH scheme.
We compared the PESKY for Algorithms 1–3, with the PESKY
for both the GDH.1/2 and GDH.3 schemes for several different
budget distributions, and present two representative distribu-
tions. Since the PESKY for Algorithm 1, Algorithm 2, and
Algorithm 3 are identical and are determined by the likelihood
that a budget vector satisfies the Kraft Inequality, we will use
the Kraft Inequality label in our figures to collectively refer to
their PESKY.

The first budget distribution is a discrete uniform distribu-
tion with integer values from [5,20]. The distribution is pre-
sented in Fig. 4(a), and the corresponding PESKY curves are
presented in Fig. 4(b). Since the GDH schemes require that one
user performs an amount of modular exponentiations equal to
the amount of users , it is impossible for groups of more than

142 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

Fig. 4. (a) Budget distribution discrete uniform with integer values from
[5,20]. (b) Corresponding PESKY.

40 users to be formed via the GDH protocols with this distribu-
tion, as can be seen in Fig. 4(b). The PESKY plots for this distri-
bution demonstrate that it is more likely that a budget vector can
satisfy the Kraft Inequality than the requirements of either the
GDH.1/2 or GDH.3 schemes. It is not until the group sizes be-
come larger than that a significant decrease is observed
in the likelihood of forming a group key using a conference tree.

In the second distribution, the budgets were drawn according
to , where is the negative
binomial distribution with probability mass function

for . The addition of 1 was
to ensure that no users had a budget of 0. The negative binomial
distribution was chosen for the budget values since it is integer-
valued, and its shape is easily tunable by adjusting the and
parameters [30]. The distribution is depicted in Fig. 5(a), and
the corresponding PESKY measures are depicted in Fig. 5(b).
This distribution describes a similar phenomenon to the uniform
distribution above, but includes a heavier tail at higher budget
values that could represent a diminishing class of more pow-
erful users. The fact that roughly 6% of this distribution corre-
sponds to budget values below 5 has a significant effect upon the
PESKY plots. When there are users there is only an 80%
chance of forming a conference key using one of these schemes

Fig. 5. (a) Budget distribution, shifted version of a negative binomial
distribution with parameters s = 5, and p = 0:3. (b) Corresponding PESKY.

with this distribution compared to a 100% chance with the dis-
tribution of Fig. 4(a). We also see that the GDH.1/2 schemes
are very unlikely to successfully establish a group key, even for
group sizes of , and that all of the GDH schemes are un-
able to establish a group key for groups of more then 60 users.

Therefore, in resource-limited scenarios, the choice of which
conference keying scheme is very critical. The GDH.3 scheme,
although cost-efficient, obtains this efficiency at the expense
of requiring a single user have significantly more power and
resources than the other users. In applications where the users
have a more balanced distribution of resources, the GDH
schemes have PESKY graphs that rapidly drop off and are
therefore unlikely to successfully establish a group key. In these
cases, the estimates of PESKY for tree-based conference keying
schemes indicate that they are more likely to establish a group
key, and Algorithm 3 is a judicious choice for constructing the
conference tree since it requires little computational effort and
has near-optimal performance.

VI. SYSTEM SENSITIVITY TO FALSE COSTS

In this section, we examine the effect that announcing costs
different from the true user costs has upon the total cost of using

TRAPPE et al.: RESOURCE-AWARE CONFERENCE KEY ESTABLISHMENT FOR HETEROGENEOUS NETWORKS 143

the Huffman conference tree. First, we consider the issue that
users announce costs that are approximations of the true costs.
Next, we examine the case where some of the users are un-
trusted, and announce large costs for the purpose of reducing
their individual cost. We present an approach that controls the
detrimental effect that greedy users have upon the total cost.

A. Sensitivity to Approximate Costs

We begin by considering that the true user costs are
, where is a suitable upper bound placed on the exact

costs. We suppose the costs that the users announce are derived
by applying an operator to , i.e. . We define

, and . If we build a code using
with lengths , then the average length under is . We
show that if we design the code to minimize , then we
can design the operator such that is small.
Since , we get .
We now derive a bound for :

(3)

(4)

(5)

In this derivation, we have made use of the fact that
. We consider two cases for the

operator . The first case we consider is when is a clipping
operator, namely

It is clear that as , we have more ,
and thus the bound (5) tends to 0 as we increase . We shall
examine the clipping operator later in this section. The second
operation we consider is quantization. Here we consider the in-
terval divided into equally sized quantization bins. The
operator then maps to the nearest quantization value, and

. In this case, we get
which tends to 0 as the number of quantization

bins increases. Therefore, in both the case of clipping and
quantization, the parameters can be adjusted to bring the prob-
ability distribution close to , and thus the designed average
codelength close to the average codelength of using
under .

B. Sensitivity to Costs From Untrustworthy Users

In many scenarios, there may be a user that hurts other users
by either selfishly making his cost small, or maliciously trying to
make the total cost of the remaining users large. Recall that if the
weights are ordered as then the lengths
of the Huffman code can be ordered as
[22]. Therefore, if a user would like to keep his cost as small

as possible, he should announce as large of a weight as pos-
sible. Additionally, announcing a large weight causes the of
the other users to decrease, thereby increasing their codelengths
(see [31] for the relationship between a symbol’s codelength
and its self-information). Thus, if a malicious user wishes to ad-
versely affect the lengths of the other users, he should announce
as large of a weight as possible.

We first derive the worst-case effect that one user can have
upon the costs of the other group members when Huffman
coding is used to construct the conference tree. We suppose
that the untrustworthy user is , and that he publishes a large
weight . To determine how much extra cost a large
imposes upon the other users, we define
and define the probability for ,
and . Then represents the probabilities that would
be used in constructing a conference tree if user were not
participating. Let denote the optimal codelengths constructed
using , and be the optimal codelengths constructed using

. Since is not involved in the construction of , we have
.

We define the following quantities: ,
, and . We are interested in com-

paring , which is the total cost of the remaining users
given the probabilities which incorporate ’s cost, with ,
which is the total cost of the users without
considering ’s announced cost.

Since arises as the optimal code for the users
with costs , we know minimizes costs
of the form . In particular, must satisfy:

. We may de-
rive an upper bound for by observing that the code
given by can be used to construct a code for by
taking and . The optimal code for the
weights must be better than this code, and
hence . Since

, we have .
Gathering the results together, we get the overall bound

. The upper bound is achieved when
, and hence, in the worst case, forces the other

users to spend an extra of resources.
Next, we consider the more general case where a fraction of

the users are untrustworthy and announce large costs. Suppose
that the true costs are , and that the announced costs are . If
the underlying statistics governing are known, it is possible
to determine which are outliers and remove those users from
the group key formation procedure. However, in many cases, the
value of the conference exists regardless of whether a few users
were untrustworthy, and it is desirable to have those users in the
conference. In this case, an approach must be used to reduce the
detrimental effect of these bad users upon the cost of forming
the entire group key.

We suppose that the CKA applies a clipping operator to the
announced user costs to produce costs that
are used by the CKA in determining the conference tree. Ideally,
we would like to build the conference tree using the exact costs

, but these are not available. Instead, if the conference tree
is built using or , the corresponding lengths and are

144 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

Fig. 6. An example divergenceD(p̂kp)where ŵ � 10LN(0; 1)+100, and
w = T (ŵ).

used with the exact costs , which can lead to an increase in
the total cost.

To study the amount of additional cost incurred by using a
code designed for when the true costs are , we shall ex-
amine the average codelength. Hence we design codes for

and , where . We are interested
in studying and . The Kullback–Leibler diver-
gence describes the additional average codelength that
different coding schemes incur when designed for the wrong
distribution when the correct distribution is [22], [31]–[33].
Given a model distribution for the true user costs, the CKA can
use to determine the value of the clipping parameter
that minimizes the miscoding penalty.

We calculated the divergence for users when the
original costs were drawn according to ,
where is the lognormal distribution arising from a
normal distribution with mean and variance . The lognormal
distribution was chosen because it has a long tail. The proba-
bility that a user is untrustworthy was 0.05, and untrustworthy
users were assumed to announce a cost , where

and . The choice of was
arbitrary and chosen to represent a large bias that an untrust-
worthy user might place on his announced costs. An example
divergence for costs drawn according to this distri-
bution is presented in Fig. 6. There is a minimum that appears at
approximately . A system should be designed for the
average case. For costs drawn according to ,
we averaged the optimal clipping value over 10 000 realizations
and found the mean optimal clipping value to be
and the variance of the optimal clipping value as .

The relative difference between the cost of using the
Huffman-based conference tree using and are now
compared. If are the optimal codelengths using , are
the optimal codelengths constructed using , and are the
optimal codelengths constructed using , then we are inter-
ested in comparing and

. We calculated these values
for the case when the exact costs were drawn according to

Fig. 7. The relative costs are presented for when the exact user costs are
drawn as ŵ � 10LN(0;1) + 100. There is a 0.05 likelihood that a user is
untrustworthy, and Y = 1000.

with , while the probability of a
user being untrustworthy was 0.05. The results were averaged
over 100 realizations and are presented in Fig. 7. The quantity

is presented for different clipping parameter values, and we
observe that there is a range of minimal values from
to , which is roughly the region that the divergence
curves predict. The clipped relative costs show a significant
improvement over the unclipped relative costs. Without clip-
ping, the untrustworthy users force the entire group to spend an
average of over 5% more than if the exact user costs were used.
By performing the clipping operation, however, this detrimental
effect can be significantly lessened to less than 0.5%.

VII. CONCLUSION

In this paper we presented methods for establishing a con-
ference key that are based upon the design of an underlying
tree called the conference tree. In heterogeneous environments,
where users have varying costs and budgets, the conference tree
can be designed to address the user differences. We studied the
problem of minimizing the total cost of establishing the group
key when the users had different costs. The problem of de-
signing the conference tree was related to source coding, and
techniques for designing source codes, such as Huffman coding,
were employed to design the conference tree. The second case
we investigated was when the users had the same cost, but dif-
ferent budget requirements. A necessary condition for a confer-
ence tree to exist for a given vector of budget requirements is that
the budget vector satisfies the Kraft Inequality. Finally, the third
case we examined is when the users have both varying costs and
budget requirements. We presented a computationally efficient
near-optimal algorithm using a greedy incremental resource as-
signment strategy that achieves a total cost within 0.5% of the
optimal solution for small group sizes.

In situations where no single user has an extremely large
budget, centralized conference keying schemes are unlikely to
successfully establish a conference key. To investigate this phe-
nomenon, we introduced the PESKY measure, which describes

TRAPPE et al.: RESOURCE-AWARE CONFERENCE KEY ESTABLISHMENT FOR HETEROGENEOUS NETWORKS 145

the probability that a conference keying scheme can establish a
session key in the presence of budget constraints. We provided
simulations where the user budgets were drawn according to dif-
ferent distributions, and in all cases the PESKY values for dif-
ferent group sizes were higher for our tree-based schemes than
for either the GDH.1/2 or the GDH.3 schemes.

Next, we examined the effect that using false user costs would
have on the total cost. It was shown that by increasing the quan-
tization resolution, or by increasing the threshold level, that the
difference between the total cost of using the exact and approxi-
mate costs for a given length assignment tends to 0. We then ex-
amined the effect a subset of users who falsely announce large
costs has upon the total cost. In order to reduce the detrimental
effect of designing a conference tree for falsely announced user
costs, we proposed the use of a clipping operator to prevent un-
trustworthy users from being too greedy and minimize the di-
vergence to determine the optimal threshold value.

APPENDIX I

The total number of rounds needed in the ING butterfly
scheme for users is

. When choosing a factorization for , more
factored representation lead to fewer rounds. We now show that
using a binary conference tree produces the group key in the
fewest amount of rounds. To do this, we show that if one uses
a ING scheme for round of the group key establishment,
then the use of several two-party DH schemes in place of the

ING scheme either produces the same amount of rounds or
fewer in establishing the group key.

Lemma 4: Let be the amount of users, and suppose that we
wish to establish a conference tree where level uses a ING
scheme as the basis, then a binary tree (where) produces
an optimal conference tree.

Proof: Suppose that you have an optimal set of numbers
that are used to construct the conference tree for

users. Then the number , and the total rounds
is minimal.

We will show that if there is a then we may replace
by a sequence of numbers all of which have value 2. Suppose
there is a such that , then the contributes
to the total amount of rounds . Define
which is a sequence of length . If we use this set of
numbers in place of , we instead contribute
to the total cost. It is clear that using in place of produces
an . However, the incremental cost is
less than or equal to (in fact, if then equality holds,
else it is strictly less). Thus, if then replacing by
produces a set of numbers with lesser amount of total rounds

, which contradicts optimality. On the otherhand, if
then replacing by will produce a set of numbers with an
equal amount of total rounds , and hence we may choose to
use instead of in the construction of the optimal tree. By
applying this argument to all we conclude that a binary
tree must produce an optimal tree.

The argument used above does not produce the optimal tree,
but rather only implies that the optimal tree is binary. For ex-
ample, consider . The total amount of rounds using three

levels of three-party ING is . If we use the above tech-
nique, we replace each 3 by , and get a conference tree with

terminal nodes and total cost of 6. However, the optimal tree
in this case is the binary tree of depth , with total rounds

.

APPENDIX II

Lemma 3: Suppose with for
satisfies the strict Kraft Inequality, , then the

modified budget vector defined by
satisfies the Kraft Inequality .

Proof: Observe that is the common denominator of
the set . Thus can be expressed as

where . In particular,
, and as a consequence

. However, , and so
the sequence satisfies the Kraft Inequality.

Lemma 4: Algorithm 1 produces an optimal length assign-
ment vector to the problem

(6)

Proof: We will show that there is an optimal solution in
which one decreases the largest value of the budget vector by
one. Let be an optimal solution to the problem. Then by the
previous lemma . Consider a sequence of steps that
take the budget vector to the optimal length vector by de-
creasing one element by 1 during each step. We denote by the
sequence of indices involved in going from to , where
refers to the index of the budget vector that is decreased during

th step. Let be the index of the largest element of , we claim
there is an optimal solution with a corresponding .
If then we are done. However, if then
there are two cases. The first case is that there is another element
of that has value , in which case we may switch that ele-
ment with to produce a new sequence of steps that does
not alter the value of and maintains the optimality of

. The second case is that . If there are any other
elements of with the same value as , then indices of these
may be used in place of , and considered in the preceding ar-
gument. However, if there are no ’s with the same value as
then we seek a contradiction as to the optimality of . Choose
an arbitrary element of . This element, which we denote by

, by assumption has the property that it . De-
fine , which cor-
responds to the sequence of steps involved in excluding the

th step. Define , which describes a new sequence
of steps that starts with and then the steps of . Then
leads to a length vector , where is
the vector of all zeros except in the th index which has value
1. This length vector has the property that
since . Hence . However, by the
preceding lemma, this means that can be used to produce a
better length vector, which contradicts the optimality of .

Hence, the optimal solution may as well have the first step re-
duce the largest element of the budget vector. Now the problem
reduces to finding an optimal solution to the new budget

146 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 1, FEBRUARY 2005

. By induction on the number of steps, we therefore con-
clude that choosing the largest element during each step yields
an optimal solution, and hence the greediness of Algorithm 1 is
optimal.

REFERENCES

[1] M. J. Moyer, J. R. Rao, and P. Rohatgi, “A survey of security issues in
multicast communications,” IEEE Network, vol. 13, no. 6, pp. 12–23,
Nov.–Dec. 1999.

[2] R. Canetti, J. Garay, G. Itkis, D. Miccianancio, M. Naor, and B. Pinkas,
“Multicast security: a taxonomy and some efficient constructions,” in
Proc. IEEE INFOCOM, 1999, pp. 708–716.

[3] C. Wong, M. Gouda, and S. Lam, “Secure group communications using
key graphs,” IEEE/ACM Trans. Networking, vol. 8, no. 1, pp. 16–30,
Feb. 2000.

[4] D. Balenson, D. McGrew, and A. Sherman, “Key Management for Large
Dynamic Groups: One-Way Function Trees and Amortized Initializa-
tion,”, Internet Draft Report.

[5] S. Banerjee and B. Bhattacharjee, “Scalable secure group communi-
cation over IP multicast,” IEEE J. Select. Areas Commun.—Special
Issue on Network Support for Group Communication, vol. 20, no. 8, pp.
1511–1527, Oct. 2002.

[6] W. Trappe, J. Song, R. Poovendran, and K. J. R. Liu, “Key distribution
for secure multimedia multicasts via data embedding,” in Proc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processing, 2001.

[7] R. Canetti, T. Malkin, and K. Nissim, “Efficient communication-storage
tradeoffs for multicast encryption,” Eurocrypt, pp. 456–470, 1999.

[8] G. Caronni, M. Waldvogel, D. Sun, and B. Plattner, “Efficient security
for large and dynamic multicast groups,” in 7th Workshop on Enabling
Technologies (WET ICE ‘98), 1998.

[9] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inform. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[10] I. Ingemarsson, D. Tang, and C. Wong, “A conference key distribution
system,” IEEE Trans. Inform. Theory, vol. 28, no. 5, pp. 714–720, Sep.
1982.

[11] M. Burmester and Y. Desmedt, “A secure and efficient conference key
distribution scheme,” Advances in Cryptology—Eurocrypt, pp. 275–286,
1994.

[12] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution
extended to group communication,” in Proc. 3rd ACM Conf. Computer
Commun. Security, 1996, pp. 31–37.

[13] K. Becker and U. Wille, “Communication complexity of group key dis-
tribution,” in Proc. 5th ACM Conf. Computer Communication Security,
1998, pp. 1–6.

[14] G. Ateniese, M. Steiner, and G. Tsudik, “New multiparty authentication
services and key agreement protocols,” IEEE J. Select. Areas Commun.,
vol. 18, no. 4, pp. 628–639, Apr. 2000.

[15] V. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryp-
tology: Crypto ’85, 1986, pp. 417–426.

[16] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key agree-
ment for dynamic collaborative groups,” in Proc. 7th ACM Conf. Com-
puter Communication Security, 2000, pp. 235–244.

[17] L. R. Dondeti, S. Mukherjee, and A. Samal, “DISEC: a distributed
framework for scalable secure many-to-many communication,” in Proc.
5th IEEE Symp. Computers and Communications, 2000, pp. 693–698.

[18] W. Trappe, Y. Wang, and K. J. R. Liu, “Group key agreement using di-
vide-and-conquer strategies,” presented at the The John’s Hopkins Uni-
versity Conf. Information Sciences and Systems, Mar. 2001.

[19] , “Establishment of conference keys in heterogenous networks,” in
Proc. IEEE Int. Conf. Communications, 2002, pp. 2201–2205.

[20] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, 1989.

[21] A. Perrig, R. Szewczyk, D. Tygar, V. Wen, and D. Culler, “SPINS: se-
curity protocols for sensor networks,” Wireless Networks, vol. 8, no. 5,
pp. 521–534, 2002.

[22] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[23] D. Huffman, “A method for the construction of minimum redundancy
codes,” in Proc. Inst. Radio Eng., vol. 40, 1952, pp. 1098–1101.

[24] A. Turping and A. Moffat, “Practical length-limited coding for large al-
phabets,” Computer J., vol. 38, pp. 339–347, 1995.

[25] L. Larmore and D. Hirschberg, “A fast algorithm for optimal length-
limited Huffman codes,” J. ACM, vol. 37, pp. 464–473, Jul. 1990.

[26] R. Milidiu and E. Laber, “The warm-up algorithm: a Lagrangian con-
struction of length restricted Huffman codes,” SIAM J. Computation, vol.
30, pp. 1405–1426, 2000.

[27] B. Fox, “Discrete optimization via marginal analysis,” Manage. Sci., vol.
13, pp. 210–216, 1966.

[28] L. A. Wolsey, Integer Programming. New York: Wiley, 1998.
[29] B. Sun, W. Trappe, Y. Sun, and K. J. R. Liu, “A time-efficient contribu-

tory key agreement scheme for secure group communication,” in Proc.
IEEE Int. Conf. Communications, vol. 2, 2002, pp. 1159–1163.

[30] A. Law and W. Kelton, Simulation Modeling and Analysis, 2nd
ed. New York: McGraw-Hill, 1991.

[31] T. Nemetz, “On the word-length of Huffman codes,” Probl. Contr. In-
form. Theory, vol. 9, pp. 231–242, 1980.

[32] E. Gilbert, “Codes based on inaccurate source probabilities,” IEEE
Trans. Inform. Theory, vol. 17, no. 3, pp. 304–314, May 1971.

[33] F. Fabris, A. Sgarro, and R. Pauletti, “Tunstall adaptive coding and mis-
coding,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 2167–2180,
Nov. 1996.

Wade Trappe (M’02) received the B.A. degree
in mathematics from The University of Texas at
Austin in 1994, and the Ph.D. degree in applied
mathematics and scientific computing from the
University of Maryland, College Park, in 2002.

He is currently an Assistant Professor at the Wire-
less Information Network Laboratory (WINLAB)
and the Electrical and Computer Engineering De-
partment at Rutgers University. He is a co-author
of the textbook Introduction to Cryptography with
Coding Theory (Prentice Hall, 2001). His research

interests include wireless network security, wireless networking, and multi-
media security.

While at the University of Maryland, Dr. Trappe received the George
Harhalakis Outstanding Systems Engineering Graduate Student Award. He is a
member of the IEEE Signal Processing and Communication societies.

Yuke Wang received the Ph.D. degree in computer
science from the University of Saskatchewan,
Canada, in 1996. Dr. Yuke Wang

He is currently an Associate Professor with the
University of Texas at Dallas. His research interests
include network security, QoS, ASIC design and
embedded processors for applications in DSP and
communication systems.

Dr. Wang has served as an Associate Ed-
itor for IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART II, IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS, the EURASIP Journal of
Applied Signal Processing, and the Journal of Circuits, Systems, and Signal
Processing.

K. J. Ray Liu (F’03) received the B.S. degree from
the National Taiwan University in 1983, and the
Ph.D. degree from the University of California at
Los Angeles in 1990, both in electrical engineering.

He is a Professor in the Electrical and Computer
Engineering Department and Institute for Systems
Research of the University of Maryland, College
Park. His research contributions encompass broad
aspects of wireless communications and networking,
information security, multimedia communications
and signal processing, signal processing algorithms

and architectures, and bioinformatics, in which he has published over 300
refereed papers.

Dr. Liu is the recipient of numerous honors and awards including IEEE Signal
Processing Society 2004 Distinguished Lecturer, the 1994 National Science
Foundation Young Investigator Award, the IEEE Signal Processing Society’s
1993 Senior Award (Best Paper Award), IEEE 50th Vehicular Technology Con-
ference Best Paper Award, Amsterdam, 1999, and EURASIP 2004 Meritorious
Service Award. He also received the George Corcoran Award in 1994 for out-
standing contributions to electrical engineering education and the Outstanding
Systems Engineering Faculty Award in 1996 in recognition of outstanding con-
tributions in interdisciplinary research, both from the University of Maryland.
He is the Editor-in-Chief of IEEE Signal Processing Magazine and was the
founding Editor-in-Chief of EURASIP Journal on Applied Signal Processing.
He is on the Board of Governors and has served as Chairman of the Multimedia
Signal Processing Technical Committee of the IEEE Signal Processing Society.

	toc
	Resource-Aware Conference Key Establishment for Heterogeneous Ne
	Wade Trappe, Member, IEEE, Yuke Wang, and K. J. Ray Liu, Fellow,
	I. I NTRODUCTION
	II. G ROUP DH O VERVIEW
	III. C ONFERENCE T REES AND THE B UTTERFLY S CHEME

	Fig.€1. The radix-2 butterfly scheme for establishing a group ke
	Fig.€2. The trellis for $n=9$ users using two levels of three-pa
	IV. C ONFERENCE T REE O PTIMIZATION
	A. Minimizing Total Cost
	Lemma 1: Suppose that n users wish to establish a group secret
	Example 1: Consider a group of eight users with costs $w_{1}=28$

	B. Budget Constraints
	Lemma 2: Suppose that the budget vector $b=(b_{1},b_{2},\cdots,b
	Lemma 3: Suppose $b=(b_{1},b_{2},\cdots,b_{n})$, with $b_{j}\leq

	Algorithm 1. Algorithm for calculating the optimal length vector
	Example 2: Consider a group of $n=5$ users with a budget vector
	C. Combined Budget and Cost Optimization

	Algorithm 2. Algorithm for calculating the length vector l, gi
	Algorithm 3. Improved algorithm for calculating the length vecto
	D. Updating Keys Due to Membership Dynamics
	V. E FFICIENCY AND F EASIBILITY E VALUATION
	A. Comparison of Total Cost

	Fig.€3. Cost comparison of establishing a conference key using t
	B. Feasibility Comparison

	Fig.€4. (a) Budget distribution discrete uniform with integer va
	Fig.€5. (a) Budget distribution, shifted version of a negative b
	VI. S YSTEM S ENSITIVITY TO F ALSE C OSTS
	A. Sensitivity to Approximate Costs
	B. Sensitivity to Costs From Untrustworthy Users

	Fig. 6. An example divergence $D(\mathhat{p}\Vert p)$ where $\ma
	Fig.€7. The relative costs are presented for when the exact user
	VII. C ONCLUSION
	Lemma 4: Let n be the amount of users, and suppose that we wis
	Proof: Suppose that you have an optimal set of numbers $\{p_{1},

	Lemma 3: Suppose $b=(b_{1},b_{2},\cdots,b_{n})$ with $b_{j}\leq
	Proof: Observe that $2^{b_{n}}$ is the common denominator of the

	Lemma 4: Algorithm 1 produces an optimal length assignment vecto
	Proof: We will show that there is an optimal solution in which o

	M. J. Moyer, J. R. Rao, and P. Rohatgi, A survey of security iss
	R. Canetti, J. Garay, G. Itkis, D. Miccianancio, M. Naor, and B.
	C. Wong, M. Gouda, and S. Lam, Secure group communications using
	D. Balenson, D. McGrew, and A. Sherman, Key Management for Large
	S. Banerjee and B. Bhattacharjee, Scalable secure group communic
	W. Trappe, J. Song, R. Poovendran, and K. J. R. Liu, Key distrib
	R. Canetti, T. Malkin, and K. Nissim, Efficient communication-st
	G. Caronni, M. Waldvogel, D. Sun, and B. Plattner, Efficient sec
	W. Diffie and M. Hellman, New directions in cryptography, IEEE T
	I. Ingemarsson, D. Tang, and C. Wong, A conference key distribut
	M. Burmester and Y. Desmedt, A secure and efficient conference k
	M. Steiner, G. Tsudik, and M. Waidner, Diffie-Hellman key distri
	K. Becker and U. Wille, Communication complexity of group key di
	G. Ateniese, M. Steiner, and G. Tsudik, New multiparty authentic
	V. Miller, Use of elliptic curves in cryptography, in Advances i
	Y. Kim, A. Perrig, and G. Tsudik, Simple and fault-tolerant key
	L. R. Dondeti, S. Mukherjee, and A. Samal, DISEC: a distributed
	W. Trappe, Y. Wang, and K. J. R. Liu, Group key agreement using
	A. Oppenheim and R. Schafer, Discrete-Time Signal Processing . E
	A. Perrig, R. Szewczyk, D. Tygar, V. Wen, and D. Culler, SPINS:
	T. Cover and J. Thomas, Elements of Information Theory . New Yor
	D. Huffman, A method for the construction of minimum redundancy
	A. Turping and A. Moffat, Practical length-limited coding for la
	L. Larmore and D. Hirschberg, A fast algorithm for optimal lengt
	R. Milidiu and E. Laber, The warm-up algorithm: a Lagrangian con
	B. Fox, Discrete optimization via marginal analysis, Manage. Sci
	L. A. Wolsey, Integer Programming . New York: Wiley, 1998.
	B. Sun, W. Trappe, Y. Sun, and K. J. R. Liu, A time-efficient co
	A. Law and W. Kelton, Simulation Modeling and Analysis, 2nd ed.
	T. Nemetz, On the word-length of Huffman codes, Probl. Contr. In
	E. Gilbert, Codes based on inaccurate source probabilities, IEEE
	F. Fabris, A. Sgarro, and R. Pauletti, Tunstall adaptive coding

